WORST_CASE(?,O(n^3))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E,F,G,H)  -> f10(I,0,C,D,E,F,G,H)     True         (1,1)
          1. f10(A,B,C,D,E,F,G,H) -> f10(A,1 + B,C,D,E,F,G,H) [C >= 1 + B] (?,1)
          2. f18(A,B,C,D,E,F,G,H) -> f22(A,B,C,D,E,E,1 + E,H) [D >= 2 + E] (?,1)
          3. f22(A,B,C,D,E,F,G,H) -> f22(A,B,C,D,E,F,1 + G,H) [D >= 1 + G] (?,1)
          4. f22(A,B,C,D,E,F,G,H) -> f22(A,B,C,D,E,G,1 + G,H) [D >= 1 + G] (?,1)
          5. f34(A,B,C,D,E,F,G,H) -> f34(A,B,C,D,1 + E,F,G,H) [D >= 2 + E] (?,1)
          6. f34(A,B,C,D,E,F,G,H) -> f43(A,B,C,D,E,F,G,H)     [1 + E >= D] (?,1)
          7. f22(A,B,C,D,E,F,G,H) -> f18(A,B,C,D,1 + E,F,G,I) [G >= D]     (?,1)
          8. f18(A,B,C,D,E,F,G,H) -> f34(A,B,C,D,0,F,G,H)     [1 + E >= D] (?,1)
          9. f10(A,B,C,D,E,F,G,H) -> f18(A,B,C,C,0,F,G,H)     [B >= C]     (?,1)
        Signature:
          {(f0,8);(f10,8);(f18,8);(f22,8);(f34,8);(f43,8)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [A,F,H] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1)
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1)
          6. f34(B,C,D,E,G) -> f43(B,C,D,E,G)     [1 + E >= D] (?,1)
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (?,1)
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,B>,     0, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>,     E, .= 0) (<0,0,G>,     G, .= 0) 
          (<1,0,B>, 1 + B, .+ 1) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<1,0,E>,     E, .= 0) (<1,0,G>,     G, .= 0) 
          (<2,0,B>,     B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>,     E, .= 0) (<2,0,G>, 1 + E, .+ 1) 
          (<3,0,B>,     B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>,     E, .= 0) (<3,0,G>, 1 + G, .+ 1) 
          (<4,0,B>,     B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>,     E, .= 0) (<4,0,G>, 1 + G, .+ 1) 
          (<5,0,B>,     B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>, 1 + E, .+ 1) (<5,0,G>,     G, .= 0) 
          (<6,0,B>,     B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>,     E, .= 0) (<6,0,G>,     G, .= 0) 
          (<7,0,B>,     B, .= 0) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<7,0,E>, 1 + E, .+ 1) (<7,0,G>,     G, .= 0) 
          (<8,0,B>,     B, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) (<8,0,E>,     0, .= 0) (<8,0,G>,     G, .= 0) 
          (<9,0,B>,     B, .= 0) (<9,0,C>, C, .= 0) (<9,0,D>, C, .= 0) (<9,0,E>,     0, .= 0) (<9,0,G>,     G, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1)
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1)
          6. f34(B,C,D,E,G) -> f43(B,C,D,E,G)     [1 + E >= D] (?,1)
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (?,1)
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        Sizebounds:
          (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,G>, ?) 
          (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,G>, ?) 
          (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,G>, ?) 
          (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,G>, ?) 
          (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,G>, ?) 
          (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,G>, ?) 
          (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) (<9,0,G>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
* Step 4: UnsatPaths WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1)
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1)
          6. f34(B,C,D,E,G) -> f43(B,C,D,E,G)     [1 + E >= D] (?,1)
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (?,1)
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,7)]
* Step 5: LeafRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1)
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1)
          6. f34(B,C,D,E,G) -> f43(B,C,D,E,G)     [1 + E >= D] (?,1)
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (?,1)
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [6]
* Step 6: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1)
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1)
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (?,1)
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f10) = 1
          p(f18) = 0
          p(f22) = 0
          p(f34) = 0
        
        The following rules are strictly oriented:
                [B >= C] ==>               
          f10(B,C,D,E,G)   = 1             
                           > 0             
                           = f18(B,C,C,0,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f10(0,C,D,E,G)    
        
            [C >= 1 + B] ==>                   
          f10(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f10(1 + B,C,D,E,G)
        
            [D >= 2 + E] ==>                   
          f18(B,C,D,E,G)   = 0                 
                          >= 0                 
                           = f22(B,C,D,E,1 + E)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = 0                 
                          >= 0                 
                           = f22(B,C,D,E,1 + G)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = 0                 
                          >= 0                 
                           = f22(B,C,D,E,1 + G)
        
            [D >= 2 + E] ==>                   
          f34(B,C,D,E,G)   = 0                 
                          >= 0                 
                           = f34(B,C,D,1 + E,G)
        
                [G >= D] ==>                   
          f22(B,C,D,E,G)   = 0                 
                          >= 0                 
                           = f18(B,C,D,1 + E,G)
        
            [1 + E >= D] ==>                   
          f18(B,C,D,E,G)   = 0                 
                          >= 0                 
                           = f34(B,C,D,0,G)    
        
        
* Step 7: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1)
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1)
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (?,1)
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (1,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f10) = 1
          p(f18) = 1
          p(f22) = 1
          p(f34) = 0
        
        The following rules are strictly oriented:
            [1 + E >= D] ==>               
          f18(B,C,D,E,G)   = 1             
                           > 0             
                           = f34(B,C,D,0,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f10(0,C,D,E,G)    
        
            [C >= 1 + B] ==>                   
          f10(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f10(1 + B,C,D,E,G)
        
            [D >= 2 + E] ==>                   
          f18(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f22(B,C,D,E,1 + E)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f22(B,C,D,E,1 + G)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f22(B,C,D,E,1 + G)
        
            [D >= 2 + E] ==>                   
          f34(B,C,D,E,G)   = 0                 
                          >= 0                 
                           = f34(B,C,D,1 + E,G)
        
                [G >= D] ==>                   
          f22(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f18(B,C,D,1 + E,G)
        
                [B >= C] ==>                   
          f10(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f18(B,C,C,0,G)    
        
        
* Step 8: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1)
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1)
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (1,1)
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (1,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x2             
          p(f10) = x2             
          p(f18) = -1 + x3        
          p(f22) = -1 + x3        
          p(f34) = -1 + x3 + -1*x4
        
        The following rules are strictly oriented:
            [D >= 2 + E] ==>                   
          f34(B,C,D,E,G)   = -1 + D + -1*E     
                           > -2 + D + -1*E     
                           = f34(B,C,D,1 + E,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(B,C,D,E,G)   = C                 
                          >= C                 
                           = f10(0,C,D,E,G)    
        
            [C >= 1 + B] ==>                   
          f10(B,C,D,E,G)   = C                 
                          >= C                 
                           = f10(1 + B,C,D,E,G)
        
            [D >= 2 + E] ==>                   
          f18(B,C,D,E,G)   = -1 + D            
                          >= -1 + D            
                           = f22(B,C,D,E,1 + E)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = -1 + D            
                          >= -1 + D            
                           = f22(B,C,D,E,1 + G)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = -1 + D            
                          >= -1 + D            
                           = f22(B,C,D,E,1 + G)
        
                [G >= D] ==>                   
          f22(B,C,D,E,G)   = -1 + D            
                          >= -1 + D            
                           = f18(B,C,D,1 + E,G)
        
            [1 + E >= D] ==>                   
          f18(B,C,D,E,G)   = -1 + D            
                          >= -1 + D            
                           = f34(B,C,D,0,G)    
        
                [B >= C] ==>                   
          f10(B,C,D,E,G)   = C                 
                          >= -1 + C            
                           = f18(B,C,C,0,G)    
        
        
* Step 9: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1)
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1)
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (1,1)
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (1,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x2        
          p(f10) = -1*x1 + x2
          p(f18) = -1*x1 + x2
          p(f22) = -1*x1 + x2
          p(f34) = -1*x1 + x2
        
        The following rules are strictly oriented:
            [C >= 1 + B] ==>                   
          f10(B,C,D,E,G)   = -1*B + C          
                           > -1 + -1*B + C     
                           = f10(1 + B,C,D,E,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(B,C,D,E,G)   = C                 
                          >= C                 
                           = f10(0,C,D,E,G)    
        
            [D >= 2 + E] ==>                   
          f18(B,C,D,E,G)   = -1*B + C          
                          >= -1*B + C          
                           = f22(B,C,D,E,1 + E)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = -1*B + C          
                          >= -1*B + C          
                           = f22(B,C,D,E,1 + G)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = -1*B + C          
                          >= -1*B + C          
                           = f22(B,C,D,E,1 + G)
        
            [D >= 2 + E] ==>                   
          f34(B,C,D,E,G)   = -1*B + C          
                          >= -1*B + C          
                           = f34(B,C,D,1 + E,G)
        
                [G >= D] ==>                   
          f22(B,C,D,E,G)   = -1*B + C          
                          >= -1*B + C          
                           = f18(B,C,D,1 + E,G)
        
            [1 + E >= D] ==>                   
          f18(B,C,D,E,G)   = -1*B + C          
                          >= -1*B + C          
                           = f34(B,C,D,0,G)    
        
                [B >= C] ==>                   
          f10(B,C,D,E,G)   = -1*B + C          
                          >= -1*B + C          
                           = f18(B,C,C,0,G)    
        
        
* Step 10: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1)
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1)
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (1,1)
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (1,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,7,3,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f18) = 2 + x3 + -1*x4
          p(f22) = 1 + x3 + -1*x4
        
        The following rules are strictly oriented:
            [D >= 2 + E] ==>                   
          f18(B,C,D,E,G)   = 2 + D + -1*E      
                           > 1 + D + -1*E      
                           = f22(B,C,D,E,1 + E)
        
        
        The following rules are weakly oriented:
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = 1 + D + -1*E      
                          >= 1 + D + -1*E      
                           = f22(B,C,D,E,1 + G)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = 1 + D + -1*E      
                          >= 1 + D + -1*E      
                           = f22(B,C,D,E,1 + G)
        
                [G >= D] ==>                   
          f22(B,C,D,E,G)   = 1 + D + -1*E      
                          >= 1 + D + -1*E      
                           = f18(B,C,D,1 + E,G)
        
        We use the following global sizebounds:
        (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
        (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
        (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
        (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
        (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
        (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
        (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
        (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
        (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
* Step 11: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)    
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1)    
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (2 + C,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)    
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)    
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1)    
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (?,1)    
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (1,1)    
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (1,1)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,3,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f18) = 0
          p(f22) = 1
        
        The following rules are strictly oriented:
                [G >= D] ==>                   
          f22(B,C,D,E,G)   = 1                 
                           > 0                 
                           = f18(B,C,D,1 + E,G)
        
        
        The following rules are weakly oriented:
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f22(B,C,D,E,1 + G)
        
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = 1                 
                          >= 1                 
                           = f22(B,C,D,E,1 + G)
        
        We use the following global sizebounds:
        (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
        (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
        (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
        (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
        (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
        (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
        (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
        (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
        (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
* Step 12: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,G)  -> f10(0,C,D,E,G)     True         (1,1)    
          1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1)    
          2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (2 + C,1)
          3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)    
          4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1)    
          5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1)    
          7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D]     (2 + C,1)
          8. f18(B,C,D,E,G) -> f34(B,C,D,0,G)     [1 + E >= D] (1,1)    
          9. f10(B,C,D,E,G) -> f18(B,C,C,0,G)     [B >= C]     (1,1)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) 
    + Applied Processor:
        ChainProcessor False [0,1,2,3,4,5,7,8,9]
    + Details:
        We chained rule 7 to obtain the rules [10,11] .
* Step 13: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          2.  f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E)     [D >= 2 + E]           (2 + C,1)
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          8.  f18(B,C,D,E,G) -> f34(B,C,D,0,G)         [1 + E >= D]           (1,1)    
          9.  f10(B,C,D,E,G) -> f18(B,C,C,0,G)         [B >= C]               (1,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4,10,11},3->{3,4,10,11},4->{3,4,10,11},5->{5},8->{5},9->{2,8},10->{3,4,10,11}
          ,11->{5}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) 
          (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, C) (< 2,0,E>, C) (< 2,0,G>, ?) 
          (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) 
          (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) 
          (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) 
          (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, C) (< 8,0,E>, 0) (< 8,0,G>, ?) 
          (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, C) (< 9,0,E>, 0) (< 9,0,G>, G) 
          (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) 
          (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) 
    + Applied Processor:
        ChainProcessor False [0,1,2,3,4,5,8,9,10,11]
    + Details:
        We chained rule 9 to obtain the rules [12,13] .
* Step 14: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          2.  f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E)     [D >= 2 + E]           (2 + C,1)
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          8.  f18(B,C,D,E,G) -> f34(B,C,D,0,G)         [1 + E >= D]           (1,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)    
          13. f10(B,C,D,E,G) -> f34(B,C,C,0,G)         [B >= C && 1 >= C]     (1,2)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,12,13},1->{1,12,13},2->{3,4,10,11},3->{3,4,10,11},4->{3,4,10,11},5->{5},8->{5},10->{3,4,10,11}
          ,11->{5},12->{3,4,10,11},13->{5}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) 
          (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, C) (< 2,0,E>, C) (< 2,0,G>, ?) 
          (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) 
          (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) 
          (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) 
          (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, C) (< 8,0,E>, 0) (< 8,0,G>, ?) 
          (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) 
          (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) 
          (<12,0,B>, ?) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, C) (<12,0,G>, ?) 
          (<13,0,B>, ?) (<13,0,C>, C) (<13,0,D>, C) (<13,0,E>, 0) (<13,0,G>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [2,8]
* Step 15: UnsatPaths WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)    
          13. f10(B,C,D,E,G) -> f34(B,C,C,0,G)         [B >= C && 1 >= C]     (1,2)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,12,13},1->{1,12,13},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4,10,11},11->{5},12->{3,4,10,11}
          ,13->{5}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) 
          (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) 
          (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) 
          (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) 
          (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) 
          (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) 
          (<12,0,B>, ?) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, C) (<12,0,G>, ?) 
          (<13,0,B>, ?) (<13,0,C>, C) (<13,0,D>, C) (<13,0,E>, 0) (<13,0,G>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,12),(10,10),(10,11),(12,10),(12,11),(13,5)]
* Step 16: LeafRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)    
          13. f10(B,C,D,E,G) -> f34(B,C,C,0,G)         [B >= C && 1 >= C]     (1,2)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1,13},1->{1,12,13},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4},13->{}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) 
          (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) 
          (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) 
          (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) 
          (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) 
          (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) 
          (<12,0,B>, ?) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, C) (<12,0,G>, ?) 
          (<13,0,B>, ?) (<13,0,C>, C) (<13,0,D>, C) (<13,0,E>, 0) (<13,0,G>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [13]
* Step 17: LocalSizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) 
          (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) 
          (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) 
          (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) 
          (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) 
          (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) 
          (<12,0,B>, ?) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, C) (<12,0,G>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,B>,     0, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>,     E, .= 0) (< 0,0,G>,     G, .= 0) 
          (< 1,0,B>, 1 + B, .+ 1) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>,     E, .= 0) (< 1,0,G>,     G, .= 0) 
          (< 3,0,B>,     B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>,     E, .= 0) (< 3,0,G>, 1 + G, .+ 1) 
          (< 4,0,B>,     B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>,     E, .= 0) (< 4,0,G>, 1 + G, .+ 1) 
          (< 5,0,B>,     B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, 1 + E, .+ 1) (< 5,0,G>,     G, .= 0) 
          (<10,0,B>,     B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 1 + E, .+ 1) (<10,0,G>, 2 + E, .+ 2) 
          (<11,0,B>,     B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>,     0, .= 0) (<11,0,G>,     G, .= 0) 
          (<12,0,B>,     B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, C, .= 0) (<12,0,E>,     0, .= 0) (<12,0,G>,     1, .= 1) 
* Step 18: SizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}]
        Sizebounds:
          (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,G>, ?) 
          (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,G>, ?) 
          (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,G>, ?) 
          (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,G>, ?) 
          (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,G>, ?) 
          (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,G>, ?) 
          (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,G>, ?) 
          (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,G>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>,     E) (< 0,0,G>,     G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>,     E) (< 1,0,G>,     G) 
          (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>,     C) 
          (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>,     C) 
          (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>,     C) (< 5,0,G>,     C) 
          (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) 
          (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>,     0) (<11,0,G>,     C) 
          (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>,     0) (<12,0,G>,     1) 
* Step 19: LocationConstraintsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>,     E) (< 0,0,G>,     G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>,     E) (< 1,0,G>,     G) 
          (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>,     C) 
          (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>,     C) 
          (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>,     C) (< 5,0,G>,     C) 
          (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) 
          (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>,     0) (<11,0,G>,     C) 
          (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>,     0) (<12,0,G>,     1) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  0 :  True 1 :  True 3 :  [C >= 2] 4 :  [C >= 2] 5 :  [G >= D
                                                                                                    && G >= D] 10 :  [C >= 2] 11 :  True 12 :  [False] .
* Step 20: LoopRecurrenceProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>,     E) (< 0,0,G>,     G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>,     E) (< 1,0,G>,     G) 
          (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>,     C) 
          (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>,     C) 
          (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>,     C) (< 5,0,G>,     C) 
          (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) 
          (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>,     0) (<11,0,G>,     C) 
          (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>,     0) (<12,0,G>,     1) 
    + Applied Processor:
        LoopRecurrenceProcessor [1]
    + Details:
        Applying the recurrence pattern linear * f to the expression C-B yields the solution -1*B + C .
* Step 21: LoopRecurrenceProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>,     E) (< 0,0,G>,     G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>,     E) (< 1,0,G>,     G) 
          (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>,     C) 
          (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>,     C) 
          (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>,     C) (< 5,0,G>,     C) 
          (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) 
          (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>,     0) (<11,0,G>,     C) 
          (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>,     0) (<12,0,G>,     1) 
    + Applied Processor:
        LoopRecurrenceProcessor [5]
    + Details:
        Applying the recurrence pattern linear * f to the expression D-E yields the solution D + -1*E .
* Step 22: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)    
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)    
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)    
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)    
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>,     E) (< 0,0,G>,     G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>,     E) (< 1,0,G>,     G) 
          (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>,     C) 
          (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>,     C) 
          (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>,     C) (< 5,0,G>,     C) 
          (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) 
          (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>,     0) (<11,0,G>,     C) 
          (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>,     0) (<12,0,G>,     1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f22) = x3 + -1*x5
        
        The following rules are strictly oriented:
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = D + -1*G          
                           > -1 + D + -1*G     
                           = f22(B,C,D,E,1 + G)
        
        
        The following rules are weakly oriented:
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = D + -1*G          
                          >= -1 + D + -1*G     
                           = f22(B,C,D,E,1 + G)
        
        We use the following global sizebounds:
        (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>,     E) (< 0,0,G>,     G) 
        (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>,     E) (< 1,0,G>,     G) 
        (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>,     C) 
        (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>,     C) 
        (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>,     C) (< 5,0,G>,     C) 
        (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) 
        (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>,     0) (<11,0,G>,     C) 
        (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>,     0) (<12,0,G>,     1) 
* Step 23: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)              
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)              
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (?,1)              
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (9 + 9*C + 2*C^2,1)
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)              
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)          
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)          
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)              
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>,     E) (< 0,0,G>,     G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>,     E) (< 1,0,G>,     G) 
          (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>,     C) 
          (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>,     C) 
          (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>,     C) (< 5,0,G>,     C) 
          (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) 
          (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>,     0) (<11,0,G>,     C) 
          (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>,     0) (<12,0,G>,     1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f22) = x3 + -1*x5
        
        The following rules are strictly oriented:
            [D >= 1 + G] ==>                   
          f22(B,C,D,E,G)   = D + -1*G          
                           > -1 + D + -1*G     
                           = f22(B,C,D,E,1 + G)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>,     E) (< 0,0,G>,     G) 
        (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>,     E) (< 1,0,G>,     G) 
        (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>,     C) 
        (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>,     C) 
        (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>,     C) (< 5,0,G>,     C) 
        (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) 
        (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>,     0) (<11,0,G>,     C) 
        (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>,     0) (<12,0,G>,     1) 
* Step 24: KnowledgePropagation WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  f0(B,C,D,E,G)  -> f10(0,C,D,E,G)         True                   (1,1)                        
          1.  f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G)     [C >= 1 + B]           (C,1)                        
          3.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (9 + 27*C + 20*C^2 + 4*C^3,1)
          4.  f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G)     [D >= 1 + G]           (9 + 9*C + 2*C^2,1)          
          5.  f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G)     [D >= 2 + E]           (C,1)                        
          10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2)                    
          11. f22(B,C,D,E,G) -> f34(B,C,D,0,G)         [G >= D && 2 + E >= D] (2 + C,2)                    
          12. f10(B,C,D,E,G) -> f22(B,C,C,0,1)         [B >= C && C >= 2]     (1,2)                        
        Signature:
          {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)}
        Flow Graph:
          [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}]
        Sizebounds:
          (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>,     E) (< 0,0,G>,     G) 
          (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>,     E) (< 1,0,G>,     G) 
          (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>,     C) 
          (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>,     C) 
          (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>,     C) (< 5,0,G>,     C) 
          (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) 
          (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>,     0) (<11,0,G>,     C) 
          (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>,     0) (<12,0,G>,     1) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^3))