WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T)  -> f7(8,0,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T)                                                            True     (1,1)
          1. f7(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T)  -> f7(A,1 + B,U + V,W,X + Y,Z,A1 + B1,C1,D1 + E1,F1,D1 + E1 + U + V,-1*D1 + -1*E1 + U + V,A1 + B1 + X + Y [7 >= B] (?,1)
                                                         ,-1*A1 + -1*B1 + X + Y,-3196,G1,H1,I1 + J1,J1 + K1,J1)                                                                   
          2. f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) -> f62(A,1 + B,U + V,W,X + Y,Z,A1 + B1,C1,D1 + E1,F1,D1 + E1 + U + V,-1*D1 + -1*E1 + U + V,A1 + B1 + X + Y[7 >= B] (?,1)
                                                         ,-1*A1 + -1*B1 + X + Y,-3196,G1,H1,I1 + J1,J1 + K1,J1)                                                                   
          3. f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) -> f118(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T)                                                          [B >= 8] (?,1)
          4. f7(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T)  -> f62(A,0,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T)                                                           [B >= 8] (?,1)
        Signature:
          {(f0,20);(f118,20);(f62,20);(f7,20)}
        Flow Graph:
          [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [A,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B)  -> f7(0)      True     (1,1)
          1. f7(B)  -> f7(1 + B)  [7 >= B] (?,1)
          2. f62(B) -> f62(1 + B) [7 >= B] (?,1)
          3. f62(B) -> f118(B)    [B >= 8] (?,1)
          4. f7(B)  -> f62(0)     [B >= 8] (?,1)
        Signature:
          {(f0,1);(f118,1);(f62,1);(f7,1)}
        Flow Graph:
          [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,B>,     0, .= 0) 
          (<1,0,B>, 1 + B, .+ 1) 
          (<2,0,B>, 1 + B, .+ 1) 
          (<3,0,B>,     B, .= 0) 
          (<4,0,B>,     0, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B)  -> f7(0)      True     (1,1)
          1. f7(B)  -> f7(1 + B)  [7 >= B] (?,1)
          2. f62(B) -> f62(1 + B) [7 >= B] (?,1)
          3. f62(B) -> f118(B)    [B >= 8] (?,1)
          4. f7(B)  -> f62(0)     [B >= 8] (?,1)
        Signature:
          {(f0,1);(f118,1);(f62,1);(f7,1)}
        Flow Graph:
          [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}]
        Sizebounds:
          (<0,0,B>, ?) 
          (<1,0,B>, ?) 
          (<2,0,B>, ?) 
          (<3,0,B>, ?) 
          (<4,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,B>, 0) 
          (<1,0,B>, 8) 
          (<2,0,B>, 8) 
          (<3,0,B>, 8) 
          (<4,0,B>, 0) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B)  -> f7(0)      True     (1,1)
          1. f7(B)  -> f7(1 + B)  [7 >= B] (?,1)
          2. f62(B) -> f62(1 + B) [7 >= B] (?,1)
          3. f62(B) -> f118(B)    [B >= 8] (?,1)
          4. f7(B)  -> f62(0)     [B >= 8] (?,1)
        Signature:
          {(f0,1);(f118,1);(f62,1);(f7,1)}
        Flow Graph:
          [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}]
        Sizebounds:
          (<0,0,B>, 0) 
          (<1,0,B>, 8) 
          (<2,0,B>, 8) 
          (<3,0,B>, 8) 
          (<4,0,B>, 0) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,4),(4,3)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B)  -> f7(0)      True     (1,1)
          1. f7(B)  -> f7(1 + B)  [7 >= B] (?,1)
          2. f62(B) -> f62(1 + B) [7 >= B] (?,1)
          3. f62(B) -> f118(B)    [B >= 8] (?,1)
          4. f7(B)  -> f62(0)     [B >= 8] (?,1)
        Signature:
          {(f0,1);(f118,1);(f62,1);(f7,1)}
        Flow Graph:
          [0->{1},1->{1,4},2->{2,3},3->{},4->{2}]
        Sizebounds:
          (<0,0,B>, 0) 
          (<1,0,B>, 8) 
          (<2,0,B>, 8) 
          (<3,0,B>, 8) 
          (<4,0,B>, 0) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B)  -> f7(0)      True     (1,1)
          1. f7(B)  -> f7(1 + B)  [7 >= B] (?,1)
          2. f62(B) -> f62(1 + B) [7 >= B] (?,1)
          4. f7(B)  -> f62(0)     [B >= 8] (?,1)
        Signature:
          {(f0,1);(f118,1);(f62,1);(f7,1)}
        Flow Graph:
          [0->{1},1->{1,4},2->{2},4->{2}]
        Sizebounds:
          (<0,0,B>, 0) 
          (<1,0,B>, 8) 
          (<2,0,B>, 8) 
          (<4,0,B>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f62) = 0
           p(f7) = 1
        
        The following rules are strictly oriented:
        [B >= 8] ==>       
           f7(B)   = 1     
                   > 0     
                   = f62(0)
        
        
        The following rules are weakly oriented:
            True ==>           
           f0(B)   = 1         
                  >= 1         
                   = f7(0)     
        
        [7 >= B] ==>           
           f7(B)   = 1         
                  >= 1         
                   = f7(1 + B) 
        
        [7 >= B] ==>           
          f62(B)   = 0         
                  >= 0         
                   = f62(1 + B)
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B)  -> f7(0)      True     (1,1)
          1. f7(B)  -> f7(1 + B)  [7 >= B] (?,1)
          2. f62(B) -> f62(1 + B) [7 >= B] (?,1)
          4. f7(B)  -> f62(0)     [B >= 8] (1,1)
        Signature:
          {(f0,1);(f118,1);(f62,1);(f7,1)}
        Flow Graph:
          [0->{1},1->{1,4},2->{2},4->{2}]
        Sizebounds:
          (<0,0,B>, 0) 
          (<1,0,B>, 8) 
          (<2,0,B>, 8) 
          (<4,0,B>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 8        
          p(f62) = 8 + -1*x1
           p(f7) = 8        
        
        The following rules are strictly oriented:
        [7 >= B] ==>           
          f62(B)   = 8 + -1*B  
                   > 7 + -1*B  
                   = f62(1 + B)
        
        
        The following rules are weakly oriented:
            True ==>          
           f0(B)   = 8        
                  >= 8        
                   = f7(0)    
        
        [7 >= B] ==>          
           f7(B)   = 8        
                  >= 8        
                   = f7(1 + B)
        
        [B >= 8] ==>          
           f7(B)   = 8        
                  >= 8        
                   = f62(0)   
        
        
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B)  -> f7(0)      True     (1,1)
          1. f7(B)  -> f7(1 + B)  [7 >= B] (?,1)
          2. f62(B) -> f62(1 + B) [7 >= B] (8,1)
          4. f7(B)  -> f62(0)     [B >= 8] (1,1)
        Signature:
          {(f0,1);(f118,1);(f62,1);(f7,1)}
        Flow Graph:
          [0->{1},1->{1,4},2->{2},4->{2}]
        Sizebounds:
          (<0,0,B>, 0) 
          (<1,0,B>, 8) 
          (<2,0,B>, 8) 
          (<4,0,B>, 0) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f7) = 8 + -1*x1
        
        The following rules are strictly oriented:
        [7 >= B] ==>          
           f7(B)   = 8 + -1*B 
                   > 7 + -1*B 
                   = f7(1 + B)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<0,0,B>, 0) 
        (<1,0,B>, 8) 
        (<2,0,B>, 8) 
        (<4,0,B>, 0) 
* Step 9: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(B)  -> f7(0)      True     (1,1)
          1. f7(B)  -> f7(1 + B)  [7 >= B] (8,1)
          2. f62(B) -> f62(1 + B) [7 >= B] (8,1)
          4. f7(B)  -> f62(0)     [B >= 8] (1,1)
        Signature:
          {(f0,1);(f118,1);(f62,1);(f7,1)}
        Flow Graph:
          [0->{1},1->{1,4},2->{2},4->{2}]
        Sizebounds:
          (<0,0,B>, 0) 
          (<1,0,B>, 8) 
          (<2,0,B>, 8) 
          (<4,0,B>, 0) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))