WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G) -> f46(5,12,0,0,E,F,G) True (1,1) 1. f46(A,B,C,D,E,F,G) -> f46(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] (?,1) 2. f46(A,B,C,D,E,F,G) -> f46(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] (?,1) 3. f46(A,B,C,D,E,F,G) -> f46(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E,F,G) -> f57(A,B,C,D,0,F,G) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E,F,G) -> f57(A,B,C,D,1 + E,H,I) [B >= 1 + E] (?,1) 6. f68(A,B,C,D,E,F,G) -> f74(A,B,C,D,E,H,I) [B >= 1 + D] (?,1) 7. f68(A,B,C,D,E,F,G) -> f68(A,B,C,1 + D,E,H,I) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E,F,G) -> f78(A,B,C,1 + D,E,F,G) [A >= 1 + D] (?,1) 9. f78(A,B,C,D,E,F,G) -> f74(A,B,C,D,E,F,G) [D >= A] (?,1) 10. f68(A,B,C,D,E,F,G) -> f78(A,B,C,0,E,F,G) [D >= B] (?,1) 11. f57(A,B,C,D,E,F,G) -> f54(A,B,C,1 + D,E,F,G) [E >= B] (?,1) 12. f54(A,B,C,D,E,F,G) -> f68(A,B,C,0,E,F,G) [D >= A] (?,1) 13. f46(A,B,C,D,E,F,G) -> f54(A,B,C,0,E,F,G) [D >= A] (?,1) Signature: {(f0,7);(f46,7);(f54,7);(f57,7);(f68,7);(f74,7);(f78,7)} Flow Graph: [0->{1,2,3,13},1->{1,2,3,13},2->{1,2,3,13},3->{1,2,3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9} ,9->{},10->{8,9},11->{4,12},12->{6,7,10},13->{4,12}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [F,G] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (?,1) 2. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && C >= 1 + D] (?,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 6. f68(A,B,C,D,E) -> f74(A,B,C,D,E) [B >= 1 + D] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 9. f78(A,B,C,D,E) -> f74(A,B,C,D,E) [D >= A] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (?,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (?,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (?,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1,2,3,13},1->{1,2,3,13},2->{1,2,3,13},3->{1,2,3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9} ,9->{},10->{8,9},11->{4,12},12->{6,7,10},13->{4,12}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, 5, .= 5) (< 0,0,B>, 12, .= 12) (< 0,0,C>, 0, .= 0) (< 0,0,D>, 0, .= 0) (< 0,0,E>, E, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, 1 + C, .+ 1) (< 1,0,E>, E, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, 1 + A + D, .* 1) (< 2,0,E>, E, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, 1 + D, .+ 1) (< 3,0,E>, E, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, 0, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, 1 + E, .+ 1) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, E, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, 1 + D, .+ 1) (< 7,0,E>, E, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, 1 + D, .+ 1) (< 8,0,E>, E, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, 0, .= 0) (<10,0,E>, E, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, 1 + D, .+ 1) (<11,0,E>, E, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, 0, .= 0) (<12,0,E>, E, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, 0, .= 0) (<13,0,E>, E, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (?,1) 2. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && C >= 1 + D] (?,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 6. f68(A,B,C,D,E) -> f74(A,B,C,D,E) [B >= 1 + D] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 9. f78(A,B,C,D,E) -> f74(A,B,C,D,E) [D >= A] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (?,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (?,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (?,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1,2,3,13},1->{1,2,3,13},2->{1,2,3,13},3->{1,2,3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9} ,9->{},10->{8,9},11->{4,12},12->{6,7,10},13->{4,12}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 2,0,A>, 5) (< 2,0,B>, 12) (< 2,0,C>, 0) (< 2,0,D>, 5) (< 2,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 6,0,A>, 5) (< 6,0,B>, 12) (< 6,0,C>, 0) (< 6,0,D>, 12) (< 6,0,E>, 12 + E) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (< 9,0,A>, 5) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 5) (< 9,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (?,1) 2. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && C >= 1 + D] (?,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 6. f68(A,B,C,D,E) -> f74(A,B,C,D,E) [B >= 1 + D] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 9. f78(A,B,C,D,E) -> f74(A,B,C,D,E) [D >= A] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (?,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (?,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (?,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1,2,3,13},1->{1,2,3,13},2->{1,2,3,13},3->{1,2,3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9} ,9->{},10->{8,9},11->{4,12},12->{6,7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 2,0,A>, 5) (< 2,0,B>, 12) (< 2,0,C>, 0) (< 2,0,D>, 5) (< 2,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 6,0,A>, 5) (< 6,0,B>, 12) (< 6,0,C>, 0) (< 6,0,D>, 12) (< 6,0,E>, 12 + E) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (< 9,0,A>, 5) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 5) (< 9,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(0,3),(0,13),(1,1),(1,2),(2,3),(3,1),(3,2)] * Step 5: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (?,1) 2. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && C >= 1 + D] (?,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 6. f68(A,B,C,D,E) -> f74(A,B,C,D,E) [B >= 1 + D] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 9. f78(A,B,C,D,E) -> f74(A,B,C,D,E) [D >= A] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (?,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (?,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (?,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},2->{1,2,13},3->{3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9},9->{},10->{8,9} ,11->{4,12},12->{6,7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 2,0,A>, 5) (< 2,0,B>, 12) (< 2,0,C>, 0) (< 2,0,D>, 5) (< 2,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 6,0,A>, 5) (< 6,0,B>, 12) (< 6,0,C>, 0) (< 6,0,D>, 12) (< 6,0,E>, 12 + E) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (< 9,0,A>, 5) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 5) (< 9,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [2] * Step 6: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (?,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 6. f68(A,B,C,D,E) -> f74(A,B,C,D,E) [B >= 1 + D] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 9. f78(A,B,C,D,E) -> f74(A,B,C,D,E) [D >= A] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (?,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (?,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (?,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9},9->{},10->{8,9},11->{4,12} ,12->{6,7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 6,0,A>, 5) (< 6,0,B>, 12) (< 6,0,C>, 0) (< 6,0,D>, 12) (< 6,0,E>, 12 + E) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (< 9,0,A>, 5) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>, 5) (< 9,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [6,9] * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (?,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (?,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (?,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (?,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f46) = 1 p(f54) = 0 p(f57) = 0 p(f68) = 0 p(f78) = 0 The following rules are strictly oriented: [D >= A] ==> f46(A,B,C,D,E) = 1 > 0 = f54(A,B,C,0,E) The following rules are weakly oriented: True ==> f0(A,B,C,D,E) = 1 >= 1 = f46(5,12,0,0,E) [A >= 1 + D && C = D] ==> f46(A,B,C,D,E) = 1 >= 1 = f46(A,B,C,1 + C,E) [A >= 1 + D && D >= 1 + C] ==> f46(A,B,C,D,E) = 1 >= 1 = f46(A,B,C,1 + D,E) [A >= 1 + D] ==> f54(A,B,C,D,E) = 0 >= 0 = f57(A,B,C,D,0) [B >= 1 + E] ==> f57(A,B,C,D,E) = 0 >= 0 = f57(A,B,C,D,1 + E) [B >= 1 + D] ==> f68(A,B,C,D,E) = 0 >= 0 = f68(A,B,C,1 + D,E) [A >= 1 + D] ==> f78(A,B,C,D,E) = 0 >= 0 = f78(A,B,C,1 + D,E) [D >= B] ==> f68(A,B,C,D,E) = 0 >= 0 = f78(A,B,C,0,E) [E >= B] ==> f57(A,B,C,D,E) = 0 >= 0 = f54(A,B,C,1 + D,E) [D >= A] ==> f54(A,B,C,D,E) = 0 >= 0 = f68(A,B,C,0,E) * Step 8: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (?,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (?,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (?,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (1,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (?,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (?,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f46) = 1 p(f54) = 1 p(f57) = 1 p(f68) = 0 p(f78) = 0 The following rules are strictly oriented: [D >= A] ==> f54(A,B,C,D,E) = 1 > 0 = f68(A,B,C,0,E) The following rules are weakly oriented: True ==> f0(A,B,C,D,E) = 1 >= 1 = f46(5,12,0,0,E) [A >= 1 + D && C = D] ==> f46(A,B,C,D,E) = 1 >= 1 = f46(A,B,C,1 + C,E) [A >= 1 + D && D >= 1 + C] ==> f46(A,B,C,D,E) = 1 >= 1 = f46(A,B,C,1 + D,E) [A >= 1 + D] ==> f54(A,B,C,D,E) = 1 >= 1 = f57(A,B,C,D,0) [B >= 1 + E] ==> f57(A,B,C,D,E) = 1 >= 1 = f57(A,B,C,D,1 + E) [B >= 1 + D] ==> f68(A,B,C,D,E) = 0 >= 0 = f68(A,B,C,1 + D,E) [A >= 1 + D] ==> f78(A,B,C,D,E) = 0 >= 0 = f78(A,B,C,1 + D,E) [D >= B] ==> f68(A,B,C,D,E) = 0 >= 0 = f78(A,B,C,0,E) [E >= B] ==> f57(A,B,C,D,E) = 1 >= 1 = f54(A,B,C,1 + D,E) [D >= A] ==> f46(A,B,C,D,E) = 1 >= 1 = f54(A,B,C,0,E) * Step 10: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (1,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (?,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (1,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f46) = 1 p(f54) = 1 p(f57) = 1 p(f68) = 1 p(f78) = 0 The following rules are strictly oriented: [D >= B] ==> f68(A,B,C,D,E) = 1 > 0 = f78(A,B,C,0,E) The following rules are weakly oriented: True ==> f0(A,B,C,D,E) = 1 >= 1 = f46(5,12,0,0,E) [A >= 1 + D && C = D] ==> f46(A,B,C,D,E) = 1 >= 1 = f46(A,B,C,1 + C,E) [A >= 1 + D && D >= 1 + C] ==> f46(A,B,C,D,E) = 1 >= 1 = f46(A,B,C,1 + D,E) [A >= 1 + D] ==> f54(A,B,C,D,E) = 1 >= 1 = f57(A,B,C,D,0) [B >= 1 + E] ==> f57(A,B,C,D,E) = 1 >= 1 = f57(A,B,C,D,1 + E) [B >= 1 + D] ==> f68(A,B,C,D,E) = 1 >= 1 = f68(A,B,C,1 + D,E) [A >= 1 + D] ==> f78(A,B,C,D,E) = 0 >= 0 = f78(A,B,C,1 + D,E) [E >= B] ==> f57(A,B,C,D,E) = 1 >= 1 = f54(A,B,C,1 + D,E) [D >= A] ==> f54(A,B,C,D,E) = 1 >= 1 = f68(A,B,C,0,E) [D >= A] ==> f46(A,B,C,D,E) = 1 >= 1 = f54(A,B,C,0,E) * Step 11: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (1,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (?,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (1,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (1,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 5 p(f46) = x1 p(f54) = x1 p(f57) = x1 p(f68) = x1 p(f78) = x1 + -1*x4 The following rules are strictly oriented: [A >= 1 + D] ==> f78(A,B,C,D,E) = A + -1*D > -1 + A + -1*D = f78(A,B,C,1 + D,E) The following rules are weakly oriented: True ==> f0(A,B,C,D,E) = 5 >= 5 = f46(5,12,0,0,E) [A >= 1 + D && C = D] ==> f46(A,B,C,D,E) = A >= A = f46(A,B,C,1 + C,E) [A >= 1 + D && D >= 1 + C] ==> f46(A,B,C,D,E) = A >= A = f46(A,B,C,1 + D,E) [A >= 1 + D] ==> f54(A,B,C,D,E) = A >= A = f57(A,B,C,D,0) [B >= 1 + E] ==> f57(A,B,C,D,E) = A >= A = f57(A,B,C,D,1 + E) [B >= 1 + D] ==> f68(A,B,C,D,E) = A >= A = f68(A,B,C,1 + D,E) [D >= B] ==> f68(A,B,C,D,E) = A >= A = f78(A,B,C,0,E) [E >= B] ==> f57(A,B,C,D,E) = A >= A = f54(A,B,C,1 + D,E) [D >= A] ==> f54(A,B,C,D,E) = A >= A = f68(A,B,C,0,E) [D >= A] ==> f46(A,B,C,D,E) = A >= A = f54(A,B,C,0,E) * Step 12: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (1,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (5,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (1,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (1,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f46) = x1 + -1*x4 The following rules are strictly oriented: [A >= 1 + D && D >= 1 + C] ==> f46(A,B,C,D,E) = A + -1*D > -1 + A + -1*D = f46(A,B,C,1 + D,E) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) * Step 13: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (1,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (?,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (5,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (1,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (1,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [4,11,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f54) = 2 + x1 + -1*x4 p(f57) = 1 + x1 + -1*x4 The following rules are strictly oriented: [A >= 1 + D] ==> f54(A,B,C,D,E) = 2 + A + -1*D > 1 + A + -1*D = f57(A,B,C,D,0) The following rules are weakly oriented: [B >= 1 + E] ==> f57(A,B,C,D,E) = 1 + A + -1*D >= 1 + A + -1*D = f57(A,B,C,D,1 + E) [E >= B] ==> f57(A,B,C,D,E) = 1 + A + -1*D >= 1 + A + -1*D = f54(A,B,C,1 + D,E) We use the following global sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) * Step 14: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (1,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (7,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (?,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (5,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (1,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (1,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f57) = x2 + -1*x5 The following rules are strictly oriented: [B >= 1 + E] ==> f57(A,B,C,D,E) = B + -1*E > -1 + B + -1*E = f57(A,B,C,D,1 + E) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) * Step 15: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (1,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (7,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (84,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (5,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (1,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (?,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (1,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 16: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (1,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (7,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (84,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (?,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (5,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (1,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (91,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (1,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [7], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f68) = x2 + -1*x4 The following rules are strictly oriented: [B >= 1 + D] ==> f68(A,B,C,D,E) = B + -1*D > -1 + B + -1*D = f68(A,B,C,1 + D,E) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) * Step 17: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f46(5,12,0,0,E) True (1,1) 1. f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D] (1,1) 3. f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1) 4. f54(A,B,C,D,E) -> f57(A,B,C,D,0) [A >= 1 + D] (7,1) 5. f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E] (84,1) 7. f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D] (12,1) 8. f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D] (5,1) 10. f68(A,B,C,D,E) -> f78(A,B,C,0,E) [D >= B] (1,1) 11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B] (91,1) 12. f54(A,B,C,D,E) -> f68(A,B,C,0,E) [D >= A] (1,1) 13. f46(A,B,C,D,E) -> f54(A,B,C,0,E) [D >= A] (1,1) Signature: {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)} Flow Graph: [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}] Sizebounds: (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>, 1) (< 1,0,E>, E) (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>, 5) (< 3,0,E>, E) (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>, 5) (< 4,0,E>, 0) (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>, 5) (< 5,0,E>, 12) (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>, 5) (< 8,0,E>, 12 + E) (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>, 0) (<10,0,E>, 12 + E) (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>, 5) (<11,0,E>, 12) (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>, 0) (<12,0,E>, 12 + E) (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>, 0) (<13,0,E>, E) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))