WORST_CASE(?,O(n^3)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H) -> f10(I,0,C,D,E,F,G,H) True (1,1) 1. f10(A,B,C,D,E,F,G,H) -> f10(A,1 + B,C,D,E,F,G,H) [C >= 1 + B] (?,1) 2. f18(A,B,C,D,E,F,G,H) -> f22(A,B,C,D,E,E,1 + E,H) [D >= 2 + E] (?,1) 3. f22(A,B,C,D,E,F,G,H) -> f22(A,B,C,D,E,F,1 + G,H) [D >= 1 + G] (?,1) 4. f22(A,B,C,D,E,F,G,H) -> f22(A,B,C,D,E,G,1 + G,H) [D >= 1 + G] (?,1) 5. f34(A,B,C,D,E,F,G,H) -> f34(A,B,C,D,1 + E,F,G,H) [D >= 2 + E] (?,1) 6. f34(A,B,C,D,E,F,G,H) -> f43(A,B,C,D,E,F,G,H) [1 + E >= D] (?,1) 7. f22(A,B,C,D,E,F,G,H) -> f18(A,B,C,D,1 + E,F,G,I) [G >= D] (?,1) 8. f18(A,B,C,D,E,F,G,H) -> f34(A,B,C,D,0,F,G,H) [1 + E >= D] (?,1) 9. f10(A,B,C,D,E,F,G,H) -> f18(A,B,C,C,0,F,G,H) [B >= C] (?,1) Signature: {(f0,8);(f10,8);(f18,8);(f22,8);(f34,8);(f43,8)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [A,F,H] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1) 6. f34(B,C,D,E,G) -> f43(B,C,D,E,G) [1 + E >= D] (?,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (?,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,B>, 0, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>, E, .= 0) (<0,0,G>, G, .= 0) (<1,0,B>, 1 + B, .+ 1) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<1,0,E>, E, .= 0) (<1,0,G>, G, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>, E, .= 0) (<2,0,G>, 1 + E, .+ 1) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>, E, .= 0) (<3,0,G>, 1 + G, .+ 1) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>, E, .= 0) (<4,0,G>, 1 + G, .+ 1) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>, 1 + E, .+ 1) (<5,0,G>, G, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>, E, .= 0) (<6,0,G>, G, .= 0) (<7,0,B>, B, .= 0) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<7,0,E>, 1 + E, .+ 1) (<7,0,G>, G, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) (<8,0,E>, 0, .= 0) (<8,0,G>, G, .= 0) (<9,0,B>, B, .= 0) (<9,0,C>, C, .= 0) (<9,0,D>, C, .= 0) (<9,0,E>, 0, .= 0) (<9,0,G>, G, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1) 6. f34(B,C,D,E,G) -> f43(B,C,D,E,G) [1 + E >= D] (?,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (?,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] Sizebounds: (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,G>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,G>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,G>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,G>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,G>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,G>, ?) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) (<9,0,G>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) * Step 4: UnsatPaths WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1) 6. f34(B,C,D,E,G) -> f43(B,C,D,E,G) [1 + E >= D] (?,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (?,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,7)] * Step 5: LeafRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1) 6. f34(B,C,D,E,G) -> f43(B,C,D,E,G) [1 + E >= D] (?,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (?,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [6] * Step 6: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (?,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f10) = 1 p(f18) = 0 p(f22) = 0 p(f34) = 0 The following rules are strictly oriented: [B >= C] ==> f10(B,C,D,E,G) = 1 > 0 = f18(B,C,C,0,G) The following rules are weakly oriented: True ==> f0(B,C,D,E,G) = 1 >= 1 = f10(0,C,D,E,G) [C >= 1 + B] ==> f10(B,C,D,E,G) = 1 >= 1 = f10(1 + B,C,D,E,G) [D >= 2 + E] ==> f18(B,C,D,E,G) = 0 >= 0 = f22(B,C,D,E,1 + E) [D >= 1 + G] ==> f22(B,C,D,E,G) = 0 >= 0 = f22(B,C,D,E,1 + G) [D >= 1 + G] ==> f22(B,C,D,E,G) = 0 >= 0 = f22(B,C,D,E,1 + G) [D >= 2 + E] ==> f34(B,C,D,E,G) = 0 >= 0 = f34(B,C,D,1 + E,G) [G >= D] ==> f22(B,C,D,E,G) = 0 >= 0 = f18(B,C,D,1 + E,G) [1 + E >= D] ==> f18(B,C,D,E,G) = 0 >= 0 = f34(B,C,D,0,G) * Step 7: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (?,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f10) = 1 p(f18) = 1 p(f22) = 1 p(f34) = 0 The following rules are strictly oriented: [1 + E >= D] ==> f18(B,C,D,E,G) = 1 > 0 = f34(B,C,D,0,G) The following rules are weakly oriented: True ==> f0(B,C,D,E,G) = 1 >= 1 = f10(0,C,D,E,G) [C >= 1 + B] ==> f10(B,C,D,E,G) = 1 >= 1 = f10(1 + B,C,D,E,G) [D >= 2 + E] ==> f18(B,C,D,E,G) = 1 >= 1 = f22(B,C,D,E,1 + E) [D >= 1 + G] ==> f22(B,C,D,E,G) = 1 >= 1 = f22(B,C,D,E,1 + G) [D >= 1 + G] ==> f22(B,C,D,E,G) = 1 >= 1 = f22(B,C,D,E,1 + G) [D >= 2 + E] ==> f34(B,C,D,E,G) = 0 >= 0 = f34(B,C,D,1 + E,G) [G >= D] ==> f22(B,C,D,E,G) = 1 >= 1 = f18(B,C,D,1 + E,G) [B >= C] ==> f10(B,C,D,E,G) = 1 >= 1 = f18(B,C,C,0,G) * Step 8: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (?,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (1,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x2 p(f10) = x2 p(f18) = -1 + x3 p(f22) = -1 + x3 p(f34) = -1 + x3 + -1*x4 The following rules are strictly oriented: [D >= 2 + E] ==> f34(B,C,D,E,G) = -1 + D + -1*E > -2 + D + -1*E = f34(B,C,D,1 + E,G) The following rules are weakly oriented: True ==> f0(B,C,D,E,G) = C >= C = f10(0,C,D,E,G) [C >= 1 + B] ==> f10(B,C,D,E,G) = C >= C = f10(1 + B,C,D,E,G) [D >= 2 + E] ==> f18(B,C,D,E,G) = -1 + D >= -1 + D = f22(B,C,D,E,1 + E) [D >= 1 + G] ==> f22(B,C,D,E,G) = -1 + D >= -1 + D = f22(B,C,D,E,1 + G) [D >= 1 + G] ==> f22(B,C,D,E,G) = -1 + D >= -1 + D = f22(B,C,D,E,1 + G) [G >= D] ==> f22(B,C,D,E,G) = -1 + D >= -1 + D = f18(B,C,D,1 + E,G) [1 + E >= D] ==> f18(B,C,D,E,G) = -1 + D >= -1 + D = f34(B,C,D,0,G) [B >= C] ==> f10(B,C,D,E,G) = C >= -1 + C = f18(B,C,C,0,G) * Step 9: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (1,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x2 p(f10) = -1*x1 + x2 p(f18) = -1*x1 + x2 p(f22) = -1*x1 + x2 p(f34) = -1*x1 + x2 The following rules are strictly oriented: [C >= 1 + B] ==> f10(B,C,D,E,G) = -1*B + C > -1 + -1*B + C = f10(1 + B,C,D,E,G) The following rules are weakly oriented: True ==> f0(B,C,D,E,G) = C >= C = f10(0,C,D,E,G) [D >= 2 + E] ==> f18(B,C,D,E,G) = -1*B + C >= -1*B + C = f22(B,C,D,E,1 + E) [D >= 1 + G] ==> f22(B,C,D,E,G) = -1*B + C >= -1*B + C = f22(B,C,D,E,1 + G) [D >= 1 + G] ==> f22(B,C,D,E,G) = -1*B + C >= -1*B + C = f22(B,C,D,E,1 + G) [D >= 2 + E] ==> f34(B,C,D,E,G) = -1*B + C >= -1*B + C = f34(B,C,D,1 + E,G) [G >= D] ==> f22(B,C,D,E,G) = -1*B + C >= -1*B + C = f18(B,C,D,1 + E,G) [1 + E >= D] ==> f18(B,C,D,E,G) = -1*B + C >= -1*B + C = f34(B,C,D,0,G) [B >= C] ==> f10(B,C,D,E,G) = -1*B + C >= -1*B + C = f18(B,C,C,0,G) * Step 10: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (?,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (1,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,7,3,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f18) = 2 + x3 + -1*x4 p(f22) = 1 + x3 + -1*x4 The following rules are strictly oriented: [D >= 2 + E] ==> f18(B,C,D,E,G) = 2 + D + -1*E > 1 + D + -1*E = f22(B,C,D,E,1 + E) The following rules are weakly oriented: [D >= 1 + G] ==> f22(B,C,D,E,G) = 1 + D + -1*E >= 1 + D + -1*E = f22(B,C,D,E,1 + G) [D >= 1 + G] ==> f22(B,C,D,E,G) = 1 + D + -1*E >= 1 + D + -1*E = f22(B,C,D,E,1 + G) [G >= D] ==> f22(B,C,D,E,G) = 1 + D + -1*E >= 1 + D + -1*E = f18(B,C,D,1 + E,G) We use the following global sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) * Step 11: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (2 + C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (?,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (1,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [7,3,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f18) = 0 p(f22) = 1 The following rules are strictly oriented: [G >= D] ==> f22(B,C,D,E,G) = 1 > 0 = f18(B,C,D,1 + E,G) The following rules are weakly oriented: [D >= 1 + G] ==> f22(B,C,D,E,G) = 1 >= 1 = f22(B,C,D,E,1 + G) [D >= 1 + G] ==> f22(B,C,D,E,G) = 1 >= 1 = f22(B,C,D,E,1 + G) We use the following global sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) * Step 12: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (2 + C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 7. f22(B,C,D,E,G) -> f18(B,C,D,1 + E,G) [G >= D] (2 + C,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (1,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,G>, G) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,G>, G) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,G>, ?) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, ?) (<3,0,G>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, ?) (<4,0,G>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,G>, ?) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, ?) (<7,0,G>, ?) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,G>, ?) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,G>, G) + Applied Processor: ChainProcessor False [0,1,2,3,4,5,7,8,9] + Details: We chained rule 7 to obtain the rules [10,11] . * Step 13: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (2 + C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (1,1) 9. f10(B,C,D,E,G) -> f18(B,C,C,0,G) [B >= C] (1,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4,10,11},3->{3,4,10,11},4->{3,4,10,11},5->{5},8->{5},9->{2,8},10->{3,4,10,11} ,11->{5}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, C) (< 2,0,E>, C) (< 2,0,G>, ?) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, C) (< 8,0,E>, 0) (< 8,0,G>, ?) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, C) (< 9,0,E>, 0) (< 9,0,G>, G) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) + Applied Processor: ChainProcessor False [0,1,2,3,4,5,8,9,10,11] + Details: We chained rule 9 to obtain the rules [12,13] . * Step 14: UnreachableRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,G) -> f22(B,C,D,E,1 + E) [D >= 2 + E] (2 + C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 8. f18(B,C,D,E,G) -> f34(B,C,D,0,G) [1 + E >= D] (1,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) 13. f10(B,C,D,E,G) -> f34(B,C,C,0,G) [B >= C && 1 >= C] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,12,13},1->{1,12,13},2->{3,4,10,11},3->{3,4,10,11},4->{3,4,10,11},5->{5},8->{5},10->{3,4,10,11} ,11->{5},12->{3,4,10,11},13->{5}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, C) (< 2,0,E>, C) (< 2,0,G>, ?) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, C) (< 8,0,E>, 0) (< 8,0,G>, ?) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) (<12,0,B>, ?) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, C) (<12,0,G>, ?) (<13,0,B>, ?) (<13,0,C>, C) (<13,0,D>, C) (<13,0,E>, 0) (<13,0,G>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [2,8] * Step 15: UnsatPaths WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) 13. f10(B,C,D,E,G) -> f34(B,C,C,0,G) [B >= C && 1 >= C] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,12,13},1->{1,12,13},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4,10,11},11->{5},12->{3,4,10,11} ,13->{5}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) (<12,0,B>, ?) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, C) (<12,0,G>, ?) (<13,0,B>, ?) (<13,0,C>, C) (<13,0,D>, C) (<13,0,E>, 0) (<13,0,G>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,12),(10,10),(10,11),(12,10),(12,11),(13,5)] * Step 16: LeafRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) 13. f10(B,C,D,E,G) -> f34(B,C,C,0,G) [B >= C && 1 >= C] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1,13},1->{1,12,13},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4},13->{}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) (<12,0,B>, ?) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, C) (<12,0,G>, ?) (<13,0,B>, ?) (<13,0,C>, C) (<13,0,D>, C) (<13,0,E>, 0) (<13,0,G>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [13] * Step 17: LocalSizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, ?) (< 3,0,G>, C) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, ?) (< 4,0,G>, C) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, ?) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, C) (<10,0,G>, ?) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, ?) (<12,0,B>, ?) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, C) (<12,0,G>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,B>, 0, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,G>, G, .= 0) (< 1,0,B>, 1 + B, .+ 1) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>, E, .= 0) (< 1,0,G>, G, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,G>, 1 + G, .+ 1) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,G>, 1 + G, .+ 1) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, 1 + E, .+ 1) (< 5,0,G>, G, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 1 + E, .+ 1) (<10,0,G>, 2 + E, .+ 2) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, 0, .= 0) (<11,0,G>, G, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, C, .= 0) (<12,0,E>, 0, .= 0) (<12,0,G>, 1, .= 1) * Step 18: SizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}] Sizebounds: (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,G>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,G>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,G>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,G>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,G>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,G>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,G>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,G>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>, C) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>, C) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, C) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, C) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, 0) (<12,0,G>, 1) * Step 19: LocationConstraintsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>, C) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>, C) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, C) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, C) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, 0) (<12,0,G>, 1) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 0 : True 1 : True 3 : [C >= 2] 4 : [C >= 2] 5 : [G >= D && G >= D] 10 : [C >= 2] 11 : True 12 : [False] . * Step 20: LoopRecurrenceProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>, C) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>, C) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, C) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, C) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, 0) (<12,0,G>, 1) + Applied Processor: LoopRecurrenceProcessor [1] + Details: Applying the recurrence pattern linear * f to the expression C-B yields the solution -1*B + C . * Step 21: LoopRecurrenceProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>, C) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>, C) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, C) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, C) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, 0) (<12,0,G>, 1) + Applied Processor: LoopRecurrenceProcessor [5] + Details: Applying the recurrence pattern linear * f to the expression D-E yields the solution D + -1*E . * Step 22: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>, C) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>, C) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, C) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, C) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, 0) (<12,0,G>, 1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f22) = x3 + -1*x5 The following rules are strictly oriented: [D >= 1 + G] ==> f22(B,C,D,E,G) = D + -1*G > -1 + D + -1*G = f22(B,C,D,E,1 + G) The following rules are weakly oriented: [D >= 1 + G] ==> f22(B,C,D,E,G) = D + -1*G >= -1 + D + -1*G = f22(B,C,D,E,1 + G) We use the following global sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>, C) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>, C) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, C) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, C) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, 0) (<12,0,G>, 1) * Step 23: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (?,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (9 + 9*C + 2*C^2,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>, C) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>, C) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, C) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, C) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, 0) (<12,0,G>, 1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f22) = x3 + -1*x5 The following rules are strictly oriented: [D >= 1 + G] ==> f22(B,C,D,E,G) = D + -1*G > -1 + D + -1*G = f22(B,C,D,E,1 + G) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>, C) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>, C) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, C) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, C) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, 0) (<12,0,G>, 1) * Step 24: KnowledgePropagation WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. f0(B,C,D,E,G) -> f10(0,C,D,E,G) True (1,1) 1. f10(B,C,D,E,G) -> f10(1 + B,C,D,E,G) [C >= 1 + B] (C,1) 3. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (9 + 27*C + 20*C^2 + 4*C^3,1) 4. f22(B,C,D,E,G) -> f22(B,C,D,E,1 + G) [D >= 1 + G] (9 + 9*C + 2*C^2,1) 5. f34(B,C,D,E,G) -> f34(B,C,D,1 + E,G) [D >= 2 + E] (C,1) 10. f22(B,C,D,E,G) -> f22(B,C,D,1 + E,2 + E) [G >= D && D >= 3 + E] (2 + C,2) 11. f22(B,C,D,E,G) -> f34(B,C,D,0,G) [G >= D && 2 + E >= D] (2 + C,2) 12. f10(B,C,D,E,G) -> f22(B,C,C,0,1) [B >= C && C >= 2] (1,2) Signature: {(f0,5);(f10,5);(f18,5);(f22,5);(f34,5);(f43,5)} Flow Graph: [0->{1},1->{1,12},3->{3,4,10,11},4->{3,4,10,11},5->{5},10->{3,4},11->{5},12->{3,4}] Sizebounds: (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 0,0,G>, G) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 1,0,G>, G) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, C) (< 3,0,E>, 2 + C) (< 3,0,G>, C) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, C) (< 4,0,E>, 2 + C) (< 4,0,G>, C) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, C) (< 5,0,E>, C) (< 5,0,G>, C) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, C) (<10,0,E>, 2 + C) (<10,0,G>, 4 + C) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, C) (<11,0,E>, 0) (<11,0,G>, C) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, C) (<12,0,E>, 0) (<12,0,G>, 1) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^3))