WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A,B) -> f1(A,B) True (1,1) 1. f1(A,B) -> f1(-1 + A,B) [A >= 0] (?,1) 2. f1(A,B) -> f300(A,C) [0 >= 1 + A] (?,1) Signature: {(f1,2);(f3,2);(f300,2)} Flow Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A) -> f1(A) True (1,1) 1. f1(A) -> f1(-1 + A) [A >= 0] (?,1) 2. f1(A) -> f300(A) [0 >= 1 + A] (?,1) Signature: {(f1,1);(f3,1);(f300,1)} Flow Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<1,0,A>, 1 + A, .+ 1) (<2,0,A>, A, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A) -> f1(A) True (1,1) 1. f1(A) -> f1(-1 + A) [A >= 0] (?,1) 2. f1(A) -> f300(A) [0 >= 1 + A] (?,1) Signature: {(f1,1);(f3,1);(f300,1)} Flow Graph: [0->{1,2},1->{1,2},2->{}] Sizebounds: (<0,0,A>, ?) (<1,0,A>, ?) (<2,0,A>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<1,0,A>, ?) (<2,0,A>, ?) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A) -> f1(A) True (1,1) 1. f1(A) -> f1(-1 + A) [A >= 0] (?,1) 2. f1(A) -> f300(A) [0 >= 1 + A] (?,1) Signature: {(f1,1);(f3,1);(f300,1)} Flow Graph: [0->{1,2},1->{1,2},2->{}] Sizebounds: (<0,0,A>, A) (<1,0,A>, ?) (<2,0,A>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A) -> f1(A) True (1,1) 1. f1(A) -> f1(-1 + A) [A >= 0] (?,1) Signature: {(f1,1);(f3,1);(f300,1)} Flow Graph: [0->{1},1->{1}] Sizebounds: (<0,0,A>, A) (<1,0,A>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = 1 + x1 p(f3) = 1 + x1 The following rules are strictly oriented: [A >= 0] ==> f1(A) = 1 + A > A = f1(-1 + A) The following rules are weakly oriented: True ==> f3(A) = 1 + A >= 1 + A = f1(A) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f3(A) -> f1(A) True (1,1) 1. f1(A) -> f1(-1 + A) [A >= 0] (1 + A,1) Signature: {(f1,1);(f3,1);(f300,1)} Flow Graph: [0->{1},1->{1}] Sizebounds: (<0,0,A>, A) (<1,0,A>, ?) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))