WORST_CASE(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 1. evalsipma91entryin(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [A >= 101] (?,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (?,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (?,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (?,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 7. evalsipma91bb11in(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [1 >= A] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 9. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [1 >= A] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 11. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 13. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,11 + C,C,D) [C >= 101 && 100 >= C] (?,1) 14. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,1 + C,C,D) [100 >= C && C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D) True (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{1,2},1->{16},2->{3,4},3->{5},4->{6,7},5->{3,4},6->{8,9,10,11},7->{16},8->{12,13,14,15},9->{12,13,14 ,15},10->{12,13,14,15},11->{6,7},12->{6,7},13->{6,7},14->{6,7},15->{6,7},16->{}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [13,14] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 1. evalsipma91entryin(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [A >= 101] (?,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (?,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (?,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (?,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 7. evalsipma91bb11in(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [1 >= A] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 9. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [1 >= A] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 11. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D) True (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{1,2},1->{16},2->{3,4},3->{5},4->{6,7},5->{3,4},6->{8,9,10,11},7->{16},8->{12,15},9->{12,15},10->{12 ,15},11->{6,7},12->{6,7},15->{6,7},16->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 2,0,A>, 1, .= 1) (< 2,0,B>, A, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 5,0,A>, 1 + A, .+ 1) (< 5,0,B>, 11 + B, .+ 11) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, 10 + B, .+ 10) (< 8,0,D>, 1 + A, .+ 1) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, 10 + B, .+ 10) (< 9,0,D>, 1 + A, .+ 1) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, 10 + B, .+ 10) (<10,0,D>, 1 + A, .+ 1) (<11,0,A>, 1, .= 1) (<11,0,B>, 10 + B, .+ 10) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<12,0,A>, D, .= 0) (<12,0,B>, 1 + C, .+ 1) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<15,0,A>, 1 + D, .+ 1) (<15,0,B>, 11 + C, .+ 11) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 1. evalsipma91entryin(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [A >= 101] (?,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (?,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (?,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (?,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 7. evalsipma91bb11in(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [1 >= A] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 9. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [1 >= A] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 11. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D) True (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{1,2},1->{16},2->{3,4},3->{5},4->{6,7},5->{3,4},6->{8,9,10,11},7->{16},8->{12,15},9->{12,15},10->{12 ,15},11->{6,7},12->{6,7},15->{6,7},16->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, 1) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 1. evalsipma91entryin(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [A >= 101] (?,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (?,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (?,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (?,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 7. evalsipma91bb11in(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [1 >= A] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 9. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [1 >= A] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 11. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D) True (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{1,2},1->{16},2->{3,4},3->{5},4->{6,7},5->{3,4},6->{8,9,10,11},7->{16},8->{12,15},9->{12,15},10->{12 ,15},11->{6,7},12->{6,7},15->{6,7},16->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, 1) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,4),(6,9),(8,12),(11,6)] * Step 5: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 1. evalsipma91entryin(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [A >= 101] (?,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (?,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (?,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (?,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 7. evalsipma91bb11in(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [1 >= A] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 9. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [1 >= A] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 11. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D) True (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{1,2},1->{16},2->{3},3->{5},4->{6,7},5->{3,4},6->{8,10,11},7->{16},8->{15},9->{12,15},10->{12,15} ,11->{7},12->{6,7},15->{6,7},16->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, 1) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [9] * Step 6: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 1. evalsipma91entryin(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [A >= 101] (?,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (?,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (?,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (?,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 7. evalsipma91bb11in(A,B,C,D) -> evalsipma91returnin(A,B,C,D) [1 >= A] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 11. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-10 + B,C,D) [B >= 111 && A = 2] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91returnin(A,B,C,D) -> evalsipma91stop(A,B,C,D) True (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{1,2},1->{16},2->{3},3->{5},4->{6,7},5->{3,4},6->{8,10,11},7->{16},8->{15},10->{12,15},11->{7},12->{6 ,7},15->{6,7},16->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, 1) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [11,1,7,16] * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (?,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (?,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (?,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalsipma91bb11in) = 1 p(evalsipma91bb2in) = 2 p(evalsipma91bb3in) = 2 p(evalsipma91bb5in) = 1 p(evalsipma91bb8in) = 1 p(evalsipma91entryin) = 2 p(evalsipma91start) = 2 The following rules are strictly oriented: [B >= 101] ==> evalsipma91bb3in(A,B,C,D) = 2 > 1 = evalsipma91bb11in(A,B,C,D) The following rules are weakly oriented: True ==> evalsipma91start(A,B,C,D) = 2 >= 2 = evalsipma91entryin(A,B,C,D) [100 >= A] ==> evalsipma91entryin(A,B,C,D) = 2 >= 2 = evalsipma91bb3in(1,A,C,D) [100 >= B] ==> evalsipma91bb3in(A,B,C,D) = 2 >= 2 = evalsipma91bb2in(A,B,C,D) True ==> evalsipma91bb2in(A,B,C,D) = 2 >= 2 = evalsipma91bb3in(1 + A,11 + B,C,D) [A >= 2] ==> evalsipma91bb11in(A,B,C,D) = 1 >= 1 = evalsipma91bb5in(A,B,C,D) [110 >= B] ==> evalsipma91bb5in(A,B,C,D) = 1 >= 1 = evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] ==> evalsipma91bb5in(A,B,C,D) = 1 >= 1 = evalsipma91bb8in(A,B,-10 + B,-1 + A) [C >= 101] ==> evalsipma91bb8in(A,B,C,D) = 1 >= 1 = evalsipma91bb11in(D,1 + C,C,D) [100 >= C] ==> evalsipma91bb8in(A,B,C,D) = 1 >= 1 = evalsipma91bb11in(1 + D,11 + C,C,D) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (?,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (?,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (2,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (?,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (2,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalsipma91bb2in) = 100 + -1*x2 p(evalsipma91bb3in) = 101 + -1*x2 The following rules are strictly oriented: [100 >= B] ==> evalsipma91bb3in(A,B,C,D) = 101 + -1*B > 100 + -1*B = evalsipma91bb2in(A,B,C,D) The following rules are weakly oriented: True ==> evalsipma91bb2in(A,B,C,D) = 100 + -1*B >= 90 + -1*B = evalsipma91bb3in(1 + A,11 + B,C,D) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) * Step 10: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (101 + A,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (2,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (?,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 11: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalsipma91start(A,B,C,D) -> evalsipma91entryin(A,B,C,D) True (1,1) 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (101 + A,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (2,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (101 + A,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [0->{2},2->{3},3->{5},4->{6},5->{3,4},6->{8,10},8->{15},10->{12,15},12->{6},15->{6}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) + Applied Processor: ChainProcessor False [0,2,3,4,5,6,8,10,12,15] + Details: We chained rule 0 to obtain the rules [16] . * Step 12: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. evalsipma91entryin(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,1) 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (101 + A,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (2,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (101 + A,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [2->{3,4},3->{5},4->{6},5->{3,4},6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{3,4}] Sizebounds: (< 2,0,A>, 1) (< 2,0,B>, A) (< 2,0,C>, C) (< 2,0,D>, D) (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [2] * Step 13: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb2in(A,B,C,D) [100 >= B] (101 + A,1) 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (2,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (101 + A,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [3->{5},4->{6},5->{3,4},6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{3,4}] Sizebounds: (< 3,0,A>, ?) (< 3,0,B>, 100) (< 3,0,C>, C) (< 3,0,D>, D) (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: ChainProcessor False [3,4,5,6,8,10,12,15,16] + Details: We chained rule 3 to obtain the rules [17] . * Step 14: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (2,1) 5. evalsipma91bb2in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) True (101 + A,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [4->{6},5->{4,17},6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{4,17},17->{4,17}] Sizebounds: (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, ?) (< 5,0,B>, 100) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [5] * Step 15: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,B,C,D) [B >= 101] (2,1) 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [4->{6},6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{4,17},17->{4,17}] Sizebounds: (< 4,0,A>, ?) (< 4,0,B>, 100 + A) (< 4,0,C>, C) (< 4,0,D>, D) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) + Applied Processor: ChainProcessor False [4,6,8,10,12,15,16,17] + Details: We chained rule 4 to obtain the rules [18] . * Step 16: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 6. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [A >= 2] (?,1) 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 18. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [B >= 101 && A >= 2] (2,2) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [6->{8,10},8->{12,15},10->{12,15},12->{6},15->{6},16->{17,18},17->{17,18},18->{8,10}] Sizebounds: (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) + Applied Processor: ChainProcessor False [6,8,10,12,15,16,17,18] + Details: We chained rule 6 to obtain the rules [19,20] . * Step 17: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 8. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [110 >= B] (?,1) 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 18. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [B >= 101 && A >= 2] (2,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [8->{12,15},10->{12,15},12->{19,20},15->{19,20},16->{17,18},17->{17,18},18->{8,10},19->{12,15},20->{12 ,15}] Sizebounds: (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) + Applied Processor: ChainProcessor False [8,10,12,15,16,17,18,19,20] + Details: We chained rule 8 to obtain the rules [21,22] . * Step 18: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 10. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 3] (?,1) 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 18. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [B >= 101 && A >= 2] (2,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 21. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101] (?,2) 22. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [110 >= B && 100 >= -10 + B] (?,2) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [10->{12,15},12->{19,20},15->{19,20},16->{17,18},17->{17,18},18->{10,21,22},19->{12,15},20->{12,15} ,21->{19,20},22->{19,20}] Sizebounds: (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) + Applied Processor: ChainProcessor False [10,12,15,16,17,18,19,20,21,22] + Details: We chained rule 10 to obtain the rules [23,24] . * Step 19: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(D,1 + C,C,D) [C >= 101] (?,1) 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 18. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [B >= 101 && A >= 2] (2,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 21. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101] (?,2) 22. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [110 >= B && 100 >= -10 + B] (?,2) 23. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [A >= 3 && -10 + B >= 101] (?,2) 24. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [A >= 3 && 100 >= -10 + B] (?,2) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [12->{19,20},15->{19,20},16->{17,18},17->{17,18},18->{21,22,23,24},19->{12,15},20->{12,15},21->{19,20} ,22->{19,20},23->{19,20},24->{19,20}] Sizebounds: (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) + Applied Processor: ChainProcessor False [12,15,16,17,18,19,20,21,22,23,24] + Details: We chained rule 12 to obtain the rules [25,26] . * Step 20: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 15. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb11in(1 + D,11 + C,C,D) [100 >= C] (?,1) 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 18. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [B >= 101 && A >= 2] (2,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 21. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101] (?,2) 22. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [110 >= B && 100 >= -10 + B] (?,2) 23. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [A >= 3 && -10 + B >= 101] (?,2) 24. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [A >= 3 && 100 >= -10 + B] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [15->{19,20},16->{17,18},17->{17,18},18->{21,22,23,24},19->{15,25,26},20->{15,25,26},21->{19,20},22->{19 ,20},23->{19,20},24->{19,20},25->{15,25,26},26->{15,25,26}] Sizebounds: (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) + Applied Processor: ChainProcessor False [15,16,17,18,19,20,21,22,23,24,25,26] + Details: We chained rule 15 to obtain the rules [27,28] . * Step 21: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 18. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb5in(A,B,C,D) [B >= 101 && A >= 2] (2,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 21. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101] (?,2) 22. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [110 >= B && 100 >= -10 + B] (?,2) 23. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [A >= 3 && -10 + B >= 101] (?,2) 24. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [A >= 3 && 100 >= -10 + B] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17,18},17->{17,18},18->{21,22,23,24},19->{25,26,27,28},20->{25,26,27,28},21->{19,20},22->{19,20} ,23->{19,20},24->{19,20},25->{25,26,27,28},26->{25,26,27,28},27->{25,26,27,28},28->{25,26,27,28}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) + Applied Processor: ChainProcessor False [16,17,18,19,20,21,22,23,24,25,26,27,28] + Details: We chained rule 18 to obtain the rules [29,30,31,32] . * Step 22: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 21. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [110 >= B && -10 + B >= 101] (?,2) 22. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [110 >= B && 100 >= -10 + B] (?,2) 23. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [A >= 3 && -10 + B >= 101] (?,2) 24. evalsipma91bb5in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [A >= 3 && 100 >= -10 + B] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 29. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101] (2,4) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17,29,30,31,32},17->{17,29,30,31,32},19->{25,26,27,28},20->{25,26,27,28},21->{19,20},22->{19,20} ,23->{19,20},24->{19,20},25->{25,26,27,28},26->{25,26,27,28},27->{25,26,27,28},28->{25,26,27,28},29->{19,20} ,30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [21,22,23,24] * Step 23: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 29. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101] (2,4) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17,29,30,31,32},17->{17,29,30,31,32},19->{25,26,27,28},20->{25,26,27,28},25->{25,26,27,28},26->{25 ,26,27,28},27->{25,26,27,28},28->{25,26,27,28},29->{19,20},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) + Applied Processor: ChainProcessor False [16,17,19,20,25,26,27,28,29,30,31,32] + Details: We chained rule 29 to obtain the rules [33,34] . * Step 24: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) 33. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb8in(-1 + A,-9 + B,-19 + B,-2 + A) [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101 && -1 + A >= 2 && 110 >= -9 + B] (2,6) 34. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb8in(-1 + A,-9 + B,-19 + B,-2 + A) [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101 && -1 + A >= 2 && -1 + A >= 3] (2,6) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17,30,31,32,33,34},17->{17,30,31,32,33,34},19->{25,26,27,28},20->{25,26,27,28},25->{25,26,27,28} ,26->{25,26,27,28},27->{25,26,27,28},28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20},33->{25,26,27,28} ,34->{25,26,27,28}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) (<33,0,A>, ?) (<33,0,B>, ?) (<33,0,C>, ?) (<33,0,D>, ?) (<34,0,A>, ?) (<34,0,B>, ?) (<34,0,C>, ?) (<34,0,D>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(16,30) ,(16,31) ,(16,32) ,(16,33) ,(16,34) ,(17,33) ,(17,34) ,(19,25) ,(19,26) ,(25,25) ,(25,26) ,(27,25) ,(27,26) ,(33,25) ,(33,26) ,(33,27) ,(33,28) ,(34,25) ,(34,26) ,(34,27) ,(34,28)] * Step 25: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) 33. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb8in(-1 + A,-9 + B,-19 + B,-2 + A) [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101 && -1 + A >= 2 && 110 >= -9 + B] (2,6) 34. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb8in(-1 + A,-9 + B,-19 + B,-2 + A) [B >= 101 && A >= 2 && 110 >= B && -10 + B >= 101 && -1 + A >= 2 && -1 + A >= 3] (2,6) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20},33->{},34->{}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) (<33,0,A>, ?) (<33,0,B>, ?) (<33,0,C>, ?) (<33,0,D>, ?) (<34,0,A>, ?) (<34,0,B>, ?) (<34,0,C>, ?) (<34,0,D>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [33,34] * Step 26: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, ?) (<17,0,B>, 100) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<16,0,A>, 1, .= 1) (<16,0,B>, A, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<17,0,A>, 1 + A, .+ 1) (<17,0,B>, 11 + B, .+ 11) (<17,0,C>, C, .= 0) (<17,0,D>, D, .= 0) (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, 10 + B, .+ 10) (<19,0,D>, 1 + A, .+ 1) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, 10 + B, .+ 10) (<20,0,D>, 1 + A, .+ 1) (<25,0,A>, D, .= 0) (<25,0,B>, 110, .= 110) (<25,0,C>, 100, .= 100) (<25,0,D>, 1 + D, .+ 1) (<26,0,A>, D, .= 0) (<26,0,B>, 1 + C, .+ 1) (<26,0,C>, 9 + C, .+ 9) (<26,0,D>, 1 + D, .+ 1) (<27,0,A>, 1 + D, .+ 1) (<27,0,B>, 111 + C, .+ 111) (<27,0,C>, 101 + C, .+ 101) (<27,0,D>, D, .= 0) (<28,0,A>, 2 + D, .+ 2) (<28,0,B>, 11 + C, .+ 11) (<28,0,C>, 1 + C, .+ 1) (<28,0,D>, D, .= 0) (<30,0,A>, A, .= 0) (<30,0,B>, 111, .= 111) (<30,0,C>, 100, .= 100) (<30,0,D>, 1 + A, .+ 1) (<31,0,A>, 1 + A, .+ 1) (<31,0,B>, 9 + B, .+ 9) (<31,0,C>, 10 + B, .+ 10) (<31,0,D>, 1 + A, .+ 1) (<32,0,A>, A, .= 0) (<32,0,B>, 111, .= 111) (<32,0,C>, 100, .= 100) (<32,0,D>, 1 + A, .+ 1) * Step 27: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<32,0,A>, ?) (<32,0,B>, ?) (<32,0,C>, ?) (<32,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) * Step 28: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 16 : True 17 : [False] 19 : True 20 : True 25 : True 26 : True 27 : True 28 : True 30 : [False] 31 : [False] 32 : [False] . * Step 29: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (?,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalsipma91bb11in) = 1 p(evalsipma91bb3in) = 1 p(evalsipma91bb8in) = 0 p(evalsipma91start) = 1 The following rules are strictly oriented: [A >= 2 && A >= 3] ==> evalsipma91bb11in(A,B,C,D) = 1 > 0 = evalsipma91bb8in(A,B,-10 + B,-1 + A) The following rules are weakly oriented: [100 >= A] ==> evalsipma91start(A,B,C,D) = 1 >= 1 = evalsipma91bb3in(1,A,C,D) [100 >= B] ==> evalsipma91bb3in(A,B,C,D) = 1 >= 1 = evalsipma91bb3in(1 + A,11 + B,C,D) [A >= 2 && 110 >= B] ==> evalsipma91bb11in(A,B,C,D) = 1 >= 0 = evalsipma91bb8in(A,B,-10 + B,-1 + A) [C >= 101 && D >= 2 && 110 >= 1 + C] ==> evalsipma91bb8in(A,B,C,D) = 0 >= 0 = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 0 >= 0 = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==> evalsipma91bb8in(A,B,C,D) = 0 >= 0 = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 0 >= 0 = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 1 >= 1 = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==> evalsipma91bb3in(A,B,C,D) = 1 >= 1 = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 1 >= 1 = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) * Step 30: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (?,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (1,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(evalsipma91bb11in) = 1 p(evalsipma91bb3in) = 1 p(evalsipma91bb8in) = 0 p(evalsipma91start) = 1 The following rules are strictly oriented: [A >= 2 && 110 >= B] ==> evalsipma91bb11in(A,B,C,D) = 1 > 0 = evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] ==> evalsipma91bb11in(A,B,C,D) = 1 > 0 = evalsipma91bb8in(A,B,-10 + B,-1 + A) The following rules are weakly oriented: [100 >= A] ==> evalsipma91start(A,B,C,D) = 1 >= 1 = evalsipma91bb3in(1,A,C,D) [100 >= B] ==> evalsipma91bb3in(A,B,C,D) = 1 >= 1 = evalsipma91bb3in(1 + A,11 + B,C,D) [C >= 101 && D >= 2 && 110 >= 1 + C] ==> evalsipma91bb8in(A,B,C,D) = 0 >= 0 = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 0 >= 0 = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==> evalsipma91bb8in(A,B,C,D) = 0 >= 0 = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 0 >= 0 = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 1 >= 1 = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==> evalsipma91bb3in(A,B,C,D) = 1 >= 1 = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 1 >= 1 = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) * Step 31: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (1,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (1,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (?,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalsipma91bb11in) = 84 + 9*x1 + -1*x2 p(evalsipma91bb3in) = 93 + 9*x1 + -1*x2 p(evalsipma91bb8in) = 83 + -1*x3 + 9*x4 p(evalsipma91start) = 102 + -1*x1 The following rules are strictly oriented: [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 83 + -1*C + 9*D > 82 + -1*C + 9*D = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 93 + 9*A + -1*B > 83 + 9*A + -1*B = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 93 + 9*A + -1*B > 83 + 9*A + -1*B = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) The following rules are weakly oriented: [100 >= A] ==> evalsipma91start(A,B,C,D) = 102 + -1*A >= 102 + -1*A = evalsipma91bb3in(1,A,C,D) [100 >= B] ==> evalsipma91bb3in(A,B,C,D) = 93 + 9*A + -1*B >= 91 + 9*A + -1*B = evalsipma91bb3in(1 + A,11 + B,C,D) [A >= 2 && 110 >= B] ==> evalsipma91bb11in(A,B,C,D) = 84 + 9*A + -1*B >= 84 + 9*A + -1*B = evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] ==> evalsipma91bb11in(A,B,C,D) = 84 + 9*A + -1*B >= 84 + 9*A + -1*B = evalsipma91bb8in(A,B,-10 + B,-1 + A) [C >= 101 && D >= 2 && 110 >= 1 + C] ==> evalsipma91bb8in(A,B,C,D) = 83 + -1*C + 9*D >= 83 + -1*C + 9*D = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 83 + -1*C + 9*D >= 83 + -1*C + 9*D = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==> evalsipma91bb8in(A,B,C,D) = 83 + -1*C + 9*D >= 82 + -1*C + 9*D = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==> evalsipma91bb3in(A,B,C,D) = 93 + 9*A + -1*B >= 84 + 9*A + -1*B = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) * Step 32: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (1,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (1,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (?,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (102 + A,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalsipma91bb11in) = 92 + 9*x1 + -1*x2 p(evalsipma91bb3in) = 93 + 9*x1 + -1*x2 p(evalsipma91bb8in) = 91 + -1*x3 + 9*x4 p(evalsipma91start) = 102 + -1*x1 The following rules are strictly oriented: [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==> evalsipma91bb8in(A,B,C,D) = 91 + -1*C + 9*D > 90 + -1*C + 9*D = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 91 + -1*C + 9*D > 90 + -1*C + 9*D = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 93 + 9*A + -1*B > 91 + 9*A + -1*B = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 93 + 9*A + -1*B > 91 + 9*A + -1*B = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) The following rules are weakly oriented: [100 >= A] ==> evalsipma91start(A,B,C,D) = 102 + -1*A >= 102 + -1*A = evalsipma91bb3in(1,A,C,D) [100 >= B] ==> evalsipma91bb3in(A,B,C,D) = 93 + 9*A + -1*B >= 91 + 9*A + -1*B = evalsipma91bb3in(1 + A,11 + B,C,D) [A >= 2 && 110 >= B] ==> evalsipma91bb11in(A,B,C,D) = 92 + 9*A + -1*B >= 92 + 9*A + -1*B = evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] ==> evalsipma91bb11in(A,B,C,D) = 92 + 9*A + -1*B >= 92 + 9*A + -1*B = evalsipma91bb8in(A,B,-10 + B,-1 + A) [C >= 101 && D >= 2 && 110 >= 1 + C] ==> evalsipma91bb8in(A,B,C,D) = 91 + -1*C + 9*D >= 91 + -1*C + 9*D = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 91 + -1*C + 9*D >= 91 + -1*C + 9*D = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==> evalsipma91bb3in(A,B,C,D) = 93 + 9*A + -1*B >= 92 + 9*A + -1*B = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) * Step 33: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (1,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (1,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (?,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (102 + A,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (102 + A,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalsipma91bb11in) = 91 + 10*x1 + -1*x2 p(evalsipma91bb3in) = 90 + 10*x1 + -1*x2 p(evalsipma91bb8in) = 90 + -1*x3 + 10*x4 p(evalsipma91start) = 101 + -1*x1 The following rules are strictly oriented: [100 >= A] ==> evalsipma91start(A,B,C,D) = 101 + -1*A > 100 + -1*A = evalsipma91bb3in(1,A,C,D) [A >= 2 && 110 >= B] ==> evalsipma91bb11in(A,B,C,D) = 91 + 10*A + -1*B > 90 + 10*A + -1*B = evalsipma91bb8in(A,B,-10 + B,-1 + A) [C >= 101 && D >= 2 && 110 >= 1 + C] ==> evalsipma91bb8in(A,B,C,D) = 90 + -1*C + 10*D > 89 + -1*C + 10*D = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==> evalsipma91bb8in(A,B,C,D) = 90 + -1*C + 10*D > 89 + -1*C + 10*D = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 90 + -1*C + 10*D > 89 + -1*C + 10*D = evalsipma91bb8in(1 + D,11 + C,1 + C,D) The following rules are weakly oriented: [100 >= B] ==> evalsipma91bb3in(A,B,C,D) = 90 + 10*A + -1*B >= 89 + 10*A + -1*B = evalsipma91bb3in(1 + A,11 + B,C,D) [A >= 2 && A >= 3] ==> evalsipma91bb11in(A,B,C,D) = 91 + 10*A + -1*B >= 90 + 10*A + -1*B = evalsipma91bb8in(A,B,-10 + B,-1 + A) [C >= 101 && D >= 2 && D >= 3] ==> evalsipma91bb8in(A,B,C,D) = 90 + -1*C + 10*D >= 89 + -1*C + 10*D = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 90 + 10*A + -1*B >= 90 + 10*A + -1*B = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] ==> evalsipma91bb3in(A,B,C,D) = 90 + 10*A + -1*B >= 90 + 10*A + -1*B = evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] ==> evalsipma91bb3in(A,B,C,D) = 90 + 10*A + -1*B >= 90 + 10*A + -1*B = evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) * Step 34: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (1,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (1,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (101 + A,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (?,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (101 + A,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (101 + A,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [27,25,26,28], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalsipma91bb8in) = x4 The following rules are strictly oriented: [C >= 101 && D >= 2 && 110 >= 1 + C] ==> evalsipma91bb8in(A,B,C,D) = D > -1 + D = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] ==> evalsipma91bb8in(A,B,C,D) = D > -1 + D = evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) The following rules are weakly oriented: [100 >= C && 1 + D >= 2 && 110 >= 11 + C] ==> evalsipma91bb8in(A,B,C,D) = D >= D = evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] ==> evalsipma91bb8in(A,B,C,D) = D >= D = evalsipma91bb8in(1 + D,11 + C,1 + C,D) We use the following global sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) * Step 35: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. evalsipma91start(A,B,C,D) -> evalsipma91bb3in(1,A,C,D) [100 >= A] (1,2) 17. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb3in(1 + A,11 + B,C,D) [100 >= B] (101 + A,2) 19. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && 110 >= B] (1,2) 20. evalsipma91bb11in(A,B,C,D) -> evalsipma91bb8in(A,B,-10 + B,-1 + A) [A >= 2 && A >= 3] (1,2) 25. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && 110 >= 1 + C] (101 + A,3) 26. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(D,1 + C,-9 + C,-1 + D) [C >= 101 && D >= 2 && D >= 3] (208 + 2*A,3) 27. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 110 >= 11 + C] (101 + A,3) 28. evalsipma91bb8in(A,B,C,D) -> evalsipma91bb8in(1 + D,11 + C,1 + C,D) [100 >= C && 1 + D >= 2 && 1 + D >= 3] (101 + A,3) 30. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && 110 >= B && 100 >= -10 + B] (2,4) 31. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(-1 + A,-9 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && -10 + B >= 101] (2,4) 32. evalsipma91bb3in(A,B,C,D) -> evalsipma91bb11in(A,1 + B,-10 + B,-1 + A) [B >= 101 && A >= 2 && A >= 3 && 100 >= -10 + B] (2,4) Signature: {(evalsipma91bb11in,4) ;(evalsipma91bb2in,4) ;(evalsipma91bb3in,4) ;(evalsipma91bb5in,4) ;(evalsipma91bb8in,4) ;(evalsipma91entryin,4) ;(evalsipma91returnin,4) ;(evalsipma91start,4) ;(evalsipma91stop,4)} Flow Graph: [16->{17},17->{17,30,31,32},19->{27,28},20->{25,26,27,28},25->{27,28},26->{25,26,27,28},27->{27,28} ,28->{25,26,27,28},30->{19,20},31->{19,20},32->{19,20}] Sizebounds: (<16,0,A>, 1) (<16,0,B>, A) (<16,0,C>, C) (<16,0,D>, D) (<17,0,A>, 102 + A) (<17,0,B>, 1111 + 12*A) (<17,0,C>, C) (<17,0,D>, D) (<19,0,A>, 103 + A) (<19,0,B>, 1120 + 12*A) (<19,0,C>, 1130 + 12*A) (<19,0,D>, 104 + A) (<20,0,A>, 103 + A) (<20,0,B>, 1120 + 12*A) (<20,0,C>, 1130 + 12*A) (<20,0,D>, 104 + A) (<25,0,A>, ?) (<25,0,B>, 110) (<25,0,C>, 100) (<25,0,D>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, 101) (<27,0,D>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, 101) (<28,0,D>, ?) (<30,0,A>, 102 + A) (<30,0,B>, 111) (<30,0,C>, 100) (<30,0,D>, 103 + A) (<31,0,A>, 103 + A) (<31,0,B>, 1120 + 12*A) (<31,0,C>, 1121 + 12*A) (<31,0,D>, 103 + A) (<32,0,A>, 102 + A) (<32,0,B>, 111) (<32,0,C>, 100) (<32,0,D>, 103 + A) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))