WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f0(A,B) -> f1(A,B)            [A >= 1] (1,1)
          1. f1(A,B) -> f1(1 + A,-1*A + B) [B >= 1] (?,1)
        Signature:
          {(f0,2);(f1,2)}
        Flow Graph:
          [0->{1},1->{1}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) (<0,0,B>,     B, .= 0) 
          (<1,0,A>, 1 + A, .+ 1) (<1,0,B>, A + B, .* 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f0(A,B) -> f1(A,B)            [A >= 1] (1,1)
          1. f1(A,B) -> f1(1 + A,-1*A + B) [B >= 1] (?,1)
        Signature:
          {(f0,2);(f1,2)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
* Step 3: LocationConstraintsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f0(A,B) -> f1(A,B)            [A >= 1] (1,1)
          1. f1(A,B) -> f1(1 + A,-1*A + B) [B >= 1] (?,1)
        Signature:
          {(f0,2);(f1,2)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  0 :  True 1 :  [A >= 1 && A >= 1] .
* Step 4: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f0(A,B) -> f1(A,B)            [A >= 1] (1,1)
          1. f1(A,B) -> f1(1 + A,-1*A + B) [B >= 1] (?,1)
        Signature:
          {(f0,2);(f1,2)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f0) = x2
          p(f1) = x2
        
        The following rules are strictly oriented:
         [B >= 1] ==>                   
          f1(A,B)   = B                 
                    > -1*A + B          
                    = f1(1 + A,-1*A + B)
        
        
        The following rules are weakly oriented:
         [A >= 1] ==>        
          f0(A,B)   = B      
                   >= B      
                    = f1(A,B)
        
        
* Step 5: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f0(A,B) -> f1(A,B)            [A >= 1] (1,1)
          1. f1(A,B) -> f1(1 + A,-1*A + B) [B >= 1] (B,1)
        Signature:
          {(f0,2);(f1,2)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))