WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E,F,G)  -> f46(5,12,0,0,E,F,G)    True                       (1,1)
          1.  f46(A,B,C,D,E,F,G) -> f46(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D]      (?,1)
          2.  f46(A,B,C,D,E,F,G) -> f46(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] (?,1)
          3.  f46(A,B,C,D,E,F,G) -> f46(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E,F,G) -> f57(A,B,C,D,0,F,G)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E,F,G) -> f57(A,B,C,D,1 + E,H,I) [B >= 1 + E]               (?,1)
          6.  f68(A,B,C,D,E,F,G) -> f74(A,B,C,D,E,H,I)     [B >= 1 + D]               (?,1)
          7.  f68(A,B,C,D,E,F,G) -> f68(A,B,C,1 + D,E,H,I) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E,F,G) -> f78(A,B,C,1 + D,E,F,G) [A >= 1 + D]               (?,1)
          9.  f78(A,B,C,D,E,F,G) -> f74(A,B,C,D,E,F,G)     [D >= A]                   (?,1)
          10. f68(A,B,C,D,E,F,G) -> f78(A,B,C,0,E,F,G)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E,F,G) -> f54(A,B,C,1 + D,E,F,G) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E,F,G) -> f68(A,B,C,0,E,F,G)     [D >= A]                   (?,1)
          13. f46(A,B,C,D,E,F,G) -> f54(A,B,C,0,E,F,G)     [D >= A]                   (?,1)
        Signature:
          {(f0,7);(f46,7);(f54,7);(f57,7);(f68,7);(f74,7);(f78,7)}
        Flow Graph:
          [0->{1,2,3,13},1->{1,2,3,13},2->{1,2,3,13},3->{1,2,3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9}
          ,9->{},10->{8,9},11->{4,12},12->{6,7,10},13->{4,12}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [F,G] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (?,1)
          2.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && C >= 1 + D] (?,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          6.  f68(A,B,C,D,E) -> f74(A,B,C,D,E)     [B >= 1 + D]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          9.  f78(A,B,C,D,E) -> f74(A,B,C,D,E)     [D >= A]                   (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (?,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (?,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1,2,3,13},1->{1,2,3,13},2->{1,2,3,13},3->{1,2,3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9}
          ,9->{},10->{8,9},11->{4,12},12->{6,7,10},13->{4,12}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, 5, .= 5) (< 0,0,B>, 12, .= 12) (< 0,0,C>, 0, .= 0) (< 0,0,D>,         0, .= 0) (< 0,0,E>,     E, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>,  B,  .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>,     1 + C, .+ 1) (< 1,0,E>,     E, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>,  B,  .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, 1 + A + D, .* 1) (< 2,0,E>,     E, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,  B,  .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>,     1 + D, .+ 1) (< 3,0,E>,     E, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,  B,  .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>,         D, .= 0) (< 4,0,E>,     0, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>,  B,  .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>,         D, .= 0) (< 5,0,E>, 1 + E, .+ 1) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>,  B,  .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>,         D, .= 0) (< 6,0,E>,     E, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,  B,  .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>,     1 + D, .+ 1) (< 7,0,E>,     E, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>,  B,  .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>,     1 + D, .+ 1) (< 8,0,E>,     E, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,  B,  .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>,         D, .= 0) (< 9,0,E>,     E, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>,  B,  .= 0) (<10,0,C>, C, .= 0) (<10,0,D>,         0, .= 0) (<10,0,E>,     E, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>,  B,  .= 0) (<11,0,C>, C, .= 0) (<11,0,D>,     1 + D, .+ 1) (<11,0,E>,     E, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>,  B,  .= 0) (<12,0,C>, C, .= 0) (<12,0,D>,         0, .= 0) (<12,0,E>,     E, .= 0) 
          (<13,0,A>, A, .= 0) (<13,0,B>,  B,  .= 0) (<13,0,C>, C, .= 0) (<13,0,D>,         0, .= 0) (<13,0,E>,     E, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (?,1)
          2.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && C >= 1 + D] (?,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          6.  f68(A,B,C,D,E) -> f74(A,B,C,D,E)     [B >= 1 + D]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          9.  f78(A,B,C,D,E) -> f74(A,B,C,D,E)     [D >= A]                   (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (?,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (?,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1,2,3,13},1->{1,2,3,13},2->{1,2,3,13},3->{1,2,3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9}
          ,9->{},10->{8,9},11->{4,12},12->{6,7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 2,0,A>, 5) (< 2,0,B>, 12) (< 2,0,C>, 0) (< 2,0,D>,  5) (< 2,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 6,0,A>, 5) (< 6,0,B>, 12) (< 6,0,C>, 0) (< 6,0,D>, 12) (< 6,0,E>, 12 + E) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (< 9,0,A>, 5) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>,  5) (< 9,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (?,1)
          2.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && C >= 1 + D] (?,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          6.  f68(A,B,C,D,E) -> f74(A,B,C,D,E)     [B >= 1 + D]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          9.  f78(A,B,C,D,E) -> f74(A,B,C,D,E)     [D >= A]                   (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (?,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (?,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1,2,3,13},1->{1,2,3,13},2->{1,2,3,13},3->{1,2,3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9}
          ,9->{},10->{8,9},11->{4,12},12->{6,7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 2,0,A>, 5) (< 2,0,B>, 12) (< 2,0,C>, 0) (< 2,0,D>,  5) (< 2,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 6,0,A>, 5) (< 6,0,B>, 12) (< 6,0,C>, 0) (< 6,0,D>, 12) (< 6,0,E>, 12 + E) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (< 9,0,A>, 5) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>,  5) (< 9,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,2),(0,3),(0,13),(1,1),(1,2),(2,3),(3,1),(3,2)]
* Step 5: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (?,1)
          2.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && C >= 1 + D] (?,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          6.  f68(A,B,C,D,E) -> f74(A,B,C,D,E)     [B >= 1 + D]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          9.  f78(A,B,C,D,E) -> f74(A,B,C,D,E)     [D >= A]                   (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (?,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (?,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},2->{1,2,13},3->{3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9},9->{},10->{8,9}
          ,11->{4,12},12->{6,7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 2,0,A>, 5) (< 2,0,B>, 12) (< 2,0,C>, 0) (< 2,0,D>,  5) (< 2,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 6,0,A>, 5) (< 6,0,B>, 12) (< 6,0,C>, 0) (< 6,0,D>, 12) (< 6,0,E>, 12 + E) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (< 9,0,A>, 5) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>,  5) (< 9,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [2]
* Step 6: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (?,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          6.  f68(A,B,C,D,E) -> f74(A,B,C,D,E)     [B >= 1 + D]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          9.  f78(A,B,C,D,E) -> f74(A,B,C,D,E)     [D >= A]                   (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (?,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (?,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9},9->{},10->{8,9},11->{4,12}
          ,12->{6,7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 6,0,A>, 5) (< 6,0,B>, 12) (< 6,0,C>, 0) (< 6,0,D>, 12) (< 6,0,E>, 12 + E) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (< 9,0,A>, 5) (< 9,0,B>, 12) (< 9,0,C>, 0) (< 9,0,D>,  5) (< 9,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [6,9]
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (?,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (?,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (?,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f46) = 1
          p(f54) = 0
          p(f57) = 0
          p(f68) = 0
          p(f78) = 0
        
        The following rules are strictly oriented:
                [D >= A] ==>               
          f46(A,B,C,D,E)   = 1             
                           > 0             
                           = f54(A,B,C,0,E)
        
        
        The following rules are weakly oriented:
                              True ==>                   
                     f0(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f46(5,12,0,0,E)   
        
             [A >= 1 + D && C = D] ==>                   
                    f46(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f46(A,B,C,1 + C,E)
        
        [A >= 1 + D && D >= 1 + C] ==>                   
                    f46(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f46(A,B,C,1 + D,E)
        
                      [A >= 1 + D] ==>                   
                    f54(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f57(A,B,C,D,0)    
        
                      [B >= 1 + E] ==>                   
                    f57(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f57(A,B,C,D,1 + E)
        
                      [B >= 1 + D] ==>                   
                    f68(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f68(A,B,C,1 + D,E)
        
                      [A >= 1 + D] ==>                   
                    f78(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f78(A,B,C,1 + D,E)
        
                          [D >= B] ==>                   
                    f68(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f78(A,B,C,0,E)    
        
                          [E >= B] ==>                   
                    f57(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f54(A,B,C,1 + D,E)
        
                          [D >= A] ==>                   
                    f54(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f68(A,B,C,0,E)    
        
        
* Step 8: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (?,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (?,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (1,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (?,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f46) = 1
          p(f54) = 1
          p(f57) = 1
          p(f68) = 0
          p(f78) = 0
        
        The following rules are strictly oriented:
                [D >= A] ==>               
          f54(A,B,C,D,E)   = 1             
                           > 0             
                           = f68(A,B,C,0,E)
        
        
        The following rules are weakly oriented:
                              True ==>                   
                     f0(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f46(5,12,0,0,E)   
        
             [A >= 1 + D && C = D] ==>                   
                    f46(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f46(A,B,C,1 + C,E)
        
        [A >= 1 + D && D >= 1 + C] ==>                   
                    f46(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f46(A,B,C,1 + D,E)
        
                      [A >= 1 + D] ==>                   
                    f54(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f57(A,B,C,D,0)    
        
                      [B >= 1 + E] ==>                   
                    f57(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f57(A,B,C,D,1 + E)
        
                      [B >= 1 + D] ==>                   
                    f68(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f68(A,B,C,1 + D,E)
        
                      [A >= 1 + D] ==>                   
                    f78(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f78(A,B,C,1 + D,E)
        
                          [D >= B] ==>                   
                    f68(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f78(A,B,C,0,E)    
        
                          [E >= B] ==>                   
                    f57(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f54(A,B,C,1 + D,E)
        
                          [D >= A] ==>                   
                    f46(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f54(A,B,C,0,E)    
        
        
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (1,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (?,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (1,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f46) = 1
          p(f54) = 1
          p(f57) = 1
          p(f68) = 1
          p(f78) = 0
        
        The following rules are strictly oriented:
                [D >= B] ==>               
          f68(A,B,C,D,E)   = 1             
                           > 0             
                           = f78(A,B,C,0,E)
        
        
        The following rules are weakly oriented:
                              True ==>                   
                     f0(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f46(5,12,0,0,E)   
        
             [A >= 1 + D && C = D] ==>                   
                    f46(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f46(A,B,C,1 + C,E)
        
        [A >= 1 + D && D >= 1 + C] ==>                   
                    f46(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f46(A,B,C,1 + D,E)
        
                      [A >= 1 + D] ==>                   
                    f54(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f57(A,B,C,D,0)    
        
                      [B >= 1 + E] ==>                   
                    f57(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f57(A,B,C,D,1 + E)
        
                      [B >= 1 + D] ==>                   
                    f68(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f68(A,B,C,1 + D,E)
        
                      [A >= 1 + D] ==>                   
                    f78(A,B,C,D,E)   = 0                 
                                    >= 0                 
                                     = f78(A,B,C,1 + D,E)
        
                          [E >= B] ==>                   
                    f57(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f54(A,B,C,1 + D,E)
        
                          [D >= A] ==>                   
                    f54(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f68(A,B,C,0,E)    
        
                          [D >= A] ==>                   
                    f46(A,B,C,D,E)   = 1                 
                                    >= 1                 
                                     = f54(A,B,C,0,E)    
        
        
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (1,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (?,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (1,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (1,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 5         
          p(f46) = x1        
          p(f54) = x1        
          p(f57) = x1        
          p(f68) = x1        
          p(f78) = x1 + -1*x4
        
        The following rules are strictly oriented:
            [A >= 1 + D] ==>                   
          f78(A,B,C,D,E)   = A + -1*D          
                           > -1 + A + -1*D     
                           = f78(A,B,C,1 + D,E)
        
        
        The following rules are weakly oriented:
                              True ==>                   
                     f0(A,B,C,D,E)   = 5                 
                                    >= 5                 
                                     = f46(5,12,0,0,E)   
        
             [A >= 1 + D && C = D] ==>                   
                    f46(A,B,C,D,E)   = A                 
                                    >= A                 
                                     = f46(A,B,C,1 + C,E)
        
        [A >= 1 + D && D >= 1 + C] ==>                   
                    f46(A,B,C,D,E)   = A                 
                                    >= A                 
                                     = f46(A,B,C,1 + D,E)
        
                      [A >= 1 + D] ==>                   
                    f54(A,B,C,D,E)   = A                 
                                    >= A                 
                                     = f57(A,B,C,D,0)    
        
                      [B >= 1 + E] ==>                   
                    f57(A,B,C,D,E)   = A                 
                                    >= A                 
                                     = f57(A,B,C,D,1 + E)
        
                      [B >= 1 + D] ==>                   
                    f68(A,B,C,D,E)   = A                 
                                    >= A                 
                                     = f68(A,B,C,1 + D,E)
        
                          [D >= B] ==>                   
                    f68(A,B,C,D,E)   = A                 
                                    >= A                 
                                     = f78(A,B,C,0,E)    
        
                          [E >= B] ==>                   
                    f57(A,B,C,D,E)   = A                 
                                    >= A                 
                                     = f54(A,B,C,1 + D,E)
        
                          [D >= A] ==>                   
                    f54(A,B,C,D,E)   = A                 
                                    >= A                 
                                     = f68(A,B,C,0,E)    
        
                          [D >= A] ==>                   
                    f46(A,B,C,D,E)   = A                 
                                    >= A                 
                                     = f54(A,B,C,0,E)    
        
        
* Step 12: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (1,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (?,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (5,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (1,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (1,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f46) = x1 + -1*x4
        
        The following rules are strictly oriented:
        [A >= 1 + D && D >= 1 + C] ==>                   
                    f46(A,B,C,D,E)   = A + -1*D          
                                     > -1 + A + -1*D     
                                     = f46(A,B,C,1 + D,E)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
        (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
        (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
        (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
        (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
        (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
        (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
        (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
        (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
        (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
        (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
* Step 13: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (1,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (?,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (5,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (1,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (1,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [4,11,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f54) = 2 + x1 + -1*x4
          p(f57) = 1 + x1 + -1*x4
        
        The following rules are strictly oriented:
            [A >= 1 + D] ==>               
          f54(A,B,C,D,E)   = 2 + A + -1*D  
                           > 1 + A + -1*D  
                           = f57(A,B,C,D,0)
        
        
        The following rules are weakly oriented:
            [B >= 1 + E] ==>                   
          f57(A,B,C,D,E)   = 1 + A + -1*D      
                          >= 1 + A + -1*D      
                           = f57(A,B,C,D,1 + E)
        
                [E >= B] ==>                   
          f57(A,B,C,D,E)   = 1 + A + -1*D      
                          >= 1 + A + -1*D      
                           = f54(A,B,C,1 + D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
        (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
        (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
        (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
        (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
        (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
        (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
        (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
        (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
        (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
        (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
* Step 14: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1)
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (1,1)
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1)
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (7,1)
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (?,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (5,1)
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (1,1)
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (1,1)
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1)
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f57) = x2 + -1*x5
        
        The following rules are strictly oriented:
            [B >= 1 + E] ==>                   
          f57(A,B,C,D,E)   = B + -1*E          
                           > -1 + B + -1*E     
                           = f57(A,B,C,D,1 + E)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
        (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
        (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
        (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
        (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
        (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
        (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
        (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
        (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
        (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
        (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
* Step 15: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1) 
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (1,1) 
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1) 
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (7,1) 
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (84,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1) 
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (5,1) 
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (1,1) 
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (?,1) 
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (1,1) 
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1) 
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 16: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1) 
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (1,1) 
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1) 
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (7,1) 
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (84,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (?,1) 
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (5,1) 
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (1,1) 
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (91,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (1,1) 
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1) 
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f68) = x2 + -1*x4
        
        The following rules are strictly oriented:
            [B >= 1 + D] ==>                   
          f68(A,B,C,D,E)   = B + -1*D          
                           > -1 + B + -1*D     
                           = f68(A,B,C,1 + D,E)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
        (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
        (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
        (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
        (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
        (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
        (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
        (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
        (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
        (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
        (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
* Step 17: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f46(5,12,0,0,E)    True                       (1,1) 
          1.  f46(A,B,C,D,E) -> f46(A,B,C,1 + C,E) [A >= 1 + D && C = D]      (1,1) 
          3.  f46(A,B,C,D,E) -> f46(A,B,C,1 + D,E) [A >= 1 + D && D >= 1 + C] (6,1) 
          4.  f54(A,B,C,D,E) -> f57(A,B,C,D,0)     [A >= 1 + D]               (7,1) 
          5.  f57(A,B,C,D,E) -> f57(A,B,C,D,1 + E) [B >= 1 + E]               (84,1)
          7.  f68(A,B,C,D,E) -> f68(A,B,C,1 + D,E) [B >= 1 + D]               (12,1)
          8.  f78(A,B,C,D,E) -> f78(A,B,C,1 + D,E) [A >= 1 + D]               (5,1) 
          10. f68(A,B,C,D,E) -> f78(A,B,C,0,E)     [D >= B]                   (1,1) 
          11. f57(A,B,C,D,E) -> f54(A,B,C,1 + D,E) [E >= B]                   (91,1)
          12. f54(A,B,C,D,E) -> f68(A,B,C,0,E)     [D >= A]                   (1,1) 
          13. f46(A,B,C,D,E) -> f54(A,B,C,0,E)     [D >= A]                   (1,1) 
        Signature:
          {(f0,5);(f46,5);(f54,5);(f57,5);(f68,5);(f74,5);(f78,5)}
        Flow Graph:
          [0->{1},1->{3,13},3->{3,13},4->{5,11},5->{5,11},7->{7,10},8->{8},10->{8},11->{4,12},12->{7,10},13->{4,12}]
        Sizebounds:
          (< 0,0,A>, 5) (< 0,0,B>, 12) (< 0,0,C>, 0) (< 0,0,D>,  0) (< 0,0,E>,      E) 
          (< 1,0,A>, 5) (< 1,0,B>, 12) (< 1,0,C>, 0) (< 1,0,D>,  1) (< 1,0,E>,      E) 
          (< 3,0,A>, 5) (< 3,0,B>, 12) (< 3,0,C>, 0) (< 3,0,D>,  5) (< 3,0,E>,      E) 
          (< 4,0,A>, 5) (< 4,0,B>, 12) (< 4,0,C>, 0) (< 4,0,D>,  5) (< 4,0,E>,      0) 
          (< 5,0,A>, 5) (< 5,0,B>, 12) (< 5,0,C>, 0) (< 5,0,D>,  5) (< 5,0,E>,     12) 
          (< 7,0,A>, 5) (< 7,0,B>, 12) (< 7,0,C>, 0) (< 7,0,D>, 12) (< 7,0,E>, 12 + E) 
          (< 8,0,A>, 5) (< 8,0,B>, 12) (< 8,0,C>, 0) (< 8,0,D>,  5) (< 8,0,E>, 12 + E) 
          (<10,0,A>, 5) (<10,0,B>, 12) (<10,0,C>, 0) (<10,0,D>,  0) (<10,0,E>, 12 + E) 
          (<11,0,A>, 5) (<11,0,B>, 12) (<11,0,C>, 0) (<11,0,D>,  5) (<11,0,E>,     12) 
          (<12,0,A>, 5) (<12,0,B>, 12) (<12,0,C>, 0) (<12,0,D>,  0) (<12,0,E>, 12 + E) 
          (<13,0,A>, 5) (<13,0,B>, 12) (<13,0,C>, 0) (<13,0,D>,  0) (<13,0,E>,      E) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))