WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f7(F,F,10,0,E) True (1,1) 1. f7(A,B,C,D,E) -> f7(A,B,C,1 + D,F) [C >= 1 + D] (?,1) 2. f7(A,B,C,D,E) -> f19(A,B,C,D,E) [D >= C] (?,1) Signature: {(f0,5);(f19,5);(f7,5)} Flow Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [A,B,E] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(C,D) -> f7(10,0) True (1,1) 1. f7(C,D) -> f7(C,1 + D) [C >= 1 + D] (?,1) 2. f7(C,D) -> f19(C,D) [D >= C] (?,1) Signature: {(f0,2);(f19,2);(f7,2)} Flow Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,C>, 10, .= 10) (<0,0,D>, 0, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, 1 + D, .+ 1) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(C,D) -> f7(10,0) True (1,1) 1. f7(C,D) -> f7(C,1 + D) [C >= 1 + D] (?,1) 2. f7(C,D) -> f19(C,D) [D >= C] (?,1) Signature: {(f0,2);(f19,2);(f7,2)} Flow Graph: [0->{1,2},1->{1,2},2->{}] Sizebounds: (<0,0,C>, ?) (<0,0,D>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<2,0,C>, ?) (<2,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,C>, 10) (<0,0,D>, 0) (<1,0,C>, 10) (<1,0,D>, 10) (<2,0,C>, 10) (<2,0,D>, 10) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(C,D) -> f7(10,0) True (1,1) 1. f7(C,D) -> f7(C,1 + D) [C >= 1 + D] (?,1) 2. f7(C,D) -> f19(C,D) [D >= C] (?,1) Signature: {(f0,2);(f19,2);(f7,2)} Flow Graph: [0->{1,2},1->{1,2},2->{}] Sizebounds: (<0,0,C>, 10) (<0,0,D>, 0) (<1,0,C>, 10) (<1,0,D>, 10) (<2,0,C>, 10) (<2,0,D>, 10) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(C,D) -> f7(10,0) True (1,1) 1. f7(C,D) -> f7(C,1 + D) [C >= 1 + D] (?,1) 2. f7(C,D) -> f19(C,D) [D >= C] (?,1) Signature: {(f0,2);(f19,2);(f7,2)} Flow Graph: [0->{1},1->{1,2},2->{}] Sizebounds: (<0,0,C>, 10) (<0,0,D>, 0) (<1,0,C>, 10) (<1,0,D>, 10) (<2,0,C>, 10) (<2,0,D>, 10) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(C,D) -> f7(10,0) True (1,1) 1. f7(C,D) -> f7(C,1 + D) [C >= 1 + D] (?,1) Signature: {(f0,2);(f19,2);(f7,2)} Flow Graph: [0->{1},1->{1}] Sizebounds: (<0,0,C>, 10) (<0,0,D>, 0) (<1,0,C>, 10) (<1,0,D>, 10) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 10 p(f7) = x1 + -1*x2 The following rules are strictly oriented: [C >= 1 + D] ==> f7(C,D) = C + -1*D > -1 + C + -1*D = f7(C,1 + D) The following rules are weakly oriented: True ==> f0(C,D) = 10 >= 10 = f7(10,0) * Step 7: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(C,D) -> f7(10,0) True (1,1) 1. f7(C,D) -> f7(C,1 + D) [C >= 1 + D] (10,1) Signature: {(f0,2);(f19,2);(f7,2)} Flow Graph: [0->{1},1->{1}] Sizebounds: (<0,0,C>, 10) (<0,0,D>, 0) (<1,0,C>, 10) (<1,0,D>, 10) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))