WORST_CASE(?,O(1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. evaleasy1start(A,B)    -> evaleasy1entryin(A,B)   True         (1,1)
          1. evaleasy1entryin(A,B)  -> evaleasy1bb3in(0,B)     True         (?,1)
          2. evaleasy1bb3in(A,B)    -> evaleasy1bbin(A,B)      [39 >= A]    (?,1)
          3. evaleasy1bb3in(A,B)    -> evaleasy1returnin(A,B)  [A >= 40]    (?,1)
          4. evaleasy1bbin(A,B)     -> evaleasy1bb1in(A,B)     [B = 0]      (?,1)
          5. evaleasy1bbin(A,B)     -> evaleasy1bb2in(A,B)     [0 >= 1 + B] (?,1)
          6. evaleasy1bbin(A,B)     -> evaleasy1bb2in(A,B)     [B >= 1]     (?,1)
          7. evaleasy1bb1in(A,B)    -> evaleasy1bb3in(1 + A,B) True         (?,1)
          8. evaleasy1bb2in(A,B)    -> evaleasy1bb3in(2 + A,B) True         (?,1)
          9. evaleasy1returnin(A,B) -> evaleasy1stop(A,B)      True         (?,1)
        Signature:
          {(evaleasy1bb1in,2)
          ;(evaleasy1bb2in,2)
          ;(evaleasy1bb3in,2)
          ;(evaleasy1bbin,2)
          ;(evaleasy1entryin,2)
          ;(evaleasy1returnin,2)
          ;(evaleasy1start,2)
          ;(evaleasy1stop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{2,3},8->{2,3},9->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) (<0,0,B>, B, .= 0) 
          (<1,0,A>,     0, .= 0) (<1,0,B>, B, .= 0) 
          (<2,0,A>,     A, .= 0) (<2,0,B>, B, .= 0) 
          (<3,0,A>,     A, .= 0) (<3,0,B>, B, .= 0) 
          (<4,0,A>,     A, .= 0) (<4,0,B>, B, .= 0) 
          (<5,0,A>,     A, .= 0) (<5,0,B>, B, .= 0) 
          (<6,0,A>,     A, .= 0) (<6,0,B>, B, .= 0) 
          (<7,0,A>, 1 + A, .+ 1) (<7,0,B>, B, .= 0) 
          (<8,0,A>, 2 + A, .+ 2) (<8,0,B>, B, .= 0) 
          (<9,0,A>,     A, .= 0) (<9,0,B>, B, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. evaleasy1start(A,B)    -> evaleasy1entryin(A,B)   True         (1,1)
          1. evaleasy1entryin(A,B)  -> evaleasy1bb3in(0,B)     True         (?,1)
          2. evaleasy1bb3in(A,B)    -> evaleasy1bbin(A,B)      [39 >= A]    (?,1)
          3. evaleasy1bb3in(A,B)    -> evaleasy1returnin(A,B)  [A >= 40]    (?,1)
          4. evaleasy1bbin(A,B)     -> evaleasy1bb1in(A,B)     [B = 0]      (?,1)
          5. evaleasy1bbin(A,B)     -> evaleasy1bb2in(A,B)     [0 >= 1 + B] (?,1)
          6. evaleasy1bbin(A,B)     -> evaleasy1bb2in(A,B)     [B >= 1]     (?,1)
          7. evaleasy1bb1in(A,B)    -> evaleasy1bb3in(1 + A,B) True         (?,1)
          8. evaleasy1bb2in(A,B)    -> evaleasy1bb3in(2 + A,B) True         (?,1)
          9. evaleasy1returnin(A,B) -> evaleasy1stop(A,B)      True         (?,1)
        Signature:
          {(evaleasy1bb1in,2)
          ;(evaleasy1bb2in,2)
          ;(evaleasy1bb3in,2)
          ;(evaleasy1bbin,2)
          ;(evaleasy1entryin,2)
          ;(evaleasy1returnin,2)
          ;(evaleasy1start,2)
          ;(evaleasy1stop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{2,3},8->{2,3},9->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) 
          (<9,0,A>, ?) (<9,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>,  A) (<0,0,B>, B) 
          (<1,0,A>,  0) (<1,0,B>, B) 
          (<2,0,A>, 39) (<2,0,B>, B) 
          (<3,0,A>, 39) (<3,0,B>, B) 
          (<4,0,A>, 39) (<4,0,B>, B) 
          (<5,0,A>, 39) (<5,0,B>, B) 
          (<6,0,A>, 39) (<6,0,B>, B) 
          (<7,0,A>, 39) (<7,0,B>, B) 
          (<8,0,A>, 39) (<8,0,B>, B) 
          (<9,0,A>, 39) (<9,0,B>, B) 
* Step 3: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. evaleasy1start(A,B)    -> evaleasy1entryin(A,B)   True         (1,1)
          1. evaleasy1entryin(A,B)  -> evaleasy1bb3in(0,B)     True         (?,1)
          2. evaleasy1bb3in(A,B)    -> evaleasy1bbin(A,B)      [39 >= A]    (?,1)
          3. evaleasy1bb3in(A,B)    -> evaleasy1returnin(A,B)  [A >= 40]    (?,1)
          4. evaleasy1bbin(A,B)     -> evaleasy1bb1in(A,B)     [B = 0]      (?,1)
          5. evaleasy1bbin(A,B)     -> evaleasy1bb2in(A,B)     [0 >= 1 + B] (?,1)
          6. evaleasy1bbin(A,B)     -> evaleasy1bb2in(A,B)     [B >= 1]     (?,1)
          7. evaleasy1bb1in(A,B)    -> evaleasy1bb3in(1 + A,B) True         (?,1)
          8. evaleasy1bb2in(A,B)    -> evaleasy1bb3in(2 + A,B) True         (?,1)
          9. evaleasy1returnin(A,B) -> evaleasy1stop(A,B)      True         (?,1)
        Signature:
          {(evaleasy1bb1in,2)
          ;(evaleasy1bb2in,2)
          ;(evaleasy1bb3in,2)
          ;(evaleasy1bbin,2)
          ;(evaleasy1entryin,2)
          ;(evaleasy1returnin,2)
          ;(evaleasy1start,2)
          ;(evaleasy1stop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{2,3},8->{2,3},9->{}]
        Sizebounds:
          (<0,0,A>,  A) (<0,0,B>, B) 
          (<1,0,A>,  0) (<1,0,B>, B) 
          (<2,0,A>, 39) (<2,0,B>, B) 
          (<3,0,A>, 39) (<3,0,B>, B) 
          (<4,0,A>, 39) (<4,0,B>, B) 
          (<5,0,A>, 39) (<5,0,B>, B) 
          (<6,0,A>, 39) (<6,0,B>, B) 
          (<7,0,A>, 39) (<7,0,B>, B) 
          (<8,0,A>, 39) (<8,0,B>, B) 
          (<9,0,A>, 39) (<9,0,B>, B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,3)]
* Step 4: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. evaleasy1start(A,B)    -> evaleasy1entryin(A,B)   True         (1,1)
          1. evaleasy1entryin(A,B)  -> evaleasy1bb3in(0,B)     True         (?,1)
          2. evaleasy1bb3in(A,B)    -> evaleasy1bbin(A,B)      [39 >= A]    (?,1)
          3. evaleasy1bb3in(A,B)    -> evaleasy1returnin(A,B)  [A >= 40]    (?,1)
          4. evaleasy1bbin(A,B)     -> evaleasy1bb1in(A,B)     [B = 0]      (?,1)
          5. evaleasy1bbin(A,B)     -> evaleasy1bb2in(A,B)     [0 >= 1 + B] (?,1)
          6. evaleasy1bbin(A,B)     -> evaleasy1bb2in(A,B)     [B >= 1]     (?,1)
          7. evaleasy1bb1in(A,B)    -> evaleasy1bb3in(1 + A,B) True         (?,1)
          8. evaleasy1bb2in(A,B)    -> evaleasy1bb3in(2 + A,B) True         (?,1)
          9. evaleasy1returnin(A,B) -> evaleasy1stop(A,B)      True         (?,1)
        Signature:
          {(evaleasy1bb1in,2)
          ;(evaleasy1bb2in,2)
          ;(evaleasy1bb3in,2)
          ;(evaleasy1bbin,2)
          ;(evaleasy1entryin,2)
          ;(evaleasy1returnin,2)
          ;(evaleasy1start,2)
          ;(evaleasy1stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5,6},3->{9},4->{7},5->{8},6->{8},7->{2,3},8->{2,3},9->{}]
        Sizebounds:
          (<0,0,A>,  A) (<0,0,B>, B) 
          (<1,0,A>,  0) (<1,0,B>, B) 
          (<2,0,A>, 39) (<2,0,B>, B) 
          (<3,0,A>, 39) (<3,0,B>, B) 
          (<4,0,A>, 39) (<4,0,B>, B) 
          (<5,0,A>, 39) (<5,0,B>, B) 
          (<6,0,A>, 39) (<6,0,B>, B) 
          (<7,0,A>, 39) (<7,0,B>, B) 
          (<8,0,A>, 39) (<8,0,B>, B) 
          (<9,0,A>, 39) (<9,0,B>, B) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,9]
* Step 5: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. evaleasy1start(A,B)   -> evaleasy1entryin(A,B)   True         (1,1)
          1. evaleasy1entryin(A,B) -> evaleasy1bb3in(0,B)     True         (?,1)
          2. evaleasy1bb3in(A,B)   -> evaleasy1bbin(A,B)      [39 >= A]    (?,1)
          4. evaleasy1bbin(A,B)    -> evaleasy1bb1in(A,B)     [B = 0]      (?,1)
          5. evaleasy1bbin(A,B)    -> evaleasy1bb2in(A,B)     [0 >= 1 + B] (?,1)
          6. evaleasy1bbin(A,B)    -> evaleasy1bb2in(A,B)     [B >= 1]     (?,1)
          7. evaleasy1bb1in(A,B)   -> evaleasy1bb3in(1 + A,B) True         (?,1)
          8. evaleasy1bb2in(A,B)   -> evaleasy1bb3in(2 + A,B) True         (?,1)
        Signature:
          {(evaleasy1bb1in,2)
          ;(evaleasy1bb2in,2)
          ;(evaleasy1bb3in,2)
          ;(evaleasy1bbin,2)
          ;(evaleasy1entryin,2)
          ;(evaleasy1returnin,2)
          ;(evaleasy1start,2)
          ;(evaleasy1stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5,6},4->{7},5->{8},6->{8},7->{2},8->{2}]
        Sizebounds:
          (<0,0,A>,  A) (<0,0,B>, B) 
          (<1,0,A>,  0) (<1,0,B>, B) 
          (<2,0,A>, 39) (<2,0,B>, B) 
          (<4,0,A>, 39) (<4,0,B>, B) 
          (<5,0,A>, 39) (<5,0,B>, B) 
          (<6,0,A>, 39) (<6,0,B>, B) 
          (<7,0,A>, 39) (<7,0,B>, B) 
          (<8,0,A>, 39) (<8,0,B>, B) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evaleasy1bb1in) = 39 + -1*x1
            p(evaleasy1bb2in) = 38 + -1*x1
            p(evaleasy1bb3in) = 40 + -1*x1
             p(evaleasy1bbin) = 39 + -1*x1
          p(evaleasy1entryin) = 40        
            p(evaleasy1start) = 40        
        
        The following rules are strictly oriented:
                    [39 >= A] ==>                   
          evaleasy1bb3in(A,B)   = 40 + -1*A         
                                > 39 + -1*A         
                                = evaleasy1bbin(A,B)
        
        
        The following rules are weakly oriented:
                           True ==>                        
            evaleasy1start(A,B)   = 40                     
                                 >= 40                     
                                  = evaleasy1entryin(A,B)  
        
                           True ==>                        
          evaleasy1entryin(A,B)   = 40                     
                                 >= 40                     
                                  = evaleasy1bb3in(0,B)    
        
                        [B = 0] ==>                        
             evaleasy1bbin(A,B)   = 39 + -1*A              
                                 >= 39 + -1*A              
                                  = evaleasy1bb1in(A,B)    
        
                   [0 >= 1 + B] ==>                        
             evaleasy1bbin(A,B)   = 39 + -1*A              
                                 >= 38 + -1*A              
                                  = evaleasy1bb2in(A,B)    
        
                       [B >= 1] ==>                        
             evaleasy1bbin(A,B)   = 39 + -1*A              
                                 >= 38 + -1*A              
                                  = evaleasy1bb2in(A,B)    
        
                           True ==>                        
            evaleasy1bb1in(A,B)   = 39 + -1*A              
                                 >= 39 + -1*A              
                                  = evaleasy1bb3in(1 + A,B)
        
                           True ==>                        
            evaleasy1bb2in(A,B)   = 38 + -1*A              
                                 >= 38 + -1*A              
                                  = evaleasy1bb3in(2 + A,B)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. evaleasy1start(A,B)   -> evaleasy1entryin(A,B)   True         (1,1) 
          1. evaleasy1entryin(A,B) -> evaleasy1bb3in(0,B)     True         (?,1) 
          2. evaleasy1bb3in(A,B)   -> evaleasy1bbin(A,B)      [39 >= A]    (40,1)
          4. evaleasy1bbin(A,B)    -> evaleasy1bb1in(A,B)     [B = 0]      (?,1) 
          5. evaleasy1bbin(A,B)    -> evaleasy1bb2in(A,B)     [0 >= 1 + B] (?,1) 
          6. evaleasy1bbin(A,B)    -> evaleasy1bb2in(A,B)     [B >= 1]     (?,1) 
          7. evaleasy1bb1in(A,B)   -> evaleasy1bb3in(1 + A,B) True         (?,1) 
          8. evaleasy1bb2in(A,B)   -> evaleasy1bb3in(2 + A,B) True         (?,1) 
        Signature:
          {(evaleasy1bb1in,2)
          ;(evaleasy1bb2in,2)
          ;(evaleasy1bb3in,2)
          ;(evaleasy1bbin,2)
          ;(evaleasy1entryin,2)
          ;(evaleasy1returnin,2)
          ;(evaleasy1start,2)
          ;(evaleasy1stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5,6},4->{7},5->{8},6->{8},7->{2},8->{2}]
        Sizebounds:
          (<0,0,A>,  A) (<0,0,B>, B) 
          (<1,0,A>,  0) (<1,0,B>, B) 
          (<2,0,A>, 39) (<2,0,B>, B) 
          (<4,0,A>, 39) (<4,0,B>, B) 
          (<5,0,A>, 39) (<5,0,B>, B) 
          (<6,0,A>, 39) (<6,0,B>, B) 
          (<7,0,A>, 39) (<7,0,B>, B) 
          (<8,0,A>, 39) (<8,0,B>, B) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. evaleasy1start(A,B)   -> evaleasy1entryin(A,B)   True         (1,1) 
          1. evaleasy1entryin(A,B) -> evaleasy1bb3in(0,B)     True         (1,1) 
          2. evaleasy1bb3in(A,B)   -> evaleasy1bbin(A,B)      [39 >= A]    (40,1)
          4. evaleasy1bbin(A,B)    -> evaleasy1bb1in(A,B)     [B = 0]      (40,1)
          5. evaleasy1bbin(A,B)    -> evaleasy1bb2in(A,B)     [0 >= 1 + B] (40,1)
          6. evaleasy1bbin(A,B)    -> evaleasy1bb2in(A,B)     [B >= 1]     (40,1)
          7. evaleasy1bb1in(A,B)   -> evaleasy1bb3in(1 + A,B) True         (40,1)
          8. evaleasy1bb2in(A,B)   -> evaleasy1bb3in(2 + A,B) True         (80,1)
        Signature:
          {(evaleasy1bb1in,2)
          ;(evaleasy1bb2in,2)
          ;(evaleasy1bb3in,2)
          ;(evaleasy1bbin,2)
          ;(evaleasy1entryin,2)
          ;(evaleasy1returnin,2)
          ;(evaleasy1start,2)
          ;(evaleasy1stop,2)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5,6},4->{7},5->{8},6->{8},7->{2},8->{2}]
        Sizebounds:
          (<0,0,A>,  A) (<0,0,B>, B) 
          (<1,0,A>,  0) (<1,0,B>, B) 
          (<2,0,A>, 39) (<2,0,B>, B) 
          (<4,0,A>, 39) (<4,0,B>, B) 
          (<5,0,A>, 39) (<5,0,B>, B) 
          (<6,0,A>, 39) (<6,0,B>, B) 
          (<7,0,A>, 39) (<7,0,B>, B) 
          (<8,0,A>, 39) (<8,0,B>, B) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))