WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) -> f7(8,0,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) True (1,1) 1. f7(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) -> f7(A,1 + B,U + V,W,X + Y,Z,A1 + B1,C1,D1 + E1,F1,D1 + E1 + U + V,-1*D1 + -1*E1 + U + V,A1 + B1 + X + Y [7 >= B] (?,1) ,-1*A1 + -1*B1 + X + Y,-3196,G1,H1,I1 + J1,J1 + K1,J1) 2. f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) -> f62(A,1 + B,U + V,W,X + Y,Z,A1 + B1,C1,D1 + E1,F1,D1 + E1 + U + V,-1*D1 + -1*E1 + U + V,A1 + B1 + X + Y[7 >= B] (?,1) ,-1*A1 + -1*B1 + X + Y,-3196,G1,H1,I1 + J1,J1 + K1,J1) 3. f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) -> f118(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) [B >= 8] (?,1) 4. f7(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) -> f62(A,0,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T) [B >= 8] (?,1) Signature: {(f0,20);(f118,20);(f62,20);(f7,20)} Flow Graph: [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [A,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B) -> f7(0) True (1,1) 1. f7(B) -> f7(1 + B) [7 >= B] (?,1) 2. f62(B) -> f62(1 + B) [7 >= B] (?,1) 3. f62(B) -> f118(B) [B >= 8] (?,1) 4. f7(B) -> f62(0) [B >= 8] (?,1) Signature: {(f0,1);(f118,1);(f62,1);(f7,1)} Flow Graph: [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,B>, 0, .= 0) (<1,0,B>, 1 + B, .+ 1) (<2,0,B>, 1 + B, .+ 1) (<3,0,B>, B, .= 0) (<4,0,B>, 0, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B) -> f7(0) True (1,1) 1. f7(B) -> f7(1 + B) [7 >= B] (?,1) 2. f62(B) -> f62(1 + B) [7 >= B] (?,1) 3. f62(B) -> f118(B) [B >= 8] (?,1) 4. f7(B) -> f62(0) [B >= 8] (?,1) Signature: {(f0,1);(f118,1);(f62,1);(f7,1)} Flow Graph: [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}] Sizebounds: (<0,0,B>, ?) (<1,0,B>, ?) (<2,0,B>, ?) (<3,0,B>, ?) (<4,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,B>, 0) (<1,0,B>, 8) (<2,0,B>, 8) (<3,0,B>, 8) (<4,0,B>, 0) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B) -> f7(0) True (1,1) 1. f7(B) -> f7(1 + B) [7 >= B] (?,1) 2. f62(B) -> f62(1 + B) [7 >= B] (?,1) 3. f62(B) -> f118(B) [B >= 8] (?,1) 4. f7(B) -> f62(0) [B >= 8] (?,1) Signature: {(f0,1);(f118,1);(f62,1);(f7,1)} Flow Graph: [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}] Sizebounds: (<0,0,B>, 0) (<1,0,B>, 8) (<2,0,B>, 8) (<3,0,B>, 8) (<4,0,B>, 0) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,4),(4,3)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B) -> f7(0) True (1,1) 1. f7(B) -> f7(1 + B) [7 >= B] (?,1) 2. f62(B) -> f62(1 + B) [7 >= B] (?,1) 3. f62(B) -> f118(B) [B >= 8] (?,1) 4. f7(B) -> f62(0) [B >= 8] (?,1) Signature: {(f0,1);(f118,1);(f62,1);(f7,1)} Flow Graph: [0->{1},1->{1,4},2->{2,3},3->{},4->{2}] Sizebounds: (<0,0,B>, 0) (<1,0,B>, 8) (<2,0,B>, 8) (<3,0,B>, 8) (<4,0,B>, 0) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B) -> f7(0) True (1,1) 1. f7(B) -> f7(1 + B) [7 >= B] (?,1) 2. f62(B) -> f62(1 + B) [7 >= B] (?,1) 4. f7(B) -> f62(0) [B >= 8] (?,1) Signature: {(f0,1);(f118,1);(f62,1);(f7,1)} Flow Graph: [0->{1},1->{1,4},2->{2},4->{2}] Sizebounds: (<0,0,B>, 0) (<1,0,B>, 8) (<2,0,B>, 8) (<4,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f62) = 0 p(f7) = 1 The following rules are strictly oriented: [B >= 8] ==> f7(B) = 1 > 0 = f62(0) The following rules are weakly oriented: True ==> f0(B) = 1 >= 1 = f7(0) [7 >= B] ==> f7(B) = 1 >= 1 = f7(1 + B) [7 >= B] ==> f62(B) = 0 >= 0 = f62(1 + B) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B) -> f7(0) True (1,1) 1. f7(B) -> f7(1 + B) [7 >= B] (?,1) 2. f62(B) -> f62(1 + B) [7 >= B] (?,1) 4. f7(B) -> f62(0) [B >= 8] (1,1) Signature: {(f0,1);(f118,1);(f62,1);(f7,1)} Flow Graph: [0->{1},1->{1,4},2->{2},4->{2}] Sizebounds: (<0,0,B>, 0) (<1,0,B>, 8) (<2,0,B>, 8) (<4,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 8 p(f62) = 8 + -1*x1 p(f7) = 8 The following rules are strictly oriented: [7 >= B] ==> f62(B) = 8 + -1*B > 7 + -1*B = f62(1 + B) The following rules are weakly oriented: True ==> f0(B) = 8 >= 8 = f7(0) [7 >= B] ==> f7(B) = 8 >= 8 = f7(1 + B) [B >= 8] ==> f7(B) = 8 >= 8 = f62(0) * Step 8: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B) -> f7(0) True (1,1) 1. f7(B) -> f7(1 + B) [7 >= B] (?,1) 2. f62(B) -> f62(1 + B) [7 >= B] (8,1) 4. f7(B) -> f62(0) [B >= 8] (1,1) Signature: {(f0,1);(f118,1);(f62,1);(f7,1)} Flow Graph: [0->{1},1->{1,4},2->{2},4->{2}] Sizebounds: (<0,0,B>, 0) (<1,0,B>, 8) (<2,0,B>, 8) (<4,0,B>, 0) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [1], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f7) = 8 + -1*x1 The following rules are strictly oriented: [7 >= B] ==> f7(B) = 8 + -1*B > 7 + -1*B = f7(1 + B) The following rules are weakly oriented: We use the following global sizebounds: (<0,0,B>, 0) (<1,0,B>, 8) (<2,0,B>, 8) (<4,0,B>, 0) * Step 9: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(B) -> f7(0) True (1,1) 1. f7(B) -> f7(1 + B) [7 >= B] (8,1) 2. f62(B) -> f62(1 + B) [7 >= B] (8,1) 4. f7(B) -> f62(0) [B >= 8] (1,1) Signature: {(f0,1);(f118,1);(f62,1);(f7,1)} Flow Graph: [0->{1},1->{1,4},2->{2},4->{2}] Sizebounds: (<0,0,B>, 0) (<1,0,B>, 8) (<2,0,B>, 8) (<4,0,B>, 0) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))