WORST_CASE(?,O(n^1))
* Step 1: UnsatRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)    -> evalsipma91entryin(A,B,C,D)           True                   (1,1)
          1.  evalsipma91entryin(A,B,C,D)  -> evalsipma91returnin(A,B,C,D)          [A >= 101]             (?,1)
          2.  evalsipma91entryin(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)             [100 >= A]             (?,1)
          3.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb2in(A,B,C,D)             [100 >= B]             (?,1)
          4.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb11in(A,B,C,D)            [B >= 101]             (?,1)
          5.  evalsipma91bb2in(A,B,C,D)    -> evalsipma91bb3in(1 + A,11 + B,C,D)    True                   (?,1)
          6.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91bb5in(A,B,C,D)             [A >= 2]               (?,1)
          7.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91returnin(A,B,C,D)          [1 >= A]               (?,1)
          8.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [110 >= B]             (?,1)
          9.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [1 >= A]               (?,1)
          10. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [A >= 3]               (?,1)
          11. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2]    (?,1)
          12. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(D,1 + C,C,D)        [C >= 101]             (?,1)
          13. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(D,11 + C,C,D)       [C >= 101 && 100 >= C] (?,1)
          14. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(1 + D,1 + C,C,D)    [100 >= C && C >= 101] (?,1)
          15. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(1 + D,11 + C,C,D)   [100 >= C]             (?,1)
          16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D)              True                   (?,1)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{1,2},1->{16},2->{3,4},3->{5},4->{6,7},5->{3,4},6->{8,9,10,11},7->{16},8->{12,13,14,15},9->{12,13,14
          ,15},10->{12,13,14,15},11->{6,7},12->{6,7},13->{6,7},14->{6,7},15->{6,7},16->{}]
        
    + Applied Processor:
        UnsatRules
    + Details:
        The following transitions have unsatisfiable constraints and are removed:  [13,14]
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)    -> evalsipma91entryin(A,B,C,D)           True                (1,1)
          1.  evalsipma91entryin(A,B,C,D)  -> evalsipma91returnin(A,B,C,D)          [A >= 101]          (?,1)
          2.  evalsipma91entryin(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)             [100 >= A]          (?,1)
          3.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb2in(A,B,C,D)             [100 >= B]          (?,1)
          4.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb11in(A,B,C,D)            [B >= 101]          (?,1)
          5.  evalsipma91bb2in(A,B,C,D)    -> evalsipma91bb3in(1 + A,11 + B,C,D)    True                (?,1)
          6.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91bb5in(A,B,C,D)             [A >= 2]            (?,1)
          7.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91returnin(A,B,C,D)          [1 >= A]            (?,1)
          8.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [110 >= B]          (?,1)
          9.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [1 >= A]            (?,1)
          10. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [A >= 3]            (?,1)
          11. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1)
          12. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(D,1 + C,C,D)        [C >= 101]          (?,1)
          15. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(1 + D,11 + C,C,D)   [100 >= C]          (?,1)
          16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D)              True                (?,1)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{1,2},1->{16},2->{3,4},3->{5},4->{6,7},5->{3,4},6->{8,9,10,11},7->{16},8->{12,15},9->{12,15},10->{12
          ,15},11->{6,7},12->{6,7},15->{6,7},16->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     A, .= 0) (< 0,0,B>,      B,  .= 0) (< 0,0,C>,      C,  .= 0) (< 0,0,D>,     D, .= 0) 
          (< 1,0,A>,     A, .= 0) (< 1,0,B>,      B,  .= 0) (< 1,0,C>,      C,  .= 0) (< 1,0,D>,     D, .= 0) 
          (< 2,0,A>,     1, .= 1) (< 2,0,B>,      A,  .= 0) (< 2,0,C>,      C,  .= 0) (< 2,0,D>,     D, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,B>,      B,  .= 0) (< 3,0,C>,      C,  .= 0) (< 3,0,D>,     D, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,B>,      B,  .= 0) (< 4,0,C>,      C,  .= 0) (< 4,0,D>,     D, .= 0) 
          (< 5,0,A>, 1 + A, .+ 1) (< 5,0,B>, 11 + B, .+ 11) (< 5,0,C>,      C,  .= 0) (< 5,0,D>,     D, .= 0) 
          (< 6,0,A>,     A, .= 0) (< 6,0,B>,      B,  .= 0) (< 6,0,C>,      C,  .= 0) (< 6,0,D>,     D, .= 0) 
          (< 7,0,A>,     A, .= 0) (< 7,0,B>,      B,  .= 0) (< 7,0,C>,      C,  .= 0) (< 7,0,D>,     D, .= 0) 
          (< 8,0,A>,     A, .= 0) (< 8,0,B>,      B,  .= 0) (< 8,0,C>, 10 + B, .+ 10) (< 8,0,D>, 1 + A, .+ 1) 
          (< 9,0,A>,     A, .= 0) (< 9,0,B>,      B,  .= 0) (< 9,0,C>, 10 + B, .+ 10) (< 9,0,D>, 1 + A, .+ 1) 
          (<10,0,A>,     A, .= 0) (<10,0,B>,      B,  .= 0) (<10,0,C>, 10 + B, .+ 10) (<10,0,D>, 1 + A, .+ 1) 
          (<11,0,A>,     1, .= 1) (<11,0,B>, 10 + B, .+ 10) (<11,0,C>,      C,  .= 0) (<11,0,D>,     D, .= 0) 
          (<12,0,A>,     D, .= 0) (<12,0,B>,  1 + C,  .+ 1) (<12,0,C>,      C,  .= 0) (<12,0,D>,     D, .= 0) 
          (<15,0,A>, 1 + D, .+ 1) (<15,0,B>, 11 + C, .+ 11) (<15,0,C>,      C,  .= 0) (<15,0,D>,     D, .= 0) 
          (<16,0,A>,     A, .= 0) (<16,0,B>,      B,  .= 0) (<16,0,C>,      C,  .= 0) (<16,0,D>,     D, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)    -> evalsipma91entryin(A,B,C,D)           True                (1,1)
          1.  evalsipma91entryin(A,B,C,D)  -> evalsipma91returnin(A,B,C,D)          [A >= 101]          (?,1)
          2.  evalsipma91entryin(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)             [100 >= A]          (?,1)
          3.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb2in(A,B,C,D)             [100 >= B]          (?,1)
          4.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb11in(A,B,C,D)            [B >= 101]          (?,1)
          5.  evalsipma91bb2in(A,B,C,D)    -> evalsipma91bb3in(1 + A,11 + B,C,D)    True                (?,1)
          6.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91bb5in(A,B,C,D)             [A >= 2]            (?,1)
          7.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91returnin(A,B,C,D)          [1 >= A]            (?,1)
          8.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [110 >= B]          (?,1)
          9.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [1 >= A]            (?,1)
          10. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [A >= 3]            (?,1)
          11. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1)
          12. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(D,1 + C,C,D)        [C >= 101]          (?,1)
          15. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(1 + D,11 + C,C,D)   [100 >= C]          (?,1)
          16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D)              True                (?,1)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{1,2},1->{16},2->{3,4},3->{5},4->{6,7},5->{3,4},6->{8,9,10,11},7->{16},8->{12,15},9->{12,15},10->{12
          ,15},11->{6,7},12->{6,7},15->{6,7},16->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 1,0,A>, A) (< 1,0,B>,       B) (< 1,0,C>, C) (< 1,0,D>, D) 
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>,       ?) (< 7,0,C>, ?) (< 7,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>,       ?) (< 9,0,C>, ?) (< 9,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<11,0,A>, 1) (<11,0,B>,       ?) (<11,0,C>, ?) (<11,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, ?) (<16,0,B>,       ?) (<16,0,C>, ?) (<16,0,D>, ?) 
* Step 4: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)    -> evalsipma91entryin(A,B,C,D)           True                (1,1)
          1.  evalsipma91entryin(A,B,C,D)  -> evalsipma91returnin(A,B,C,D)          [A >= 101]          (?,1)
          2.  evalsipma91entryin(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)             [100 >= A]          (?,1)
          3.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb2in(A,B,C,D)             [100 >= B]          (?,1)
          4.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb11in(A,B,C,D)            [B >= 101]          (?,1)
          5.  evalsipma91bb2in(A,B,C,D)    -> evalsipma91bb3in(1 + A,11 + B,C,D)    True                (?,1)
          6.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91bb5in(A,B,C,D)             [A >= 2]            (?,1)
          7.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91returnin(A,B,C,D)          [1 >= A]            (?,1)
          8.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [110 >= B]          (?,1)
          9.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [1 >= A]            (?,1)
          10. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [A >= 3]            (?,1)
          11. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1)
          12. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(D,1 + C,C,D)        [C >= 101]          (?,1)
          15. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(1 + D,11 + C,C,D)   [100 >= C]          (?,1)
          16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D)              True                (?,1)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{1,2},1->{16},2->{3,4},3->{5},4->{6,7},5->{3,4},6->{8,9,10,11},7->{16},8->{12,15},9->{12,15},10->{12
          ,15},11->{6,7},12->{6,7},15->{6,7},16->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 1,0,A>, A) (< 1,0,B>,       B) (< 1,0,C>, C) (< 1,0,D>, D) 
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>,       ?) (< 7,0,C>, ?) (< 7,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>,       ?) (< 9,0,C>, ?) (< 9,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<11,0,A>, 1) (<11,0,B>,       ?) (<11,0,C>, ?) (<11,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, ?) (<16,0,B>,       ?) (<16,0,C>, ?) (<16,0,D>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,4),(6,9),(8,12),(11,6)]
* Step 5: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)    -> evalsipma91entryin(A,B,C,D)           True                (1,1)
          1.  evalsipma91entryin(A,B,C,D)  -> evalsipma91returnin(A,B,C,D)          [A >= 101]          (?,1)
          2.  evalsipma91entryin(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)             [100 >= A]          (?,1)
          3.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb2in(A,B,C,D)             [100 >= B]          (?,1)
          4.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb11in(A,B,C,D)            [B >= 101]          (?,1)
          5.  evalsipma91bb2in(A,B,C,D)    -> evalsipma91bb3in(1 + A,11 + B,C,D)    True                (?,1)
          6.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91bb5in(A,B,C,D)             [A >= 2]            (?,1)
          7.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91returnin(A,B,C,D)          [1 >= A]            (?,1)
          8.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [110 >= B]          (?,1)
          9.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [1 >= A]            (?,1)
          10. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [A >= 3]            (?,1)
          11. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1)
          12. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(D,1 + C,C,D)        [C >= 101]          (?,1)
          15. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(1 + D,11 + C,C,D)   [100 >= C]          (?,1)
          16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D)              True                (?,1)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{1,2},1->{16},2->{3},3->{5},4->{6,7},5->{3,4},6->{8,10,11},7->{16},8->{15},9->{12,15},10->{12,15}
          ,11->{7},12->{6,7},15->{6,7},16->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 1,0,A>, A) (< 1,0,B>,       B) (< 1,0,C>, C) (< 1,0,D>, D) 
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>,       ?) (< 7,0,C>, ?) (< 7,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>,       ?) (< 9,0,C>, ?) (< 9,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<11,0,A>, 1) (<11,0,B>,       ?) (<11,0,C>, ?) (<11,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, ?) (<16,0,B>,       ?) (<16,0,C>, ?) (<16,0,D>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [9]
* Step 6: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)    -> evalsipma91entryin(A,B,C,D)           True                (1,1)
          1.  evalsipma91entryin(A,B,C,D)  -> evalsipma91returnin(A,B,C,D)          [A >= 101]          (?,1)
          2.  evalsipma91entryin(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)             [100 >= A]          (?,1)
          3.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb2in(A,B,C,D)             [100 >= B]          (?,1)
          4.  evalsipma91bb3in(A,B,C,D)    -> evalsipma91bb11in(A,B,C,D)            [B >= 101]          (?,1)
          5.  evalsipma91bb2in(A,B,C,D)    -> evalsipma91bb3in(1 + A,11 + B,C,D)    True                (?,1)
          6.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91bb5in(A,B,C,D)             [A >= 2]            (?,1)
          7.  evalsipma91bb11in(A,B,C,D)   -> evalsipma91returnin(A,B,C,D)          [1 >= A]            (?,1)
          8.  evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [110 >= B]          (?,1)
          10. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb8in(A,B,-10 + B,-1 + A)  [A >= 3]            (?,1)
          11. evalsipma91bb5in(A,B,C,D)    -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1)
          12. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(D,1 + C,C,D)        [C >= 101]          (?,1)
          15. evalsipma91bb8in(A,B,C,D)    -> evalsipma91bb11in(1 + D,11 + C,C,D)   [100 >= C]          (?,1)
          16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D)              True                (?,1)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{1,2},1->{16},2->{3},3->{5},4->{6,7},5->{3,4},6->{8,10,11},7->{16},8->{15},10->{12,15},11->{7},12->{6
          ,7},15->{6,7},16->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 1,0,A>, A) (< 1,0,B>,       B) (< 1,0,C>, C) (< 1,0,D>, D) 
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>,       ?) (< 7,0,C>, ?) (< 7,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<11,0,A>, 1) (<11,0,B>,       ?) (<11,0,C>, ?) (<11,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, ?) (<16,0,B>,       ?) (<16,0,C>, ?) (<16,0,D>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [11,1,7,16]
* Step 7: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)   -> evalsipma91entryin(A,B,C,D)          True       (1,1)
          2.  evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (?,1)
          3.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb2in(A,B,C,D)            [100 >= B] (?,1)
          4.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb11in(A,B,C,D)           [B >= 101] (?,1)
          5.  evalsipma91bb2in(A,B,C,D)   -> evalsipma91bb3in(1 + A,11 + B,C,D)   True       (?,1)
          6.  evalsipma91bb11in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)            [A >= 2]   (?,1)
          8.  evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1)
          10. evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]   (?,1)
          12. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101] (?,1)
          15. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C] (?,1)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(evalsipma91bb11in) = 1
            p(evalsipma91bb2in) = 2
            p(evalsipma91bb3in) = 2
            p(evalsipma91bb5in) = 1
            p(evalsipma91bb8in) = 1
          p(evalsipma91entryin) = 2
            p(evalsipma91start) = 2
        
        The following rules are strictly oriented:
                         [B >= 101] ==>                           
          evalsipma91bb3in(A,B,C,D)   = 2                         
                                      > 1                         
                                      = evalsipma91bb11in(A,B,C,D)
        
        
        The following rules are weakly oriented:
                                 True ==>                                     
            evalsipma91start(A,B,C,D)   = 2                                   
                                       >= 2                                   
                                        = evalsipma91entryin(A,B,C,D)         
        
                           [100 >= A] ==>                                     
          evalsipma91entryin(A,B,C,D)   = 2                                   
                                       >= 2                                   
                                        = evalsipma91bb3in(1,A,C,D)           
        
                           [100 >= B] ==>                                     
            evalsipma91bb3in(A,B,C,D)   = 2                                   
                                       >= 2                                   
                                        = evalsipma91bb2in(A,B,C,D)           
        
                                 True ==>                                     
            evalsipma91bb2in(A,B,C,D)   = 2                                   
                                       >= 2                                   
                                        = evalsipma91bb3in(1 + A,11 + B,C,D)  
        
                             [A >= 2] ==>                                     
           evalsipma91bb11in(A,B,C,D)   = 1                                   
                                       >= 1                                   
                                        = evalsipma91bb5in(A,B,C,D)           
        
                           [110 >= B] ==>                                     
            evalsipma91bb5in(A,B,C,D)   = 1                                   
                                       >= 1                                   
                                        = evalsipma91bb8in(A,B,-10 + B,-1 + A)
        
                             [A >= 3] ==>                                     
            evalsipma91bb5in(A,B,C,D)   = 1                                   
                                       >= 1                                   
                                        = evalsipma91bb8in(A,B,-10 + B,-1 + A)
        
                           [C >= 101] ==>                                     
            evalsipma91bb8in(A,B,C,D)   = 1                                   
                                       >= 1                                   
                                        = evalsipma91bb11in(D,1 + C,C,D)      
        
                           [100 >= C] ==>                                     
            evalsipma91bb8in(A,B,C,D)   = 1                                   
                                       >= 1                                   
                                        = evalsipma91bb11in(1 + D,11 + C,C,D) 
        
        
* Step 8: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)   -> evalsipma91entryin(A,B,C,D)          True       (1,1)
          2.  evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (?,1)
          3.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb2in(A,B,C,D)            [100 >= B] (?,1)
          4.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb11in(A,B,C,D)           [B >= 101] (2,1)
          5.  evalsipma91bb2in(A,B,C,D)   -> evalsipma91bb3in(1 + A,11 + B,C,D)   True       (?,1)
          6.  evalsipma91bb11in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)            [A >= 2]   (?,1)
          8.  evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1)
          10. evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]   (?,1)
          12. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101] (?,1)
          15. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C] (?,1)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 9: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)   -> evalsipma91entryin(A,B,C,D)          True       (1,1)
          2.  evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (1,1)
          3.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb2in(A,B,C,D)            [100 >= B] (?,1)
          4.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb11in(A,B,C,D)           [B >= 101] (2,1)
          5.  evalsipma91bb2in(A,B,C,D)   -> evalsipma91bb3in(1 + A,11 + B,C,D)   True       (?,1)
          6.  evalsipma91bb11in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)            [A >= 2]   (?,1)
          8.  evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1)
          10. evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]   (?,1)
          12. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101] (?,1)
          15. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C] (?,1)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipma91bb2in) = 100 + -1*x2
          p(evalsipma91bb3in) = 101 + -1*x2
        
        The following rules are strictly oriented:
                         [100 >= B] ==>                          
          evalsipma91bb3in(A,B,C,D)   = 101 + -1*B               
                                      > 100 + -1*B               
                                      = evalsipma91bb2in(A,B,C,D)
        
        
        The following rules are weakly oriented:
                               True ==>                                   
          evalsipma91bb2in(A,B,C,D)   = 100 + -1*B                        
                                     >= 90 + -1*B                         
                                      = evalsipma91bb3in(1 + A,11 + B,C,D)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
        (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
        (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
        (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
        (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
        (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
        (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
        (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
        (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
        (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
* Step 10: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)   -> evalsipma91entryin(A,B,C,D)          True       (1,1)      
          2.  evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (1,1)      
          3.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb2in(A,B,C,D)            [100 >= B] (101 + A,1)
          4.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb11in(A,B,C,D)           [B >= 101] (2,1)      
          5.  evalsipma91bb2in(A,B,C,D)   -> evalsipma91bb3in(1 + A,11 + B,C,D)   True       (?,1)      
          6.  evalsipma91bb11in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)            [A >= 2]   (?,1)      
          8.  evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1)      
          10. evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]   (?,1)      
          12. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101] (?,1)      
          15. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C] (?,1)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 11: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalsipma91start(A,B,C,D)   -> evalsipma91entryin(A,B,C,D)          True       (1,1)      
          2.  evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (1,1)      
          3.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb2in(A,B,C,D)            [100 >= B] (101 + A,1)
          4.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb11in(A,B,C,D)           [B >= 101] (2,1)      
          5.  evalsipma91bb2in(A,B,C,D)   -> evalsipma91bb3in(1 + A,11 + B,C,D)   True       (101 + A,1)
          6.  evalsipma91bb11in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)            [A >= 2]   (?,1)      
          8.  evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1)      
          10. evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]   (?,1)      
          12. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101] (?,1)      
          15. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C] (?,1)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,       B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
    + Applied Processor:
        ChainProcessor False [0,2,3,4,5,6,8,10,12,15]
    + Details:
        We chained rule 0 to obtain the rules [16] .
* Step 12: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          2.  evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (1,1)      
          3.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb2in(A,B,C,D)            [100 >= B] (101 + A,1)
          4.  evalsipma91bb3in(A,B,C,D)   -> evalsipma91bb11in(A,B,C,D)           [B >= 101] (2,1)      
          5.  evalsipma91bb2in(A,B,C,D)   -> evalsipma91bb3in(1 + A,11 + B,C,D)   True       (101 + A,1)
          6.  evalsipma91bb11in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)            [A >= 2]   (?,1)      
          8.  evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1)      
          10. evalsipma91bb5in(A,B,C,D)   -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]   (?,1)      
          12. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101] (?,1)      
          15. evalsipma91bb8in(A,B,C,D)   -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C] (?,1)      
          16. evalsipma91start(A,B,C,D)   -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (1,2)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [2->{3,4},3->{5},4->{6},5->{3,4},6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{3,4}]
        Sizebounds:
          (< 2,0,A>, 1) (< 2,0,B>,       A) (< 2,0,C>, C) (< 2,0,D>, D) 
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, 1) (<16,0,B>,       A) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [2]
* Step 13: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          3.  evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb2in(A,B,C,D)            [100 >= B] (101 + A,1)
          4.  evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,B,C,D)           [B >= 101] (2,1)      
          5.  evalsipma91bb2in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)   True       (101 + A,1)
          6.  evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D)            [A >= 2]   (?,1)      
          8.  evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1)      
          10. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]   (?,1)      
          12. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101] (?,1)      
          15. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C] (?,1)      
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (1,2)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [3->{5},4->{6},5->{3,4},6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{3,4}]
        Sizebounds:
          (< 3,0,A>, ?) (< 3,0,B>,     100) (< 3,0,C>, C) (< 3,0,D>, D) 
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, 1) (<16,0,B>,       A) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        ChainProcessor False [3,4,5,6,8,10,12,15,16]
    + Details:
        We chained rule 3 to obtain the rules [17] .
* Step 14: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          4.  evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,B,C,D)           [B >= 101] (2,1)      
          5.  evalsipma91bb2in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)   True       (101 + A,1)
          6.  evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D)            [A >= 2]   (?,1)      
          8.  evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1)      
          10. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]   (?,1)      
          12. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101] (?,1)      
          15. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C] (?,1)      
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)   [100 >= B] (101 + A,2)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [4->{6},5->{4,17},6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{4,17},17->{4,17}]
        Sizebounds:
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, ?) (< 5,0,B>,     100) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, 1) (<16,0,B>,       A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>,     100) (<17,0,C>, C) (<17,0,D>, D) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [5]
* Step 15: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          4.  evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,B,C,D)           [B >= 101] (2,1)      
          6.  evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D)            [A >= 2]   (?,1)      
          8.  evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1)      
          10. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]   (?,1)      
          12. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101] (?,1)      
          15. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C] (?,1)      
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)            [100 >= A] (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)   [100 >= B] (101 + A,2)
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [4->{6},6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{4,17},17->{4,17}]
        Sizebounds:
          (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 6,0,A>, ?) (< 6,0,B>,       ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,       ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,       ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,       ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,       ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, 1) (<16,0,B>,       A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>,     100) (<17,0,C>, C) (<17,0,D>, D) 
    + Applied Processor:
        ChainProcessor False [4,6,8,10,12,15,16,17]
    + Details:
        We chained rule 4 to obtain the rules [18] .
* Step 16: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          6.  evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D)            [A >= 2]             (?,1)      
          8.  evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B]           (?,1)      
          10. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]             (?,1)      
          12. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101]           (?,1)      
          15. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C]           (?,1)      
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)            [100 >= A]           (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)   [100 >= B]           (101 + A,2)
          18. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)            [B >= 101 && A >= 2] (2,2)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{17,18},17->{17,18},18->{8,10}]
        Sizebounds:
          (< 6,0,A>, ?) (< 6,0,B>,   ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>,   ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,   ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,   ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,   ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<18,0,A>, ?) (<18,0,B>,   ?) (<18,0,C>, ?) (<18,0,D>, ?) 
    + Applied Processor:
        ChainProcessor False [6,8,10,12,15,16,17,18]
    + Details:
        We chained rule 6 to obtain the rules [19,20] .
* Step 17: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          8.  evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B]           (?,1)      
          10. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3]             (?,1)      
          12. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(D,1 + C,C,D)       [C >= 101]           (?,1)      
          15. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(1 + D,11 + C,C,D)  [100 >= C]           (?,1)      
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)            [100 >= A]           (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)   [100 >= B]           (101 + A,2)
          18. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)            [B >= 101 && A >= 2] (2,2)      
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3]   (?,2)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [8->{12,15},10->{12,15},12->{19,20},15->{19,20},16->{17,18},17->{17,18},18->{8,10},19->{12,15},20->{12
          ,15}]
        Sizebounds:
          (< 8,0,A>, ?) (< 8,0,B>,   ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>,   ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,   ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,   ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<18,0,A>, ?) (<18,0,B>,   ?) (<18,0,C>, ?) (<18,0,D>, ?) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
    + Applied Processor:
        ChainProcessor False [8,10,12,15,16,17,18,19,20]
    + Details:
        We chained rule 8 to obtain the rules [21,22] .
* Step 18: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          10. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 3]                     (?,1)      
          12. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(D,1 + C,C,D)                  [C >= 101]                   (?,1)      
          15. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(1 + D,11 + C,C,D)             [100 >= C]                   (?,1)      
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                   (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                   (101 + A,2)
          18. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)                       [B >= 101 && A >= 2]         (2,2)      
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]         (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]           (?,2)      
          21. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101] (?,2)      
          22. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [110 >= B && 100 >= -10 + B] (?,2)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [10->{12,15},12->{19,20},15->{19,20},16->{17,18},17->{17,18},18->{10,21,22},19->{12,15},20->{12,15}
          ,21->{19,20},22->{19,20}]
        Sizebounds:
          (<10,0,A>, ?) (<10,0,B>,   ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>,   ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,   ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<18,0,A>, ?) (<18,0,B>,   ?) (<18,0,C>, ?) (<18,0,D>, ?) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<21,0,A>, ?) (<21,0,B>,   ?) (<21,0,C>, ?) (<21,0,D>, ?) 
          (<22,0,A>, ?) (<22,0,B>,   ?) (<22,0,C>, ?) (<22,0,D>, ?) 
    + Applied Processor:
        ChainProcessor False [10,12,15,16,17,18,19,20,21,22]
    + Details:
        We chained rule 10 to obtain the rules [23,24] .
* Step 19: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(D,1 + C,C,D)                  [C >= 101]                   (?,1)      
          15. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(1 + D,11 + C,C,D)             [100 >= C]                   (?,1)      
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                   (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                   (101 + A,2)
          18. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)                       [B >= 101 && A >= 2]         (2,2)      
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]         (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]           (?,2)      
          21. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101] (?,2)      
          22. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [110 >= B && 100 >= -10 + B] (?,2)      
          23. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [A >= 3 && -10 + B >= 101]   (?,2)      
          24. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [A >= 3 && 100 >= -10 + B]   (?,2)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [12->{19,20},15->{19,20},16->{17,18},17->{17,18},18->{21,22,23,24},19->{12,15},20->{12,15},21->{19,20}
          ,22->{19,20},23->{19,20},24->{19,20}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>,   ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>,   ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<18,0,A>, ?) (<18,0,B>,   ?) (<18,0,C>, ?) (<18,0,D>, ?) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<21,0,A>, ?) (<21,0,B>,   ?) (<21,0,C>, ?) (<21,0,D>, ?) 
          (<22,0,A>, ?) (<22,0,B>,   ?) (<22,0,C>, ?) (<22,0,D>, ?) 
          (<23,0,A>, ?) (<23,0,B>,   ?) (<23,0,C>, ?) (<23,0,D>, ?) 
          (<24,0,A>, ?) (<24,0,B>,   ?) (<24,0,C>, ?) (<24,0,D>, ?) 
    + Applied Processor:
        ChainProcessor False [12,15,16,17,18,19,20,21,22,23,24]
    + Details:
        We chained rule 12 to obtain the rules [25,26] .
* Step 20: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          15. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb11in(1 + D,11 + C,C,D)             [100 >= C]                           (?,1)      
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                           (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                           (101 + A,2)
          18. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)                       [B >= 101 && A >= 2]                 (2,2)      
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                 (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                   (?,2)      
          21. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101]         (?,2)      
          22. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [110 >= B && 100 >= -10 + B]         (?,2)      
          23. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [A >= 3 && -10 + B >= 101]           (?,2)      
          24. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [A >= 3 && 100 >= -10 + B]           (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]       (?,3)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [15->{19,20},16->{17,18},17->{17,18},18->{21,22,23,24},19->{15,25,26},20->{15,25,26},21->{19,20},22->{19
          ,20},23->{19,20},24->{19,20},25->{15,25,26},26->{15,25,26}]
        Sizebounds:
          (<15,0,A>, ?) (<15,0,B>,   ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<18,0,A>, ?) (<18,0,B>,   ?) (<18,0,C>, ?) (<18,0,D>, ?) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<21,0,A>, ?) (<21,0,B>,   ?) (<21,0,C>, ?) (<21,0,D>, ?) 
          (<22,0,A>, ?) (<22,0,B>,   ?) (<22,0,C>, ?) (<22,0,D>, ?) 
          (<23,0,A>, ?) (<23,0,B>,   ?) (<23,0,C>, ?) (<23,0,D>, ?) 
          (<24,0,A>, ?) (<24,0,B>,   ?) (<24,0,C>, ?) (<24,0,D>, ?) 
          (<25,0,A>, ?) (<25,0,B>,   ?) (<25,0,C>, ?) (<25,0,D>, ?) 
          (<26,0,A>, ?) (<26,0,B>,   ?) (<26,0,C>, ?) (<26,0,D>, ?) 
    + Applied Processor:
        ChainProcessor False [15,16,17,18,19,20,21,22,23,24,25,26]
    + Details:
        We chained rule 15 to obtain the rules [27,28] .
* Step 21: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                (101 + A,2)
          18. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb5in(A,B,C,D)                       [B >= 101 && A >= 2]                      (2,2)      
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                      (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                        (?,2)      
          21. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101]              (?,2)      
          22. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [110 >= B && 100 >= -10 + B]              (?,2)      
          23. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [A >= 3 && -10 + B >= 101]                (?,2)      
          24. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [A >= 3 && 100 >= -10 + B]                (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]      (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]            (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]    (?,3)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17,18},17->{17,18},18->{21,22,23,24},19->{25,26,27,28},20->{25,26,27,28},21->{19,20},22->{19,20}
          ,23->{19,20},24->{19,20},25->{25,26,27,28},26->{25,26,27,28},27->{25,26,27,28},28->{25,26,27,28}]
        Sizebounds:
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<18,0,A>, ?) (<18,0,B>,   ?) (<18,0,C>, ?) (<18,0,D>, ?) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<21,0,A>, ?) (<21,0,B>,   ?) (<21,0,C>, ?) (<21,0,D>, ?) 
          (<22,0,A>, ?) (<22,0,B>,   ?) (<22,0,C>, ?) (<22,0,D>, ?) 
          (<23,0,A>, ?) (<23,0,B>,   ?) (<23,0,C>, ?) (<23,0,D>, ?) 
          (<24,0,A>, ?) (<24,0,B>,   ?) (<24,0,C>, ?) (<24,0,D>, ?) 
          (<25,0,A>, ?) (<25,0,B>,   ?) (<25,0,C>, ?) (<25,0,D>, ?) 
          (<26,0,A>, ?) (<26,0,B>,   ?) (<26,0,C>, ?) (<26,0,D>, ?) 
          (<27,0,A>, ?) (<27,0,B>,   ?) (<27,0,C>, ?) (<27,0,D>, ?) 
          (<28,0,A>, ?) (<28,0,B>,   ?) (<28,0,C>, ?) (<28,0,D>, ?) 
    + Applied Processor:
        ChainProcessor False [16,17,18,19,20,21,22,23,24,25,26,27,28]
    + Details:
        We chained rule 18 to obtain the rules [29,30,31,32] .
* Step 22: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (?,2)      
          21. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101]                       (?,2)      
          22. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [110 >= B && 100 >= -10 + B]                       (?,2)      
          23. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [A >= 3 && -10 + B >= 101]                         (?,2)      
          24. evalsipma91bb5in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [A >= 3 && 100 >= -10 + B]                         (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (?,3)      
          29. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101] (2,4)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17,29,30,31,32},17->{17,29,30,31,32},19->{25,26,27,28},20->{25,26,27,28},21->{19,20},22->{19,20}
          ,23->{19,20},24->{19,20},25->{25,26,27,28},26->{25,26,27,28},27->{25,26,27,28},28->{25,26,27,28},29->{19,20}
          ,30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<21,0,A>, ?) (<21,0,B>,   ?) (<21,0,C>, ?) (<21,0,D>, ?) 
          (<22,0,A>, ?) (<22,0,B>,   ?) (<22,0,C>, ?) (<22,0,D>, ?) 
          (<23,0,A>, ?) (<23,0,B>,   ?) (<23,0,C>, ?) (<23,0,D>, ?) 
          (<24,0,A>, ?) (<24,0,B>,   ?) (<24,0,C>, ?) (<24,0,D>, ?) 
          (<25,0,A>, ?) (<25,0,B>,   ?) (<25,0,C>, ?) (<25,0,D>, ?) 
          (<26,0,A>, ?) (<26,0,B>,   ?) (<26,0,C>, ?) (<26,0,D>, ?) 
          (<27,0,A>, ?) (<27,0,B>,   ?) (<27,0,C>, ?) (<27,0,D>, ?) 
          (<28,0,A>, ?) (<28,0,B>,   ?) (<28,0,C>, ?) (<28,0,D>, ?) 
          (<29,0,A>, ?) (<29,0,B>,   ?) (<29,0,C>, ?) (<29,0,D>, ?) 
          (<30,0,A>, ?) (<30,0,B>,   ?) (<30,0,C>, ?) (<30,0,D>, ?) 
          (<31,0,A>, ?) (<31,0,B>,   ?) (<31,0,C>, ?) (<31,0,D>, ?) 
          (<32,0,A>, ?) (<32,0,B>,   ?) (<32,0,C>, ?) (<32,0,D>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [21,22,23,24]
* Step 23: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (?,3)      
          29. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101] (2,4)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17,29,30,31,32},17->{17,29,30,31,32},19->{25,26,27,28},20->{25,26,27,28},25->{25,26,27,28},26->{25
          ,26,27,28},27->{25,26,27,28},28->{25,26,27,28},29->{19,20},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<25,0,A>, ?) (<25,0,B>,   ?) (<25,0,C>, ?) (<25,0,D>, ?) 
          (<26,0,A>, ?) (<26,0,B>,   ?) (<26,0,C>, ?) (<26,0,D>, ?) 
          (<27,0,A>, ?) (<27,0,B>,   ?) (<27,0,C>, ?) (<27,0,D>, ?) 
          (<28,0,A>, ?) (<28,0,B>,   ?) (<28,0,C>, ?) (<28,0,D>, ?) 
          (<29,0,A>, ?) (<29,0,B>,   ?) (<29,0,C>, ?) (<29,0,D>, ?) 
          (<30,0,A>, ?) (<30,0,B>,   ?) (<30,0,C>, ?) (<30,0,D>, ?) 
          (<31,0,A>, ?) (<31,0,B>,   ?) (<31,0,C>, ?) (<31,0,D>, ?) 
          (<32,0,A>, ?) (<32,0,B>,   ?) (<32,0,C>, ?) (<32,0,D>, ?) 
    + Applied Processor:
        ChainProcessor False [16,17,19,20,25,26,27,28,29,30,31,32]
    + Details:
        We chained rule 29 to obtain the rules [33,34] .
* Step 24: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                                                               (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                                                 (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]                                               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                                                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]                                          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]                                             (?,3)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B]                                 (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]                                   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]                                   (2,4)      
          33. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb8in(-1 + A,-9 + B,-19 + B,-2 + A)  [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101 && -1 + A >= 2 && 110 >= -9 + B] (2,6)      
          34. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb8in(-1 + A,-9 + B,-19 + B,-2 + A)  [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101 && -1 + A >= 2 && -1 + A >= 3]   (2,6)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17,30,31,32,33,34},17->{17,30,31,32,33,34},19->{25,26,27,28},20->{25,26,27,28},25->{25,26,27,28}
          ,26->{25,26,27,28},27->{25,26,27,28},28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20},33->{25,26,27,28}
          ,34->{25,26,27,28}]
        Sizebounds:
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<25,0,A>, ?) (<25,0,B>,   ?) (<25,0,C>, ?) (<25,0,D>, ?) 
          (<26,0,A>, ?) (<26,0,B>,   ?) (<26,0,C>, ?) (<26,0,D>, ?) 
          (<27,0,A>, ?) (<27,0,B>,   ?) (<27,0,C>, ?) (<27,0,D>, ?) 
          (<28,0,A>, ?) (<28,0,B>,   ?) (<28,0,C>, ?) (<28,0,D>, ?) 
          (<30,0,A>, ?) (<30,0,B>,   ?) (<30,0,C>, ?) (<30,0,D>, ?) 
          (<31,0,A>, ?) (<31,0,B>,   ?) (<31,0,C>, ?) (<31,0,D>, ?) 
          (<32,0,A>, ?) (<32,0,B>,   ?) (<32,0,C>, ?) (<32,0,D>, ?) 
          (<33,0,A>, ?) (<33,0,B>,   ?) (<33,0,C>, ?) (<33,0,D>, ?) 
          (<34,0,A>, ?) (<34,0,B>,   ?) (<34,0,C>, ?) (<34,0,D>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(16,30)
                                                             ,(16,31)
                                                             ,(16,32)
                                                             ,(16,33)
                                                             ,(16,34)
                                                             ,(17,33)
                                                             ,(17,34)
                                                             ,(19,25)
                                                             ,(19,26)
                                                             ,(25,25)
                                                             ,(25,26)
                                                             ,(27,25)
                                                             ,(27,26)
                                                             ,(33,25)
                                                             ,(33,26)
                                                             ,(33,27)
                                                             ,(33,28)
                                                             ,(34,25)
                                                             ,(34,26)
                                                             ,(34,27)
                                                             ,(34,28)]
* Step 25: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                                                               (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                                                 (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]                                               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                                                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]                                          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]                                             (?,3)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B]                                 (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]                                   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]                                   (2,4)      
          33. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb8in(-1 + A,-9 + B,-19 + B,-2 + A)  [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101 && -1 + A >= 2 && 110 >= -9 + B] (2,6)      
          34. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb8in(-1 + A,-9 + B,-19 + B,-2 + A)  [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101 && -1 + A >= 2 && -1 + A >= 3]   (2,6)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20},33->{},34->{}]
        Sizebounds:
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<25,0,A>, ?) (<25,0,B>,   ?) (<25,0,C>, ?) (<25,0,D>, ?) 
          (<26,0,A>, ?) (<26,0,B>,   ?) (<26,0,C>, ?) (<26,0,D>, ?) 
          (<27,0,A>, ?) (<27,0,B>,   ?) (<27,0,C>, ?) (<27,0,D>, ?) 
          (<28,0,A>, ?) (<28,0,B>,   ?) (<28,0,C>, ?) (<28,0,D>, ?) 
          (<30,0,A>, ?) (<30,0,B>,   ?) (<30,0,C>, ?) (<30,0,D>, ?) 
          (<31,0,A>, ?) (<31,0,B>,   ?) (<31,0,C>, ?) (<31,0,D>, ?) 
          (<32,0,A>, ?) (<32,0,B>,   ?) (<32,0,C>, ?) (<32,0,D>, ?) 
          (<33,0,A>, ?) (<33,0,B>,   ?) (<33,0,C>, ?) (<33,0,D>, ?) 
          (<34,0,A>, ?) (<34,0,B>,   ?) (<34,0,C>, ?) (<34,0,D>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [33,34]
* Step 26: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (?,3)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>, 1) (<16,0,B>,   A) (<16,0,C>, C) (<16,0,D>, D) 
          (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) 
          (<19,0,A>, ?) (<19,0,B>,   ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>,   ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<25,0,A>, ?) (<25,0,B>,   ?) (<25,0,C>, ?) (<25,0,D>, ?) 
          (<26,0,A>, ?) (<26,0,B>,   ?) (<26,0,C>, ?) (<26,0,D>, ?) 
          (<27,0,A>, ?) (<27,0,B>,   ?) (<27,0,C>, ?) (<27,0,D>, ?) 
          (<28,0,A>, ?) (<28,0,B>,   ?) (<28,0,C>, ?) (<28,0,D>, ?) 
          (<30,0,A>, ?) (<30,0,B>,   ?) (<30,0,C>, ?) (<30,0,D>, ?) 
          (<31,0,A>, ?) (<31,0,B>,   ?) (<31,0,C>, ?) (<31,0,D>, ?) 
          (<32,0,A>, ?) (<32,0,B>,   ?) (<32,0,C>, ?) (<32,0,D>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<16,0,A>,     1, .= 1) (<16,0,B>,       A,   .= 0) (<16,0,C>,       C,   .= 0) (<16,0,D>,     D, .= 0) 
          (<17,0,A>, 1 + A, .+ 1) (<17,0,B>,  11 + B,  .+ 11) (<17,0,C>,       C,   .= 0) (<17,0,D>,     D, .= 0) 
          (<19,0,A>,     A, .= 0) (<19,0,B>,       B,   .= 0) (<19,0,C>,  10 + B,  .+ 10) (<19,0,D>, 1 + A, .+ 1) 
          (<20,0,A>,     A, .= 0) (<20,0,B>,       B,   .= 0) (<20,0,C>,  10 + B,  .+ 10) (<20,0,D>, 1 + A, .+ 1) 
          (<25,0,A>,     D, .= 0) (<25,0,B>,     110, .= 110) (<25,0,C>,     100, .= 100) (<25,0,D>, 1 + D, .+ 1) 
          (<26,0,A>,     D, .= 0) (<26,0,B>,   1 + C,   .+ 1) (<26,0,C>,   9 + C,   .+ 9) (<26,0,D>, 1 + D, .+ 1) 
          (<27,0,A>, 1 + D, .+ 1) (<27,0,B>, 111 + C, .+ 111) (<27,0,C>, 101 + C, .+ 101) (<27,0,D>,     D, .= 0) 
          (<28,0,A>, 2 + D, .+ 2) (<28,0,B>,  11 + C,  .+ 11) (<28,0,C>,   1 + C,   .+ 1) (<28,0,D>,     D, .= 0) 
          (<30,0,A>,     A, .= 0) (<30,0,B>,     111, .= 111) (<30,0,C>,     100, .= 100) (<30,0,D>, 1 + A, .+ 1) 
          (<31,0,A>, 1 + A, .+ 1) (<31,0,B>,   9 + B,   .+ 9) (<31,0,C>,  10 + B,  .+ 10) (<31,0,D>, 1 + A, .+ 1) 
          (<32,0,A>,     A, .= 0) (<32,0,B>,     111, .= 111) (<32,0,C>,     100, .= 100) (<32,0,D>, 1 + A, .+ 1) 
* Step 27: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (?,3)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) 
          (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) 
          (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) 
          (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) 
          (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) 
          (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
          (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
          (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
          (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
          (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
          (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
          (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
          (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
          (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
          (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
          (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
* Step 28: LocationConstraintsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (?,3)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
          (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
          (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
          (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
          (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
          (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
          (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
          (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
          (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
          (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
          (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  16 :  True 17 :  [False] 19 :  True 20 :  True 25 :  True 26 :  True 27 :  True 28 :  True 30 :  [False] 31 :  [False] 32 :  [False] .
* Step 29: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (?,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (?,3)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
          (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
          (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
          (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
          (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
          (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
          (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
          (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
          (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
          (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
          (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalsipma91bb11in) = 1
           p(evalsipma91bb3in) = 1
           p(evalsipma91bb8in) = 0
           p(evalsipma91start) = 1
        
        The following rules are strictly oriented:
                  [A >= 2 && A >= 3] ==>                                     
          evalsipma91bb11in(A,B,C,D)   = 1                                   
                                       > 0                                   
                                       = evalsipma91bb8in(A,B,-10 + B,-1 + A)
        
        
        The following rules are weakly oriented:
                                                [100 >= A] ==>                                                
                                 evalsipma91start(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb3in(1,A,C,D)                      
        
                                                [100 >= B] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb3in(1 + A,11 + B,C,D)             
        
                                      [A >= 2 && 110 >= B] ==>                                                
                                evalsipma91bb11in(A,B,C,D)   = 1                                              
                                                            >= 0                                              
                                                             = evalsipma91bb8in(A,B,-10 + B,-1 + A)           
        
                      [C >= 101 && D >= 2 && 110 >= 1 + C] ==>                                                
                                 evalsipma91bb8in(A,B,C,D)   = 0                                              
                                                            >= 0                                              
                                                             = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)        
        
                            [C >= 101 && D >= 2 && D >= 3] ==>                                                
                                 evalsipma91bb8in(A,B,C,D)   = 0                                              
                                                            >= 0                                              
                                                             = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)        
        
                 [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==>                                                
                                 evalsipma91bb8in(A,B,C,D)   = 0                                              
                                                            >= 0                                              
                                                             = evalsipma91bb8in(1 + D,11 + C,1 + C,D)         
        
                    [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==>                                                
                                 evalsipma91bb8in(A,B,C,D)   = 0                                              
                                                            >= 0                                              
                                                             = evalsipma91bb8in(1 + D,11 + C,1 + C,D)         
        
        [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)      
        
          [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A)
        
          [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)      
        
        
* Step 30: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (?,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (1,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (?,3)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
          (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
          (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
          (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
          (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
          (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
          (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
          (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
          (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
          (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
          (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Constant}
    + Details:
        We apply a polynomial interpretation of shape constant:
          p(evalsipma91bb11in) = 1
           p(evalsipma91bb3in) = 1
           p(evalsipma91bb8in) = 0
           p(evalsipma91start) = 1
        
        The following rules are strictly oriented:
                [A >= 2 && 110 >= B] ==>                                     
          evalsipma91bb11in(A,B,C,D)   = 1                                   
                                       > 0                                   
                                       = evalsipma91bb8in(A,B,-10 + B,-1 + A)
        
                  [A >= 2 && A >= 3] ==>                                     
          evalsipma91bb11in(A,B,C,D)   = 1                                   
                                       > 0                                   
                                       = evalsipma91bb8in(A,B,-10 + B,-1 + A)
        
        
        The following rules are weakly oriented:
                                                [100 >= A] ==>                                                
                                 evalsipma91start(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb3in(1,A,C,D)                      
        
                                                [100 >= B] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb3in(1 + A,11 + B,C,D)             
        
                      [C >= 101 && D >= 2 && 110 >= 1 + C] ==>                                                
                                 evalsipma91bb8in(A,B,C,D)   = 0                                              
                                                            >= 0                                              
                                                             = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)        
        
                            [C >= 101 && D >= 2 && D >= 3] ==>                                                
                                 evalsipma91bb8in(A,B,C,D)   = 0                                              
                                                            >= 0                                              
                                                             = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)        
        
                 [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==>                                                
                                 evalsipma91bb8in(A,B,C,D)   = 0                                              
                                                            >= 0                                              
                                                             = evalsipma91bb8in(1 + D,11 + C,1 + C,D)         
        
                    [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==>                                                
                                 evalsipma91bb8in(A,B,C,D)   = 0                                              
                                                            >= 0                                              
                                                             = evalsipma91bb8in(1 + D,11 + C,1 + C,D)         
        
        [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)      
        
          [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A)
        
          [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 1                                              
                                                            >= 1                                              
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)      
        
        
* Step 31: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (1,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (1,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (?,3)      
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
          (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
          (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
          (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
          (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
          (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
          (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
          (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
          (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
          (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
          (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipma91bb11in) = 84 + 9*x1 + -1*x2
           p(evalsipma91bb3in) = 93 + 9*x1 + -1*x2
           p(evalsipma91bb8in) = 83 + -1*x3 + 9*x4
           p(evalsipma91start) = 102 + -1*x1      
        
        The following rules are strictly oriented:
                    [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==>                                          
                                 evalsipma91bb8in(A,B,C,D)   = 83 + -1*C + 9*D                          
                                                             > 82 + -1*C + 9*D                          
                                                             = evalsipma91bb8in(1 + D,11 + C,1 + C,D)   
        
        [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==>                                          
                                 evalsipma91bb3in(A,B,C,D)   = 93 + 9*A + -1*B                          
                                                             > 83 + 9*A + -1*B                          
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)
        
          [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==>                                          
                                 evalsipma91bb3in(A,B,C,D)   = 93 + 9*A + -1*B                          
                                                             > 83 + 9*A + -1*B                          
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)
        
        
        The following rules are weakly oriented:
                                              [100 >= A] ==>                                                
                               evalsipma91start(A,B,C,D)   = 102 + -1*A                                     
                                                          >= 102 + -1*A                                     
                                                           = evalsipma91bb3in(1,A,C,D)                      
        
                                              [100 >= B] ==>                                                
                               evalsipma91bb3in(A,B,C,D)   = 93 + 9*A + -1*B                                
                                                          >= 91 + 9*A + -1*B                                
                                                           = evalsipma91bb3in(1 + A,11 + B,C,D)             
        
                                    [A >= 2 && 110 >= B] ==>                                                
                              evalsipma91bb11in(A,B,C,D)   = 84 + 9*A + -1*B                                
                                                          >= 84 + 9*A + -1*B                                
                                                           = evalsipma91bb8in(A,B,-10 + B,-1 + A)           
        
                                      [A >= 2 && A >= 3] ==>                                                
                              evalsipma91bb11in(A,B,C,D)   = 84 + 9*A + -1*B                                
                                                          >= 84 + 9*A + -1*B                                
                                                           = evalsipma91bb8in(A,B,-10 + B,-1 + A)           
        
                    [C >= 101 && D >= 2 && 110 >= 1 + C] ==>                                                
                               evalsipma91bb8in(A,B,C,D)   = 83 + -1*C + 9*D                                
                                                          >= 83 + -1*C + 9*D                                
                                                           = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)        
        
                          [C >= 101 && D >= 2 && D >= 3] ==>                                                
                               evalsipma91bb8in(A,B,C,D)   = 83 + -1*C + 9*D                                
                                                          >= 83 + -1*C + 9*D                                
                                                           = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)        
        
               [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==>                                                
                               evalsipma91bb8in(A,B,C,D)   = 83 + -1*C + 9*D                                
                                                          >= 82 + -1*C + 9*D                                
                                                           = evalsipma91bb8in(1 + D,11 + C,1 + C,D)         
        
        [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==>                                                
                               evalsipma91bb3in(A,B,C,D)   = 93 + 9*A + -1*B                                
                                                          >= 84 + 9*A + -1*B                                
                                                           = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A)
        
        
* Step 32: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (1,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (1,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (?,3)      
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (102 + A,3)
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
          (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
          (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
          (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
          (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
          (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
          (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
          (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
          (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
          (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
          (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipma91bb11in) = 92 + 9*x1 + -1*x2
           p(evalsipma91bb3in) = 93 + 9*x1 + -1*x2
           p(evalsipma91bb8in) = 91 + -1*x3 + 9*x4
           p(evalsipma91start) = 102 + -1*x1      
        
        The following rules are strictly oriented:
                 [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==>                                          
                                 evalsipma91bb8in(A,B,C,D)   = 91 + -1*C + 9*D                          
                                                             > 90 + -1*C + 9*D                          
                                                             = evalsipma91bb8in(1 + D,11 + C,1 + C,D)   
        
                    [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==>                                          
                                 evalsipma91bb8in(A,B,C,D)   = 91 + -1*C + 9*D                          
                                                             > 90 + -1*C + 9*D                          
                                                             = evalsipma91bb8in(1 + D,11 + C,1 + C,D)   
        
        [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==>                                          
                                 evalsipma91bb3in(A,B,C,D)   = 93 + 9*A + -1*B                          
                                                             > 91 + 9*A + -1*B                          
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)
        
          [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==>                                          
                                 evalsipma91bb3in(A,B,C,D)   = 93 + 9*A + -1*B                          
                                                             > 91 + 9*A + -1*B                          
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)
        
        
        The following rules are weakly oriented:
                                              [100 >= A] ==>                                                
                               evalsipma91start(A,B,C,D)   = 102 + -1*A                                     
                                                          >= 102 + -1*A                                     
                                                           = evalsipma91bb3in(1,A,C,D)                      
        
                                              [100 >= B] ==>                                                
                               evalsipma91bb3in(A,B,C,D)   = 93 + 9*A + -1*B                                
                                                          >= 91 + 9*A + -1*B                                
                                                           = evalsipma91bb3in(1 + A,11 + B,C,D)             
        
                                    [A >= 2 && 110 >= B] ==>                                                
                              evalsipma91bb11in(A,B,C,D)   = 92 + 9*A + -1*B                                
                                                          >= 92 + 9*A + -1*B                                
                                                           = evalsipma91bb8in(A,B,-10 + B,-1 + A)           
        
                                      [A >= 2 && A >= 3] ==>                                                
                              evalsipma91bb11in(A,B,C,D)   = 92 + 9*A + -1*B                                
                                                          >= 92 + 9*A + -1*B                                
                                                           = evalsipma91bb8in(A,B,-10 + B,-1 + A)           
        
                    [C >= 101 && D >= 2 && 110 >= 1 + C] ==>                                                
                               evalsipma91bb8in(A,B,C,D)   = 91 + -1*C + 9*D                                
                                                          >= 91 + -1*C + 9*D                                
                                                           = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)        
        
                          [C >= 101 && D >= 2 && D >= 3] ==>                                                
                               evalsipma91bb8in(A,B,C,D)   = 91 + -1*C + 9*D                                
                                                          >= 91 + -1*C + 9*D                                
                                                           = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)        
        
        [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==>                                                
                               evalsipma91bb3in(A,B,C,D)   = 93 + 9*A + -1*B                                
                                                          >= 92 + 9*A + -1*B                                
                                                           = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A)
        
        
* Step 33: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (1,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (1,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (?,3)      
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (102 + A,3)
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (102 + A,3)
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
          (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
          (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
          (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
          (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
          (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
          (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
          (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
          (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
          (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
          (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipma91bb11in) = 91 + 10*x1 + -1*x2
           p(evalsipma91bb3in) = 90 + 10*x1 + -1*x2
           p(evalsipma91bb8in) = 90 + -1*x3 + 10*x4
           p(evalsipma91start) = 101 + -1*x1       
        
        The following rules are strictly oriented:
                                       [100 >= A] ==>                                        
                        evalsipma91start(A,B,C,D)   = 101 + -1*A                             
                                                    > 100 + -1*A                             
                                                    = evalsipma91bb3in(1,A,C,D)              
        
                             [A >= 2 && 110 >= B] ==>                                        
                       evalsipma91bb11in(A,B,C,D)   = 91 + 10*A + -1*B                       
                                                    > 90 + 10*A + -1*B                       
                                                    = evalsipma91bb8in(A,B,-10 + B,-1 + A)   
        
             [C >= 101 && D >= 2 && 110 >= 1 + C] ==>                                        
                        evalsipma91bb8in(A,B,C,D)   = 90 + -1*C + 10*D                       
                                                    > 89 + -1*C + 10*D                       
                                                    = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)
        
        [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==>                                        
                        evalsipma91bb8in(A,B,C,D)   = 90 + -1*C + 10*D                       
                                                    > 89 + -1*C + 10*D                       
                                                    = evalsipma91bb8in(1 + D,11 + C,1 + C,D) 
        
           [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==>                                        
                        evalsipma91bb8in(A,B,C,D)   = 90 + -1*C + 10*D                       
                                                    > 89 + -1*C + 10*D                       
                                                    = evalsipma91bb8in(1 + D,11 + C,1 + C,D) 
        
        
        The following rules are weakly oriented:
                                                [100 >= B] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 90 + 10*A + -1*B                               
                                                            >= 89 + 10*A + -1*B                               
                                                             = evalsipma91bb3in(1 + A,11 + B,C,D)             
        
                                        [A >= 2 && A >= 3] ==>                                                
                                evalsipma91bb11in(A,B,C,D)   = 91 + 10*A + -1*B                               
                                                            >= 90 + 10*A + -1*B                               
                                                             = evalsipma91bb8in(A,B,-10 + B,-1 + A)           
        
                            [C >= 101 && D >= 2 && D >= 3] ==>                                                
                                 evalsipma91bb8in(A,B,C,D)   = 90 + -1*C + 10*D                               
                                                            >= 89 + -1*C + 10*D                               
                                                             = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)        
        
        [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 90 + 10*A + -1*B                               
                                                            >= 90 + 10*A + -1*B                               
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)      
        
          [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 90 + 10*A + -1*B                               
                                                            >= 90 + 10*A + -1*B                               
                                                             = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A)
        
          [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==>                                                
                                 evalsipma91bb3in(A,B,C,D)   = 90 + 10*A + -1*B                               
                                                            >= 90 + 10*A + -1*B                               
                                                             = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)      
        
        
* Step 34: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)      
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (1,2)      
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (1,2)      
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (101 + A,3)
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (?,3)      
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (101 + A,3)
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (101 + A,3)
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)      
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)      
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)      
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
          (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
          (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
          (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
          (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
          (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
          (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
          (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
          (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
          (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
          (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [27,25,26,28], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalsipma91bb8in) = x4
        
        The following rules are strictly oriented:
        [C >= 101 && D >= 2 && 110 >= 1 + C] ==>                                        
                   evalsipma91bb8in(A,B,C,D)   = D                                      
                                               > -1 + D                                 
                                               = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)
        
              [C >= 101 && D >= 2 && D >= 3] ==>                                        
                   evalsipma91bb8in(A,B,C,D)   = D                                      
                                               > -1 + D                                 
                                               = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)
        
        
        The following rules are weakly oriented:
        [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==>                                       
                        evalsipma91bb8in(A,B,C,D)   = D                                     
                                                   >= D                                     
                                                    = evalsipma91bb8in(1 + D,11 + C,1 + C,D)
        
           [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==>                                       
                        evalsipma91bb8in(A,B,C,D)   = D                                     
                                                   >= D                                     
                                                    = evalsipma91bb8in(1 + D,11 + C,1 + C,D)
        
        We use the following global sizebounds:
        (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
        (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
        (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
        (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
        (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
        (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
        (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
        (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
        (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
        (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
        (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
* Step 35: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          16. evalsipma91start(A,B,C,D)  -> evalsipma91bb3in(1,A,C,D)                       [100 >= A]                                         (1,2)        
          17. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb3in(1 + A,11 + B,C,D)              [100 >= B]                                         (101 + A,2)  
          19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && 110 >= B]                               (1,2)        
          20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A)            [A >= 2 && A >= 3]                                 (1,2)        
          25. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && 110 >= 1 + C]               (101 + A,3)  
          26. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D)         [C >= 101 && D >= 2 && D >= 3]                     (208 + 2*A,3)
          27. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 110 >= 11 + C]          (101 + A,3)  
          28. evalsipma91bb8in(A,B,C,D)  -> evalsipma91bb8in(1 + D,11 + C,1 + C,D)          [100 >= C && 1 + D >= 2 && 1 + D >= 3]             (101 + A,3)  
          30. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4)        
          31. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101]   (2,4)        
          32. evalsipma91bb3in(A,B,C,D)  -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A)       [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B]   (2,4)        
        Signature:
          {(evalsipma91bb11in,4)
          ;(evalsipma91bb2in,4)
          ;(evalsipma91bb3in,4)
          ;(evalsipma91bb5in,4)
          ;(evalsipma91bb8in,4)
          ;(evalsipma91entryin,4)
          ;(evalsipma91returnin,4)
          ;(evalsipma91start,4)
          ;(evalsipma91stop,4)}
        Flow Graph:
          [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28}
          ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}]
        Sizebounds:
          (<16,0,A>,       1) (<16,0,B>,           A) (<16,0,C>,           C) (<16,0,D>,       D) 
          (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>,           C) (<17,0,D>,       D) 
          (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) 
          (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) 
          (<25,0,A>,       ?) (<25,0,B>,         110) (<25,0,C>,         100) (<25,0,D>,       ?) 
          (<26,0,A>,       ?) (<26,0,B>,           ?) (<26,0,C>,           ?) (<26,0,D>,       ?) 
          (<27,0,A>,       ?) (<27,0,B>,           ?) (<27,0,C>,         101) (<27,0,D>,       ?) 
          (<28,0,A>,       ?) (<28,0,B>,           ?) (<28,0,C>,         101) (<28,0,D>,       ?) 
          (<30,0,A>, 102 + A) (<30,0,B>,         111) (<30,0,C>,         100) (<30,0,D>, 103 + A) 
          (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) 
          (<32,0,A>, 102 + A) (<32,0,B>,         111) (<32,0,C>,         100) (<32,0,D>, 103 + A) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))