WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom2dstart(A,B,C,D) -> evalrandom2dentryin(A,B,C,D) True (1,1) 1. evalrandom2dentryin(A,B,C,D) -> evalrandom2dbb10in(0,B,C,D) True (?,1) 2. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dbbin(A,B,C,D) [B >= 1 + A] (?,1) 3. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dreturnin(A,B,C,D) [A >= B] (?,1) 4. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb2in(A,B,1 + A,E) [E >= 0 && 3 >= E] (?,1) 5. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [0 >= 1 + E] (?,1) 6. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] (?,1) 7. evalrandom2dbb2in(A,B,C,D) -> evalrandom2dNodeBlock9in(A,B,C,D) True (?,1) 8. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlockin(A,B,C,D) [1 >= D] (?,1) 9. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlock7in(A,B,C,D) [D >= 2] (?,1) 10. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlockin(A,B,C,D) [0 >= D] (?,1) 11. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlock1in(A,B,C,D) [D >= 1] (?,1) 12. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dbb3in(A,B,C,D) [D = 0] (?,1) 13. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= 1 + D] (?,1) 14. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 1] (?,1) 15. evalrandom2dbb3in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 16. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dbb5in(A,B,C,D) [D = 1] (?,1) 17. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= D] (?,1) 18. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 2] (?,1) 19. evalrandom2dbb5in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 20. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock3in(A,B,C,D) [2 >= D] (?,1) 21. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock5in(A,B,C,D) [D >= 3] (?,1) 22. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dbb7in(A,B,C,D) [D = 2] (?,1) 23. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [1 >= D] (?,1) 24. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 3] (?,1) 25. evalrandom2dbb7in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 26. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dbb9in(A,B,C,D) [D = 3] (?,1) 27. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [2 >= D] (?,1) 28. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 4] (?,1) 29. evalrandom2dbb9in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 30. evalrandom2dNewDefaultin(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 31. evalrandom2dreturnin(A,B,C,D) -> evalrandom2dstop(A,B,C,D) True (?,1) Signature: {(evalrandom2dLeafBlock1in,4) ;(evalrandom2dLeafBlock3in,4) ;(evalrandom2dLeafBlock5in,4) ;(evalrandom2dLeafBlockin,4) ;(evalrandom2dNewDefaultin,4) ;(evalrandom2dNodeBlock7in,4) ;(evalrandom2dNodeBlock9in,4) ;(evalrandom2dNodeBlockin,4) ;(evalrandom2dbb10in,4) ;(evalrandom2dbb2in,4) ;(evalrandom2dbb3in,4) ;(evalrandom2dbb5in,4) ;(evalrandom2dbb7in,4) ;(evalrandom2dbb9in,4) ;(evalrandom2dbbin,4) ;(evalrandom2dentryin,4) ;(evalrandom2dreturnin,4) ;(evalrandom2dstart,4) ;(evalrandom2dstop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5,6},3->{31},4->{7},5->{2,3},6->{2,3},7->{8,9},8->{10,11},9->{20,21},10->{12,13,14} ,11->{16,17,18},12->{15},13->{30},14->{30},15->{2,3},16->{19},17->{30},18->{30},19->{2,3},20->{22,23,24} ,21->{26,27,28},22->{25},23->{30},24->{30},25->{2,3},26->{29},27->{30},28->{30},29->{2,3},30->{2,3},31->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 1,0,A>, 0, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, 1 + A, .+ 1) (< 4,0,D>, 3, .= 3) (< 5,0,A>, 1 + A, .+ 1) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 6,0,A>, 1 + A, .+ 1) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) (<15,0,A>, C, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<17,0,A>, A, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, C, .= 0) (<17,0,D>, D, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, C, .= 0) (<18,0,D>, D, .= 0) (<19,0,A>, C, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, C, .= 0) (<19,0,D>, D, .= 0) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, C, .= 0) (<20,0,D>, D, .= 0) (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>, C, .= 0) (<21,0,D>, D, .= 0) (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, C, .= 0) (<22,0,D>, D, .= 0) (<23,0,A>, A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>, C, .= 0) (<23,0,D>, D, .= 0) (<24,0,A>, A, .= 0) (<24,0,B>, B, .= 0) (<24,0,C>, C, .= 0) (<24,0,D>, D, .= 0) (<25,0,A>, C, .= 0) (<25,0,B>, B, .= 0) (<25,0,C>, C, .= 0) (<25,0,D>, D, .= 0) (<26,0,A>, A, .= 0) (<26,0,B>, B, .= 0) (<26,0,C>, C, .= 0) (<26,0,D>, D, .= 0) (<27,0,A>, A, .= 0) (<27,0,B>, B, .= 0) (<27,0,C>, C, .= 0) (<27,0,D>, D, .= 0) (<28,0,A>, A, .= 0) (<28,0,B>, B, .= 0) (<28,0,C>, C, .= 0) (<28,0,D>, D, .= 0) (<29,0,A>, C, .= 0) (<29,0,B>, B, .= 0) (<29,0,C>, C, .= 0) (<29,0,D>, D, .= 0) (<30,0,A>, C, .= 0) (<30,0,B>, B, .= 0) (<30,0,C>, C, .= 0) (<30,0,D>, D, .= 0) (<31,0,A>, A, .= 0) (<31,0,B>, B, .= 0) (<31,0,C>, C, .= 0) (<31,0,D>, D, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom2dstart(A,B,C,D) -> evalrandom2dentryin(A,B,C,D) True (1,1) 1. evalrandom2dentryin(A,B,C,D) -> evalrandom2dbb10in(0,B,C,D) True (?,1) 2. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dbbin(A,B,C,D) [B >= 1 + A] (?,1) 3. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dreturnin(A,B,C,D) [A >= B] (?,1) 4. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb2in(A,B,1 + A,E) [E >= 0 && 3 >= E] (?,1) 5. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [0 >= 1 + E] (?,1) 6. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] (?,1) 7. evalrandom2dbb2in(A,B,C,D) -> evalrandom2dNodeBlock9in(A,B,C,D) True (?,1) 8. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlockin(A,B,C,D) [1 >= D] (?,1) 9. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlock7in(A,B,C,D) [D >= 2] (?,1) 10. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlockin(A,B,C,D) [0 >= D] (?,1) 11. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlock1in(A,B,C,D) [D >= 1] (?,1) 12. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dbb3in(A,B,C,D) [D = 0] (?,1) 13. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= 1 + D] (?,1) 14. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 1] (?,1) 15. evalrandom2dbb3in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 16. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dbb5in(A,B,C,D) [D = 1] (?,1) 17. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= D] (?,1) 18. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 2] (?,1) 19. evalrandom2dbb5in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 20. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock3in(A,B,C,D) [2 >= D] (?,1) 21. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock5in(A,B,C,D) [D >= 3] (?,1) 22. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dbb7in(A,B,C,D) [D = 2] (?,1) 23. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [1 >= D] (?,1) 24. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 3] (?,1) 25. evalrandom2dbb7in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 26. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dbb9in(A,B,C,D) [D = 3] (?,1) 27. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [2 >= D] (?,1) 28. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 4] (?,1) 29. evalrandom2dbb9in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 30. evalrandom2dNewDefaultin(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 31. evalrandom2dreturnin(A,B,C,D) -> evalrandom2dstop(A,B,C,D) True (?,1) Signature: {(evalrandom2dLeafBlock1in,4) ;(evalrandom2dLeafBlock3in,4) ;(evalrandom2dLeafBlock5in,4) ;(evalrandom2dLeafBlockin,4) ;(evalrandom2dNewDefaultin,4) ;(evalrandom2dNodeBlock7in,4) ;(evalrandom2dNodeBlock9in,4) ;(evalrandom2dNodeBlockin,4) ;(evalrandom2dbb10in,4) ;(evalrandom2dbb2in,4) ;(evalrandom2dbb3in,4) ;(evalrandom2dbb5in,4) ;(evalrandom2dbb7in,4) ;(evalrandom2dbb9in,4) ;(evalrandom2dbbin,4) ;(evalrandom2dentryin,4) ;(evalrandom2dreturnin,4) ;(evalrandom2dstart,4) ;(evalrandom2dstop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5,6},3->{31},4->{7},5->{2,3},6->{2,3},7->{8,9},8->{10,11},9->{20,21},10->{12,13,14} ,11->{16,17,18},12->{15},13->{30},14->{30},15->{2,3},16->{19},17->{30},18->{30},19->{2,3},20->{22,23,24} ,21->{26,27,28},22->{25},23->{30},24->{30},25->{2,3},26->{29},27->{30},28->{30},29->{2,3},30->{2,3},31->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, 3 + D) (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, 3 + D) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, B) (< 4,0,D>, 3) (< 5,0,A>, B) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 3 + D) (< 6,0,A>, B) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, 3 + D) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, B) (< 7,0,D>, 3) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, B) (< 8,0,D>, 3) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, B) (< 9,0,D>, 3) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, B) (<10,0,D>, 3) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, B) (<11,0,D>, 3) (<12,0,A>, B) (<12,0,B>, B) (<12,0,C>, B) (<12,0,D>, 3) (<13,0,A>, B) (<13,0,B>, B) (<13,0,C>, B) (<13,0,D>, 3) (<14,0,A>, B) (<14,0,B>, B) (<14,0,C>, B) (<14,0,D>, 3) (<15,0,A>, B) (<15,0,B>, B) (<15,0,C>, B) (<15,0,D>, 3) (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, B) (<16,0,D>, 3) (<17,0,A>, B) (<17,0,B>, B) (<17,0,C>, B) (<17,0,D>, 3) (<18,0,A>, B) (<18,0,B>, B) (<18,0,C>, B) (<18,0,D>, 3) (<19,0,A>, B) (<19,0,B>, B) (<19,0,C>, B) (<19,0,D>, 3) (<20,0,A>, B) (<20,0,B>, B) (<20,0,C>, B) (<20,0,D>, 3) (<21,0,A>, B) (<21,0,B>, B) (<21,0,C>, B) (<21,0,D>, 3) (<22,0,A>, B) (<22,0,B>, B) (<22,0,C>, B) (<22,0,D>, 3) (<23,0,A>, B) (<23,0,B>, B) (<23,0,C>, B) (<23,0,D>, 3) (<24,0,A>, B) (<24,0,B>, B) (<24,0,C>, B) (<24,0,D>, 3) (<25,0,A>, B) (<25,0,B>, B) (<25,0,C>, B) (<25,0,D>, 3) (<26,0,A>, B) (<26,0,B>, B) (<26,0,C>, B) (<26,0,D>, 3) (<27,0,A>, B) (<27,0,B>, B) (<27,0,C>, B) (<27,0,D>, 3) (<28,0,A>, B) (<28,0,B>, B) (<28,0,C>, B) (<28,0,D>, 3) (<29,0,A>, B) (<29,0,B>, B) (<29,0,C>, B) (<29,0,D>, 3) (<30,0,A>, B) (<30,0,B>, B) (<30,0,C>, B) (<30,0,D>, 3) (<31,0,A>, B) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, 3 + D) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom2dstart(A,B,C,D) -> evalrandom2dentryin(A,B,C,D) True (1,1) 1. evalrandom2dentryin(A,B,C,D) -> evalrandom2dbb10in(0,B,C,D) True (?,1) 2. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dbbin(A,B,C,D) [B >= 1 + A] (?,1) 3. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dreturnin(A,B,C,D) [A >= B] (?,1) 4. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb2in(A,B,1 + A,E) [E >= 0 && 3 >= E] (?,1) 5. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [0 >= 1 + E] (?,1) 6. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] (?,1) 7. evalrandom2dbb2in(A,B,C,D) -> evalrandom2dNodeBlock9in(A,B,C,D) True (?,1) 8. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlockin(A,B,C,D) [1 >= D] (?,1) 9. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlock7in(A,B,C,D) [D >= 2] (?,1) 10. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlockin(A,B,C,D) [0 >= D] (?,1) 11. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlock1in(A,B,C,D) [D >= 1] (?,1) 12. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dbb3in(A,B,C,D) [D = 0] (?,1) 13. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= 1 + D] (?,1) 14. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 1] (?,1) 15. evalrandom2dbb3in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 16. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dbb5in(A,B,C,D) [D = 1] (?,1) 17. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= D] (?,1) 18. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 2] (?,1) 19. evalrandom2dbb5in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 20. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock3in(A,B,C,D) [2 >= D] (?,1) 21. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock5in(A,B,C,D) [D >= 3] (?,1) 22. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dbb7in(A,B,C,D) [D = 2] (?,1) 23. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [1 >= D] (?,1) 24. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 3] (?,1) 25. evalrandom2dbb7in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 26. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dbb9in(A,B,C,D) [D = 3] (?,1) 27. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [2 >= D] (?,1) 28. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 4] (?,1) 29. evalrandom2dbb9in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 30. evalrandom2dNewDefaultin(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 31. evalrandom2dreturnin(A,B,C,D) -> evalrandom2dstop(A,B,C,D) True (?,1) Signature: {(evalrandom2dLeafBlock1in,4) ;(evalrandom2dLeafBlock3in,4) ;(evalrandom2dLeafBlock5in,4) ;(evalrandom2dLeafBlockin,4) ;(evalrandom2dNewDefaultin,4) ;(evalrandom2dNodeBlock7in,4) ;(evalrandom2dNodeBlock9in,4) ;(evalrandom2dNodeBlockin,4) ;(evalrandom2dbb10in,4) ;(evalrandom2dbb2in,4) ;(evalrandom2dbb3in,4) ;(evalrandom2dbb5in,4) ;(evalrandom2dbb7in,4) ;(evalrandom2dbb9in,4) ;(evalrandom2dbbin,4) ;(evalrandom2dentryin,4) ;(evalrandom2dreturnin,4) ;(evalrandom2dstart,4) ;(evalrandom2dstop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5,6},3->{31},4->{7},5->{2,3},6->{2,3},7->{8,9},8->{10,11},9->{20,21},10->{12,13,14} ,11->{16,17,18},12->{15},13->{30},14->{30},15->{2,3},16->{19},17->{30},18->{30},19->{2,3},20->{22,23,24} ,21->{26,27,28},22->{25},23->{30},24->{30},25->{2,3},26->{29},27->{30},28->{30},29->{2,3},30->{2,3},31->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, 3 + D) (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, 3 + D) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, B) (< 4,0,D>, 3) (< 5,0,A>, B) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 3 + D) (< 6,0,A>, B) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, 3 + D) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, B) (< 7,0,D>, 3) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, B) (< 8,0,D>, 3) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, B) (< 9,0,D>, 3) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, B) (<10,0,D>, 3) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, B) (<11,0,D>, 3) (<12,0,A>, B) (<12,0,B>, B) (<12,0,C>, B) (<12,0,D>, 3) (<13,0,A>, B) (<13,0,B>, B) (<13,0,C>, B) (<13,0,D>, 3) (<14,0,A>, B) (<14,0,B>, B) (<14,0,C>, B) (<14,0,D>, 3) (<15,0,A>, B) (<15,0,B>, B) (<15,0,C>, B) (<15,0,D>, 3) (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, B) (<16,0,D>, 3) (<17,0,A>, B) (<17,0,B>, B) (<17,0,C>, B) (<17,0,D>, 3) (<18,0,A>, B) (<18,0,B>, B) (<18,0,C>, B) (<18,0,D>, 3) (<19,0,A>, B) (<19,0,B>, B) (<19,0,C>, B) (<19,0,D>, 3) (<20,0,A>, B) (<20,0,B>, B) (<20,0,C>, B) (<20,0,D>, 3) (<21,0,A>, B) (<21,0,B>, B) (<21,0,C>, B) (<21,0,D>, 3) (<22,0,A>, B) (<22,0,B>, B) (<22,0,C>, B) (<22,0,D>, 3) (<23,0,A>, B) (<23,0,B>, B) (<23,0,C>, B) (<23,0,D>, 3) (<24,0,A>, B) (<24,0,B>, B) (<24,0,C>, B) (<24,0,D>, 3) (<25,0,A>, B) (<25,0,B>, B) (<25,0,C>, B) (<25,0,D>, 3) (<26,0,A>, B) (<26,0,B>, B) (<26,0,C>, B) (<26,0,D>, 3) (<27,0,A>, B) (<27,0,B>, B) (<27,0,C>, B) (<27,0,D>, 3) (<28,0,A>, B) (<28,0,B>, B) (<28,0,C>, B) (<28,0,D>, 3) (<29,0,A>, B) (<29,0,B>, B) (<29,0,C>, B) (<29,0,D>, 3) (<30,0,A>, B) (<30,0,B>, B) (<30,0,C>, B) (<30,0,D>, 3) (<31,0,A>, B) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, 3 + D) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(10,14),(11,17),(20,24),(21,27)] * Step 4: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom2dstart(A,B,C,D) -> evalrandom2dentryin(A,B,C,D) True (1,1) 1. evalrandom2dentryin(A,B,C,D) -> evalrandom2dbb10in(0,B,C,D) True (?,1) 2. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dbbin(A,B,C,D) [B >= 1 + A] (?,1) 3. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dreturnin(A,B,C,D) [A >= B] (?,1) 4. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb2in(A,B,1 + A,E) [E >= 0 && 3 >= E] (?,1) 5. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [0 >= 1 + E] (?,1) 6. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] (?,1) 7. evalrandom2dbb2in(A,B,C,D) -> evalrandom2dNodeBlock9in(A,B,C,D) True (?,1) 8. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlockin(A,B,C,D) [1 >= D] (?,1) 9. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlock7in(A,B,C,D) [D >= 2] (?,1) 10. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlockin(A,B,C,D) [0 >= D] (?,1) 11. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlock1in(A,B,C,D) [D >= 1] (?,1) 12. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dbb3in(A,B,C,D) [D = 0] (?,1) 13. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= 1 + D] (?,1) 14. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 1] (?,1) 15. evalrandom2dbb3in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 16. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dbb5in(A,B,C,D) [D = 1] (?,1) 17. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= D] (?,1) 18. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 2] (?,1) 19. evalrandom2dbb5in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 20. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock3in(A,B,C,D) [2 >= D] (?,1) 21. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock5in(A,B,C,D) [D >= 3] (?,1) 22. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dbb7in(A,B,C,D) [D = 2] (?,1) 23. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [1 >= D] (?,1) 24. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 3] (?,1) 25. evalrandom2dbb7in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 26. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dbb9in(A,B,C,D) [D = 3] (?,1) 27. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [2 >= D] (?,1) 28. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 4] (?,1) 29. evalrandom2dbb9in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 30. evalrandom2dNewDefaultin(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 31. evalrandom2dreturnin(A,B,C,D) -> evalrandom2dstop(A,B,C,D) True (?,1) Signature: {(evalrandom2dLeafBlock1in,4) ;(evalrandom2dLeafBlock3in,4) ;(evalrandom2dLeafBlock5in,4) ;(evalrandom2dLeafBlockin,4) ;(evalrandom2dNewDefaultin,4) ;(evalrandom2dNodeBlock7in,4) ;(evalrandom2dNodeBlock9in,4) ;(evalrandom2dNodeBlockin,4) ;(evalrandom2dbb10in,4) ;(evalrandom2dbb2in,4) ;(evalrandom2dbb3in,4) ;(evalrandom2dbb5in,4) ;(evalrandom2dbb7in,4) ;(evalrandom2dbb9in,4) ;(evalrandom2dbbin,4) ;(evalrandom2dentryin,4) ;(evalrandom2dreturnin,4) ;(evalrandom2dstart,4) ;(evalrandom2dstop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5,6},3->{31},4->{7},5->{2,3},6->{2,3},7->{8,9},8->{10,11},9->{20,21},10->{12,13} ,11->{16,18},12->{15},13->{30},14->{30},15->{2,3},16->{19},17->{30},18->{30},19->{2,3},20->{22,23},21->{26 ,28},22->{25},23->{30},24->{30},25->{2,3},26->{29},27->{30},28->{30},29->{2,3},30->{2,3},31->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, 3 + D) (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, 3 + D) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, B) (< 4,0,D>, 3) (< 5,0,A>, B) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 3 + D) (< 6,0,A>, B) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, 3 + D) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, B) (< 7,0,D>, 3) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, B) (< 8,0,D>, 3) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, B) (< 9,0,D>, 3) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, B) (<10,0,D>, 3) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, B) (<11,0,D>, 3) (<12,0,A>, B) (<12,0,B>, B) (<12,0,C>, B) (<12,0,D>, 3) (<13,0,A>, B) (<13,0,B>, B) (<13,0,C>, B) (<13,0,D>, 3) (<14,0,A>, B) (<14,0,B>, B) (<14,0,C>, B) (<14,0,D>, 3) (<15,0,A>, B) (<15,0,B>, B) (<15,0,C>, B) (<15,0,D>, 3) (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, B) (<16,0,D>, 3) (<17,0,A>, B) (<17,0,B>, B) (<17,0,C>, B) (<17,0,D>, 3) (<18,0,A>, B) (<18,0,B>, B) (<18,0,C>, B) (<18,0,D>, 3) (<19,0,A>, B) (<19,0,B>, B) (<19,0,C>, B) (<19,0,D>, 3) (<20,0,A>, B) (<20,0,B>, B) (<20,0,C>, B) (<20,0,D>, 3) (<21,0,A>, B) (<21,0,B>, B) (<21,0,C>, B) (<21,0,D>, 3) (<22,0,A>, B) (<22,0,B>, B) (<22,0,C>, B) (<22,0,D>, 3) (<23,0,A>, B) (<23,0,B>, B) (<23,0,C>, B) (<23,0,D>, 3) (<24,0,A>, B) (<24,0,B>, B) (<24,0,C>, B) (<24,0,D>, 3) (<25,0,A>, B) (<25,0,B>, B) (<25,0,C>, B) (<25,0,D>, 3) (<26,0,A>, B) (<26,0,B>, B) (<26,0,C>, B) (<26,0,D>, 3) (<27,0,A>, B) (<27,0,B>, B) (<27,0,C>, B) (<27,0,D>, 3) (<28,0,A>, B) (<28,0,B>, B) (<28,0,C>, B) (<28,0,D>, 3) (<29,0,A>, B) (<29,0,B>, B) (<29,0,C>, B) (<29,0,D>, 3) (<30,0,A>, B) (<30,0,B>, B) (<30,0,C>, B) (<30,0,D>, 3) (<31,0,A>, B) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, 3 + D) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [14,17,24,27] * Step 5: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom2dstart(A,B,C,D) -> evalrandom2dentryin(A,B,C,D) True (1,1) 1. evalrandom2dentryin(A,B,C,D) -> evalrandom2dbb10in(0,B,C,D) True (?,1) 2. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dbbin(A,B,C,D) [B >= 1 + A] (?,1) 3. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dreturnin(A,B,C,D) [A >= B] (?,1) 4. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb2in(A,B,1 + A,E) [E >= 0 && 3 >= E] (?,1) 5. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [0 >= 1 + E] (?,1) 6. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] (?,1) 7. evalrandom2dbb2in(A,B,C,D) -> evalrandom2dNodeBlock9in(A,B,C,D) True (?,1) 8. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlockin(A,B,C,D) [1 >= D] (?,1) 9. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlock7in(A,B,C,D) [D >= 2] (?,1) 10. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlockin(A,B,C,D) [0 >= D] (?,1) 11. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlock1in(A,B,C,D) [D >= 1] (?,1) 12. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dbb3in(A,B,C,D) [D = 0] (?,1) 13. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= 1 + D] (?,1) 15. evalrandom2dbb3in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 16. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dbb5in(A,B,C,D) [D = 1] (?,1) 18. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 2] (?,1) 19. evalrandom2dbb5in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 20. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock3in(A,B,C,D) [2 >= D] (?,1) 21. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock5in(A,B,C,D) [D >= 3] (?,1) 22. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dbb7in(A,B,C,D) [D = 2] (?,1) 23. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [1 >= D] (?,1) 25. evalrandom2dbb7in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 26. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dbb9in(A,B,C,D) [D = 3] (?,1) 28. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 4] (?,1) 29. evalrandom2dbb9in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 30. evalrandom2dNewDefaultin(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 31. evalrandom2dreturnin(A,B,C,D) -> evalrandom2dstop(A,B,C,D) True (?,1) Signature: {(evalrandom2dLeafBlock1in,4) ;(evalrandom2dLeafBlock3in,4) ;(evalrandom2dLeafBlock5in,4) ;(evalrandom2dLeafBlockin,4) ;(evalrandom2dNewDefaultin,4) ;(evalrandom2dNodeBlock7in,4) ;(evalrandom2dNodeBlock9in,4) ;(evalrandom2dNodeBlockin,4) ;(evalrandom2dbb10in,4) ;(evalrandom2dbb2in,4) ;(evalrandom2dbb3in,4) ;(evalrandom2dbb5in,4) ;(evalrandom2dbb7in,4) ;(evalrandom2dbb9in,4) ;(evalrandom2dbbin,4) ;(evalrandom2dentryin,4) ;(evalrandom2dreturnin,4) ;(evalrandom2dstart,4) ;(evalrandom2dstop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5,6},3->{31},4->{7},5->{2,3},6->{2,3},7->{8,9},8->{10,11},9->{20,21},10->{12,13} ,11->{16,18},12->{15},13->{30},15->{2,3},16->{19},18->{30},19->{2,3},20->{22,23},21->{26,28},22->{25} ,23->{30},25->{2,3},26->{29},28->{30},29->{2,3},30->{2,3},31->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, 3 + D) (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, 3 + D) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, B) (< 4,0,D>, 3) (< 5,0,A>, B) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 3 + D) (< 6,0,A>, B) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, 3 + D) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, B) (< 7,0,D>, 3) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, B) (< 8,0,D>, 3) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, B) (< 9,0,D>, 3) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, B) (<10,0,D>, 3) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, B) (<11,0,D>, 3) (<12,0,A>, B) (<12,0,B>, B) (<12,0,C>, B) (<12,0,D>, 3) (<13,0,A>, B) (<13,0,B>, B) (<13,0,C>, B) (<13,0,D>, 3) (<15,0,A>, B) (<15,0,B>, B) (<15,0,C>, B) (<15,0,D>, 3) (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, B) (<16,0,D>, 3) (<18,0,A>, B) (<18,0,B>, B) (<18,0,C>, B) (<18,0,D>, 3) (<19,0,A>, B) (<19,0,B>, B) (<19,0,C>, B) (<19,0,D>, 3) (<20,0,A>, B) (<20,0,B>, B) (<20,0,C>, B) (<20,0,D>, 3) (<21,0,A>, B) (<21,0,B>, B) (<21,0,C>, B) (<21,0,D>, 3) (<22,0,A>, B) (<22,0,B>, B) (<22,0,C>, B) (<22,0,D>, 3) (<23,0,A>, B) (<23,0,B>, B) (<23,0,C>, B) (<23,0,D>, 3) (<25,0,A>, B) (<25,0,B>, B) (<25,0,C>, B) (<25,0,D>, 3) (<26,0,A>, B) (<26,0,B>, B) (<26,0,C>, B) (<26,0,D>, 3) (<28,0,A>, B) (<28,0,B>, B) (<28,0,C>, B) (<28,0,D>, 3) (<29,0,A>, B) (<29,0,B>, B) (<29,0,C>, B) (<29,0,D>, 3) (<30,0,A>, B) (<30,0,B>, B) (<30,0,C>, B) (<30,0,D>, 3) (<31,0,A>, B) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, 3 + D) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,31] * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom2dstart(A,B,C,D) -> evalrandom2dentryin(A,B,C,D) True (1,1) 1. evalrandom2dentryin(A,B,C,D) -> evalrandom2dbb10in(0,B,C,D) True (?,1) 2. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dbbin(A,B,C,D) [B >= 1 + A] (?,1) 4. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb2in(A,B,1 + A,E) [E >= 0 && 3 >= E] (?,1) 5. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [0 >= 1 + E] (?,1) 6. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] (?,1) 7. evalrandom2dbb2in(A,B,C,D) -> evalrandom2dNodeBlock9in(A,B,C,D) True (?,1) 8. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlockin(A,B,C,D) [1 >= D] (?,1) 9. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlock7in(A,B,C,D) [D >= 2] (?,1) 10. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlockin(A,B,C,D) [0 >= D] (?,1) 11. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlock1in(A,B,C,D) [D >= 1] (?,1) 12. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dbb3in(A,B,C,D) [D = 0] (?,1) 13. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= 1 + D] (?,1) 15. evalrandom2dbb3in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 16. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dbb5in(A,B,C,D) [D = 1] (?,1) 18. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 2] (?,1) 19. evalrandom2dbb5in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 20. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock3in(A,B,C,D) [2 >= D] (?,1) 21. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock5in(A,B,C,D) [D >= 3] (?,1) 22. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dbb7in(A,B,C,D) [D = 2] (?,1) 23. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [1 >= D] (?,1) 25. evalrandom2dbb7in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 26. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dbb9in(A,B,C,D) [D = 3] (?,1) 28. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 4] (?,1) 29. evalrandom2dbb9in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 30. evalrandom2dNewDefaultin(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) Signature: {(evalrandom2dLeafBlock1in,4) ;(evalrandom2dLeafBlock3in,4) ;(evalrandom2dLeafBlock5in,4) ;(evalrandom2dLeafBlockin,4) ;(evalrandom2dNewDefaultin,4) ;(evalrandom2dNodeBlock7in,4) ;(evalrandom2dNodeBlock9in,4) ;(evalrandom2dNodeBlockin,4) ;(evalrandom2dbb10in,4) ;(evalrandom2dbb2in,4) ;(evalrandom2dbb3in,4) ;(evalrandom2dbb5in,4) ;(evalrandom2dbb7in,4) ;(evalrandom2dbb9in,4) ;(evalrandom2dbbin,4) ;(evalrandom2dentryin,4) ;(evalrandom2dreturnin,4) ;(evalrandom2dstart,4) ;(evalrandom2dstop,4)} Flow Graph: [0->{1},1->{2},2->{4,5,6},4->{7},5->{2},6->{2},7->{8,9},8->{10,11},9->{20,21},10->{12,13},11->{16,18} ,12->{15},13->{30},15->{2},16->{19},18->{30},19->{2},20->{22,23},21->{26,28},22->{25},23->{30},25->{2} ,26->{29},28->{30},29->{2},30->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, 3 + D) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, B) (< 4,0,D>, 3) (< 5,0,A>, B) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 3 + D) (< 6,0,A>, B) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, 3 + D) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, B) (< 7,0,D>, 3) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, B) (< 8,0,D>, 3) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, B) (< 9,0,D>, 3) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, B) (<10,0,D>, 3) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, B) (<11,0,D>, 3) (<12,0,A>, B) (<12,0,B>, B) (<12,0,C>, B) (<12,0,D>, 3) (<13,0,A>, B) (<13,0,B>, B) (<13,0,C>, B) (<13,0,D>, 3) (<15,0,A>, B) (<15,0,B>, B) (<15,0,C>, B) (<15,0,D>, 3) (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, B) (<16,0,D>, 3) (<18,0,A>, B) (<18,0,B>, B) (<18,0,C>, B) (<18,0,D>, 3) (<19,0,A>, B) (<19,0,B>, B) (<19,0,C>, B) (<19,0,D>, 3) (<20,0,A>, B) (<20,0,B>, B) (<20,0,C>, B) (<20,0,D>, 3) (<21,0,A>, B) (<21,0,B>, B) (<21,0,C>, B) (<21,0,D>, 3) (<22,0,A>, B) (<22,0,B>, B) (<22,0,C>, B) (<22,0,D>, 3) (<23,0,A>, B) (<23,0,B>, B) (<23,0,C>, B) (<23,0,D>, 3) (<25,0,A>, B) (<25,0,B>, B) (<25,0,C>, B) (<25,0,D>, 3) (<26,0,A>, B) (<26,0,B>, B) (<26,0,C>, B) (<26,0,D>, 3) (<28,0,A>, B) (<28,0,B>, B) (<28,0,C>, B) (<28,0,D>, 3) (<29,0,A>, B) (<29,0,B>, B) (<29,0,C>, B) (<29,0,D>, 3) (<30,0,A>, B) (<30,0,B>, B) (<30,0,C>, B) (<30,0,D>, 3) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrandom2dLeafBlock1in) = 1 p(evalrandom2dLeafBlock3in) = 1 p(evalrandom2dLeafBlock5in) = 1 p(evalrandom2dLeafBlockin) = 1 p(evalrandom2dNewDefaultin) = 1 p(evalrandom2dNodeBlock7in) = 1 p(evalrandom2dNodeBlock9in) = 1 p(evalrandom2dNodeBlockin) = 1 p(evalrandom2dbb10in) = 1 p(evalrandom2dbb2in) = 1 p(evalrandom2dbb3in) = 1 p(evalrandom2dbb5in) = 1 p(evalrandom2dbb7in) = 1 p(evalrandom2dbb9in) = 1 p(evalrandom2dbbin) = 1 p(evalrandom2dentryin) = 2 p(evalrandom2dstart) = 2 The following rules are strictly oriented: True ==> evalrandom2dentryin(A,B,C,D) = 2 > 1 = evalrandom2dbb10in(0,B,C,D) The following rules are weakly oriented: True ==> evalrandom2dstart(A,B,C,D) = 2 >= 2 = evalrandom2dentryin(A,B,C,D) [B >= 1 + A] ==> evalrandom2dbb10in(A,B,C,D) = 1 >= 1 = evalrandom2dbbin(A,B,C,D) [E >= 0 && 3 >= E] ==> evalrandom2dbbin(A,B,C,D) = 1 >= 1 = evalrandom2dbb2in(A,B,1 + A,E) [0 >= 1 + E] ==> evalrandom2dbbin(A,B,C,D) = 1 >= 1 = evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] ==> evalrandom2dbbin(A,B,C,D) = 1 >= 1 = evalrandom2dbb10in(1 + A,B,C,D) True ==> evalrandom2dbb2in(A,B,C,D) = 1 >= 1 = evalrandom2dNodeBlock9in(A,B,C,D) [1 >= D] ==> evalrandom2dNodeBlock9in(A,B,C,D) = 1 >= 1 = evalrandom2dNodeBlockin(A,B,C,D) [D >= 2] ==> evalrandom2dNodeBlock9in(A,B,C,D) = 1 >= 1 = evalrandom2dNodeBlock7in(A,B,C,D) [0 >= D] ==> evalrandom2dNodeBlockin(A,B,C,D) = 1 >= 1 = evalrandom2dLeafBlockin(A,B,C,D) [D >= 1] ==> evalrandom2dNodeBlockin(A,B,C,D) = 1 >= 1 = evalrandom2dLeafBlock1in(A,B,C,D) [D = 0] ==> evalrandom2dLeafBlockin(A,B,C,D) = 1 >= 1 = evalrandom2dbb3in(A,B,C,D) [0 >= 1 + D] ==> evalrandom2dLeafBlockin(A,B,C,D) = 1 >= 1 = evalrandom2dNewDefaultin(A,B,C,D) True ==> evalrandom2dbb3in(A,B,C,D) = 1 >= 1 = evalrandom2dbb10in(C,B,C,D) [D = 1] ==> evalrandom2dLeafBlock1in(A,B,C,D) = 1 >= 1 = evalrandom2dbb5in(A,B,C,D) [D >= 2] ==> evalrandom2dLeafBlock1in(A,B,C,D) = 1 >= 1 = evalrandom2dNewDefaultin(A,B,C,D) True ==> evalrandom2dbb5in(A,B,C,D) = 1 >= 1 = evalrandom2dbb10in(C,B,C,D) [2 >= D] ==> evalrandom2dNodeBlock7in(A,B,C,D) = 1 >= 1 = evalrandom2dLeafBlock3in(A,B,C,D) [D >= 3] ==> evalrandom2dNodeBlock7in(A,B,C,D) = 1 >= 1 = evalrandom2dLeafBlock5in(A,B,C,D) [D = 2] ==> evalrandom2dLeafBlock3in(A,B,C,D) = 1 >= 1 = evalrandom2dbb7in(A,B,C,D) [1 >= D] ==> evalrandom2dLeafBlock3in(A,B,C,D) = 1 >= 1 = evalrandom2dNewDefaultin(A,B,C,D) True ==> evalrandom2dbb7in(A,B,C,D) = 1 >= 1 = evalrandom2dbb10in(C,B,C,D) [D = 3] ==> evalrandom2dLeafBlock5in(A,B,C,D) = 1 >= 1 = evalrandom2dbb9in(A,B,C,D) [D >= 4] ==> evalrandom2dLeafBlock5in(A,B,C,D) = 1 >= 1 = evalrandom2dNewDefaultin(A,B,C,D) True ==> evalrandom2dbb9in(A,B,C,D) = 1 >= 1 = evalrandom2dbb10in(C,B,C,D) True ==> evalrandom2dNewDefaultin(A,B,C,D) = 1 >= 1 = evalrandom2dbb10in(C,B,C,D) * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom2dstart(A,B,C,D) -> evalrandom2dentryin(A,B,C,D) True (1,1) 1. evalrandom2dentryin(A,B,C,D) -> evalrandom2dbb10in(0,B,C,D) True (2,1) 2. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dbbin(A,B,C,D) [B >= 1 + A] (?,1) 4. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb2in(A,B,1 + A,E) [E >= 0 && 3 >= E] (?,1) 5. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [0 >= 1 + E] (?,1) 6. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] (?,1) 7. evalrandom2dbb2in(A,B,C,D) -> evalrandom2dNodeBlock9in(A,B,C,D) True (?,1) 8. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlockin(A,B,C,D) [1 >= D] (?,1) 9. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlock7in(A,B,C,D) [D >= 2] (?,1) 10. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlockin(A,B,C,D) [0 >= D] (?,1) 11. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlock1in(A,B,C,D) [D >= 1] (?,1) 12. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dbb3in(A,B,C,D) [D = 0] (?,1) 13. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= 1 + D] (?,1) 15. evalrandom2dbb3in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 16. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dbb5in(A,B,C,D) [D = 1] (?,1) 18. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 2] (?,1) 19. evalrandom2dbb5in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 20. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock3in(A,B,C,D) [2 >= D] (?,1) 21. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock5in(A,B,C,D) [D >= 3] (?,1) 22. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dbb7in(A,B,C,D) [D = 2] (?,1) 23. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [1 >= D] (?,1) 25. evalrandom2dbb7in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 26. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dbb9in(A,B,C,D) [D = 3] (?,1) 28. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 4] (?,1) 29. evalrandom2dbb9in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 30. evalrandom2dNewDefaultin(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) Signature: {(evalrandom2dLeafBlock1in,4) ;(evalrandom2dLeafBlock3in,4) ;(evalrandom2dLeafBlock5in,4) ;(evalrandom2dLeafBlockin,4) ;(evalrandom2dNewDefaultin,4) ;(evalrandom2dNodeBlock7in,4) ;(evalrandom2dNodeBlock9in,4) ;(evalrandom2dNodeBlockin,4) ;(evalrandom2dbb10in,4) ;(evalrandom2dbb2in,4) ;(evalrandom2dbb3in,4) ;(evalrandom2dbb5in,4) ;(evalrandom2dbb7in,4) ;(evalrandom2dbb9in,4) ;(evalrandom2dbbin,4) ;(evalrandom2dentryin,4) ;(evalrandom2dreturnin,4) ;(evalrandom2dstart,4) ;(evalrandom2dstop,4)} Flow Graph: [0->{1},1->{2},2->{4,5,6},4->{7},5->{2},6->{2},7->{8,9},8->{10,11},9->{20,21},10->{12,13},11->{16,18} ,12->{15},13->{30},15->{2},16->{19},18->{30},19->{2},20->{22,23},21->{26,28},22->{25},23->{30},25->{2} ,26->{29},28->{30},29->{2},30->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, 3 + D) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, B) (< 4,0,D>, 3) (< 5,0,A>, B) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 3 + D) (< 6,0,A>, B) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, 3 + D) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, B) (< 7,0,D>, 3) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, B) (< 8,0,D>, 3) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, B) (< 9,0,D>, 3) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, B) (<10,0,D>, 3) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, B) (<11,0,D>, 3) (<12,0,A>, B) (<12,0,B>, B) (<12,0,C>, B) (<12,0,D>, 3) (<13,0,A>, B) (<13,0,B>, B) (<13,0,C>, B) (<13,0,D>, 3) (<15,0,A>, B) (<15,0,B>, B) (<15,0,C>, B) (<15,0,D>, 3) (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, B) (<16,0,D>, 3) (<18,0,A>, B) (<18,0,B>, B) (<18,0,C>, B) (<18,0,D>, 3) (<19,0,A>, B) (<19,0,B>, B) (<19,0,C>, B) (<19,0,D>, 3) (<20,0,A>, B) (<20,0,B>, B) (<20,0,C>, B) (<20,0,D>, 3) (<21,0,A>, B) (<21,0,B>, B) (<21,0,C>, B) (<21,0,D>, 3) (<22,0,A>, B) (<22,0,B>, B) (<22,0,C>, B) (<22,0,D>, 3) (<23,0,A>, B) (<23,0,B>, B) (<23,0,C>, B) (<23,0,D>, 3) (<25,0,A>, B) (<25,0,B>, B) (<25,0,C>, B) (<25,0,D>, 3) (<26,0,A>, B) (<26,0,B>, B) (<26,0,C>, B) (<26,0,D>, 3) (<28,0,A>, B) (<28,0,B>, B) (<28,0,C>, B) (<28,0,D>, 3) (<29,0,A>, B) (<29,0,B>, B) (<29,0,C>, B) (<29,0,D>, 3) (<30,0,A>, B) (<30,0,B>, B) (<30,0,C>, B) (<30,0,D>, 3) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalrandom2dLeafBlock1in) = x2 + -1*x3 p(evalrandom2dLeafBlock3in) = x2 + -1*x3 p(evalrandom2dLeafBlock5in) = x2 + -1*x3 p(evalrandom2dLeafBlockin) = x2 + -1*x3 p(evalrandom2dNewDefaultin) = x2 + -1*x3 p(evalrandom2dNodeBlock7in) = x2 + -1*x3 p(evalrandom2dNodeBlock9in) = x2 + -1*x3 p(evalrandom2dNodeBlockin) = x2 + -1*x3 p(evalrandom2dbb10in) = -1*x1 + x2 p(evalrandom2dbb2in) = x2 + -1*x3 p(evalrandom2dbb3in) = x2 + -1*x3 p(evalrandom2dbb5in) = x2 + -1*x3 p(evalrandom2dbb7in) = x2 + -1*x3 p(evalrandom2dbb9in) = x2 + -1*x3 p(evalrandom2dbbin) = -1 + -1*x1 + x2 p(evalrandom2dentryin) = x2 p(evalrandom2dstart) = x2 The following rules are strictly oriented: [B >= 1 + A] ==> evalrandom2dbb10in(A,B,C,D) = -1*A + B > -1 + -1*A + B = evalrandom2dbbin(A,B,C,D) The following rules are weakly oriented: True ==> evalrandom2dstart(A,B,C,D) = B >= B = evalrandom2dentryin(A,B,C,D) True ==> evalrandom2dentryin(A,B,C,D) = B >= B = evalrandom2dbb10in(0,B,C,D) [E >= 0 && 3 >= E] ==> evalrandom2dbbin(A,B,C,D) = -1 + -1*A + B >= -1 + -1*A + B = evalrandom2dbb2in(A,B,1 + A,E) [0 >= 1 + E] ==> evalrandom2dbbin(A,B,C,D) = -1 + -1*A + B >= -1 + -1*A + B = evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] ==> evalrandom2dbbin(A,B,C,D) = -1 + -1*A + B >= -1 + -1*A + B = evalrandom2dbb10in(1 + A,B,C,D) True ==> evalrandom2dbb2in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dNodeBlock9in(A,B,C,D) [1 >= D] ==> evalrandom2dNodeBlock9in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dNodeBlockin(A,B,C,D) [D >= 2] ==> evalrandom2dNodeBlock9in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dNodeBlock7in(A,B,C,D) [0 >= D] ==> evalrandom2dNodeBlockin(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dLeafBlockin(A,B,C,D) [D >= 1] ==> evalrandom2dNodeBlockin(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dLeafBlock1in(A,B,C,D) [D = 0] ==> evalrandom2dLeafBlockin(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dbb3in(A,B,C,D) [0 >= 1 + D] ==> evalrandom2dLeafBlockin(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dNewDefaultin(A,B,C,D) True ==> evalrandom2dbb3in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dbb10in(C,B,C,D) [D = 1] ==> evalrandom2dLeafBlock1in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dbb5in(A,B,C,D) [D >= 2] ==> evalrandom2dLeafBlock1in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dNewDefaultin(A,B,C,D) True ==> evalrandom2dbb5in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dbb10in(C,B,C,D) [2 >= D] ==> evalrandom2dNodeBlock7in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dLeafBlock3in(A,B,C,D) [D >= 3] ==> evalrandom2dNodeBlock7in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dLeafBlock5in(A,B,C,D) [D = 2] ==> evalrandom2dLeafBlock3in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dbb7in(A,B,C,D) [1 >= D] ==> evalrandom2dLeafBlock3in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dNewDefaultin(A,B,C,D) True ==> evalrandom2dbb7in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dbb10in(C,B,C,D) [D = 3] ==> evalrandom2dLeafBlock5in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dbb9in(A,B,C,D) [D >= 4] ==> evalrandom2dLeafBlock5in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dNewDefaultin(A,B,C,D) True ==> evalrandom2dbb9in(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dbb10in(C,B,C,D) True ==> evalrandom2dNewDefaultin(A,B,C,D) = B + -1*C >= B + -1*C = evalrandom2dbb10in(C,B,C,D) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom2dstart(A,B,C,D) -> evalrandom2dentryin(A,B,C,D) True (1,1) 1. evalrandom2dentryin(A,B,C,D) -> evalrandom2dbb10in(0,B,C,D) True (2,1) 2. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dbbin(A,B,C,D) [B >= 1 + A] (B,1) 4. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb2in(A,B,1 + A,E) [E >= 0 && 3 >= E] (?,1) 5. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [0 >= 1 + E] (?,1) 6. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] (?,1) 7. evalrandom2dbb2in(A,B,C,D) -> evalrandom2dNodeBlock9in(A,B,C,D) True (?,1) 8. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlockin(A,B,C,D) [1 >= D] (?,1) 9. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlock7in(A,B,C,D) [D >= 2] (?,1) 10. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlockin(A,B,C,D) [0 >= D] (?,1) 11. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlock1in(A,B,C,D) [D >= 1] (?,1) 12. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dbb3in(A,B,C,D) [D = 0] (?,1) 13. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= 1 + D] (?,1) 15. evalrandom2dbb3in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 16. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dbb5in(A,B,C,D) [D = 1] (?,1) 18. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 2] (?,1) 19. evalrandom2dbb5in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 20. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock3in(A,B,C,D) [2 >= D] (?,1) 21. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock5in(A,B,C,D) [D >= 3] (?,1) 22. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dbb7in(A,B,C,D) [D = 2] (?,1) 23. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [1 >= D] (?,1) 25. evalrandom2dbb7in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 26. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dbb9in(A,B,C,D) [D = 3] (?,1) 28. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 4] (?,1) 29. evalrandom2dbb9in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) 30. evalrandom2dNewDefaultin(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (?,1) Signature: {(evalrandom2dLeafBlock1in,4) ;(evalrandom2dLeafBlock3in,4) ;(evalrandom2dLeafBlock5in,4) ;(evalrandom2dLeafBlockin,4) ;(evalrandom2dNewDefaultin,4) ;(evalrandom2dNodeBlock7in,4) ;(evalrandom2dNodeBlock9in,4) ;(evalrandom2dNodeBlockin,4) ;(evalrandom2dbb10in,4) ;(evalrandom2dbb2in,4) ;(evalrandom2dbb3in,4) ;(evalrandom2dbb5in,4) ;(evalrandom2dbb7in,4) ;(evalrandom2dbb9in,4) ;(evalrandom2dbbin,4) ;(evalrandom2dentryin,4) ;(evalrandom2dreturnin,4) ;(evalrandom2dstart,4) ;(evalrandom2dstop,4)} Flow Graph: [0->{1},1->{2},2->{4,5,6},4->{7},5->{2},6->{2},7->{8,9},8->{10,11},9->{20,21},10->{12,13},11->{16,18} ,12->{15},13->{30},15->{2},16->{19},18->{30},19->{2},20->{22,23},21->{26,28},22->{25},23->{30},25->{2} ,26->{29},28->{30},29->{2},30->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, 3 + D) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, B) (< 4,0,D>, 3) (< 5,0,A>, B) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 3 + D) (< 6,0,A>, B) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, 3 + D) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, B) (< 7,0,D>, 3) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, B) (< 8,0,D>, 3) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, B) (< 9,0,D>, 3) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, B) (<10,0,D>, 3) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, B) (<11,0,D>, 3) (<12,0,A>, B) (<12,0,B>, B) (<12,0,C>, B) (<12,0,D>, 3) (<13,0,A>, B) (<13,0,B>, B) (<13,0,C>, B) (<13,0,D>, 3) (<15,0,A>, B) (<15,0,B>, B) (<15,0,C>, B) (<15,0,D>, 3) (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, B) (<16,0,D>, 3) (<18,0,A>, B) (<18,0,B>, B) (<18,0,C>, B) (<18,0,D>, 3) (<19,0,A>, B) (<19,0,B>, B) (<19,0,C>, B) (<19,0,D>, 3) (<20,0,A>, B) (<20,0,B>, B) (<20,0,C>, B) (<20,0,D>, 3) (<21,0,A>, B) (<21,0,B>, B) (<21,0,C>, B) (<21,0,D>, 3) (<22,0,A>, B) (<22,0,B>, B) (<22,0,C>, B) (<22,0,D>, 3) (<23,0,A>, B) (<23,0,B>, B) (<23,0,C>, B) (<23,0,D>, 3) (<25,0,A>, B) (<25,0,B>, B) (<25,0,C>, B) (<25,0,D>, 3) (<26,0,A>, B) (<26,0,B>, B) (<26,0,C>, B) (<26,0,D>, 3) (<28,0,A>, B) (<28,0,B>, B) (<28,0,C>, B) (<28,0,D>, 3) (<29,0,A>, B) (<29,0,B>, B) (<29,0,C>, B) (<29,0,D>, 3) (<30,0,A>, B) (<30,0,B>, B) (<30,0,C>, B) (<30,0,D>, 3) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalrandom2dstart(A,B,C,D) -> evalrandom2dentryin(A,B,C,D) True (1,1) 1. evalrandom2dentryin(A,B,C,D) -> evalrandom2dbb10in(0,B,C,D) True (2,1) 2. evalrandom2dbb10in(A,B,C,D) -> evalrandom2dbbin(A,B,C,D) [B >= 1 + A] (B,1) 4. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb2in(A,B,1 + A,E) [E >= 0 && 3 >= E] (B,1) 5. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [0 >= 1 + E] (B,1) 6. evalrandom2dbbin(A,B,C,D) -> evalrandom2dbb10in(1 + A,B,C,D) [E >= 4] (B,1) 7. evalrandom2dbb2in(A,B,C,D) -> evalrandom2dNodeBlock9in(A,B,C,D) True (B,1) 8. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlockin(A,B,C,D) [1 >= D] (B,1) 9. evalrandom2dNodeBlock9in(A,B,C,D) -> evalrandom2dNodeBlock7in(A,B,C,D) [D >= 2] (B,1) 10. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlockin(A,B,C,D) [0 >= D] (B,1) 11. evalrandom2dNodeBlockin(A,B,C,D) -> evalrandom2dLeafBlock1in(A,B,C,D) [D >= 1] (B,1) 12. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dbb3in(A,B,C,D) [D = 0] (B,1) 13. evalrandom2dLeafBlockin(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [0 >= 1 + D] (B,1) 15. evalrandom2dbb3in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (B,1) 16. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dbb5in(A,B,C,D) [D = 1] (B,1) 18. evalrandom2dLeafBlock1in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 2] (B,1) 19. evalrandom2dbb5in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (B,1) 20. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock3in(A,B,C,D) [2 >= D] (B,1) 21. evalrandom2dNodeBlock7in(A,B,C,D) -> evalrandom2dLeafBlock5in(A,B,C,D) [D >= 3] (B,1) 22. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dbb7in(A,B,C,D) [D = 2] (B,1) 23. evalrandom2dLeafBlock3in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [1 >= D] (B,1) 25. evalrandom2dbb7in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (B,1) 26. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dbb9in(A,B,C,D) [D = 3] (B,1) 28. evalrandom2dLeafBlock5in(A,B,C,D) -> evalrandom2dNewDefaultin(A,B,C,D) [D >= 4] (B,1) 29. evalrandom2dbb9in(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (B,1) 30. evalrandom2dNewDefaultin(A,B,C,D) -> evalrandom2dbb10in(C,B,C,D) True (4*B,1) Signature: {(evalrandom2dLeafBlock1in,4) ;(evalrandom2dLeafBlock3in,4) ;(evalrandom2dLeafBlock5in,4) ;(evalrandom2dLeafBlockin,4) ;(evalrandom2dNewDefaultin,4) ;(evalrandom2dNodeBlock7in,4) ;(evalrandom2dNodeBlock9in,4) ;(evalrandom2dNodeBlockin,4) ;(evalrandom2dbb10in,4) ;(evalrandom2dbb2in,4) ;(evalrandom2dbb3in,4) ;(evalrandom2dbb5in,4) ;(evalrandom2dbb7in,4) ;(evalrandom2dbb9in,4) ;(evalrandom2dbbin,4) ;(evalrandom2dentryin,4) ;(evalrandom2dreturnin,4) ;(evalrandom2dstart,4) ;(evalrandom2dstop,4)} Flow Graph: [0->{1},1->{2},2->{4,5,6},4->{7},5->{2},6->{2},7->{8,9},8->{10,11},9->{20,21},10->{12,13},11->{16,18} ,12->{15},13->{30},15->{2},16->{19},18->{30},19->{2},20->{22,23},21->{26,28},22->{25},23->{30},25->{2} ,26->{29},28->{30},29->{2},30->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, ?) (< 2,0,D>, 3 + D) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, B) (< 4,0,D>, 3) (< 5,0,A>, B) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 3 + D) (< 6,0,A>, B) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, 3 + D) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, B) (< 7,0,D>, 3) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, B) (< 8,0,D>, 3) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, B) (< 9,0,D>, 3) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, B) (<10,0,D>, 3) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, B) (<11,0,D>, 3) (<12,0,A>, B) (<12,0,B>, B) (<12,0,C>, B) (<12,0,D>, 3) (<13,0,A>, B) (<13,0,B>, B) (<13,0,C>, B) (<13,0,D>, 3) (<15,0,A>, B) (<15,0,B>, B) (<15,0,C>, B) (<15,0,D>, 3) (<16,0,A>, B) (<16,0,B>, B) (<16,0,C>, B) (<16,0,D>, 3) (<18,0,A>, B) (<18,0,B>, B) (<18,0,C>, B) (<18,0,D>, 3) (<19,0,A>, B) (<19,0,B>, B) (<19,0,C>, B) (<19,0,D>, 3) (<20,0,A>, B) (<20,0,B>, B) (<20,0,C>, B) (<20,0,D>, 3) (<21,0,A>, B) (<21,0,B>, B) (<21,0,C>, B) (<21,0,D>, 3) (<22,0,A>, B) (<22,0,B>, B) (<22,0,C>, B) (<22,0,D>, 3) (<23,0,A>, B) (<23,0,B>, B) (<23,0,C>, B) (<23,0,D>, 3) (<25,0,A>, B) (<25,0,B>, B) (<25,0,C>, B) (<25,0,D>, 3) (<26,0,A>, B) (<26,0,B>, B) (<26,0,C>, B) (<26,0,D>, 3) (<28,0,A>, B) (<28,0,B>, B) (<28,0,C>, B) (<28,0,D>, 3) (<29,0,A>, B) (<29,0,B>, B) (<29,0,C>, B) (<29,0,D>, 3) (<30,0,A>, B) (<30,0,B>, B) (<30,0,C>, B) (<30,0,D>, 3) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))