WORST_CASE(?,O(n^1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f3(A,B) -> f1(A,B)      True         (1,1)
          1. f1(A,B) -> f1(-1 + A,B) [A >= 0]     (?,1)
          2. f1(A,B) -> f300(A,C)    [0 >= 1 + A] (?,1)
        Signature:
          {(f1,2);(f3,2);(f300,2)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f3(A) -> f1(A)      True         (1,1)
          1. f1(A) -> f1(-1 + A) [A >= 0]     (?,1)
          2. f1(A) -> f300(A)    [0 >= 1 + A] (?,1)
        Signature:
          {(f1,1);(f3,1);(f300,1)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) 
          (<1,0,A>, 1 + A, .+ 1) 
          (<2,0,A>,     A, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f3(A) -> f1(A)      True         (1,1)
          1. f1(A) -> f1(-1 + A) [A >= 0]     (?,1)
          2. f1(A) -> f300(A)    [0 >= 1 + A] (?,1)
        Signature:
          {(f1,1);(f3,1);(f300,1)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{}]
        Sizebounds:
          (<0,0,A>, ?) 
          (<1,0,A>, ?) 
          (<2,0,A>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) 
          (<1,0,A>, ?) 
          (<2,0,A>, ?) 
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f3(A) -> f1(A)      True         (1,1)
          1. f1(A) -> f1(-1 + A) [A >= 0]     (?,1)
          2. f1(A) -> f300(A)    [0 >= 1 + A] (?,1)
        Signature:
          {(f1,1);(f3,1);(f300,1)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{}]
        Sizebounds:
          (<0,0,A>, A) 
          (<1,0,A>, ?) 
          (<2,0,A>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [2]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f3(A) -> f1(A)      True     (1,1)
          1. f1(A) -> f1(-1 + A) [A >= 0] (?,1)
        Signature:
          {(f1,1);(f3,1);(f300,1)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, A) 
          (<1,0,A>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f1) = 1 + x1
          p(f3) = 1 + x1
        
        The following rules are strictly oriented:
        [A >= 0] ==>           
           f1(A)   = 1 + A     
                   > A         
                   = f1(-1 + A)
        
        
        The following rules are weakly oriented:
           True ==>      
          f3(A)   = 1 + A
                 >= 1 + A
                  = f1(A)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f3(A) -> f1(A)      True     (1,1)    
          1. f1(A) -> f1(-1 + A) [A >= 0] (1 + A,1)
        Signature:
          {(f1,1);(f3,1);(f300,1)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, A) 
          (<1,0,A>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))