WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evaleasy2start(A) -> evaleasy2entryin(A) True (1,1) 1. evaleasy2entryin(A) -> evaleasy2bb1in(A) True (?,1) 2. evaleasy2bb1in(A) -> evaleasy2bbin(A) [A >= 1] (?,1) 3. evaleasy2bb1in(A) -> evaleasy2returnin(A) [0 >= A] (?,1) 4. evaleasy2bbin(A) -> evaleasy2bb1in(-1 + A) True (?,1) 5. evaleasy2returnin(A) -> evaleasy2stop(A) True (?,1) Signature: {(evaleasy2bb1in,1) ;(evaleasy2bbin,1) ;(evaleasy2entryin,1) ;(evaleasy2returnin,1) ;(evaleasy2start,1) ;(evaleasy2stop,1)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<1,0,A>, A, .= 0) (<2,0,A>, A, .= 0) (<3,0,A>, A, .= 0) (<4,0,A>, 1 + A, .+ 1) (<5,0,A>, A, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evaleasy2start(A) -> evaleasy2entryin(A) True (1,1) 1. evaleasy2entryin(A) -> evaleasy2bb1in(A) True (?,1) 2. evaleasy2bb1in(A) -> evaleasy2bbin(A) [A >= 1] (?,1) 3. evaleasy2bb1in(A) -> evaleasy2returnin(A) [0 >= A] (?,1) 4. evaleasy2bbin(A) -> evaleasy2bb1in(-1 + A) True (?,1) 5. evaleasy2returnin(A) -> evaleasy2stop(A) True (?,1) Signature: {(evaleasy2bb1in,1) ;(evaleasy2bbin,1) ;(evaleasy2entryin,1) ;(evaleasy2returnin,1) ;(evaleasy2start,1) ;(evaleasy2stop,1)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}] Sizebounds: (<0,0,A>, ?) (<1,0,A>, ?) (<2,0,A>, ?) (<3,0,A>, ?) (<4,0,A>, ?) (<5,0,A>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<1,0,A>, A) (<2,0,A>, ?) (<3,0,A>, ?) (<4,0,A>, ?) (<5,0,A>, ?) * Step 3: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evaleasy2start(A) -> evaleasy2entryin(A) True (1,1) 1. evaleasy2entryin(A) -> evaleasy2bb1in(A) True (?,1) 2. evaleasy2bb1in(A) -> evaleasy2bbin(A) [A >= 1] (?,1) 3. evaleasy2bb1in(A) -> evaleasy2returnin(A) [0 >= A] (?,1) 4. evaleasy2bbin(A) -> evaleasy2bb1in(-1 + A) True (?,1) 5. evaleasy2returnin(A) -> evaleasy2stop(A) True (?,1) Signature: {(evaleasy2bb1in,1) ;(evaleasy2bbin,1) ;(evaleasy2entryin,1) ;(evaleasy2returnin,1) ;(evaleasy2start,1) ;(evaleasy2stop,1)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}] Sizebounds: (<0,0,A>, A) (<1,0,A>, A) (<2,0,A>, ?) (<3,0,A>, ?) (<4,0,A>, ?) (<5,0,A>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,5] * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evaleasy2start(A) -> evaleasy2entryin(A) True (1,1) 1. evaleasy2entryin(A) -> evaleasy2bb1in(A) True (?,1) 2. evaleasy2bb1in(A) -> evaleasy2bbin(A) [A >= 1] (?,1) 4. evaleasy2bbin(A) -> evaleasy2bb1in(-1 + A) True (?,1) Signature: {(evaleasy2bb1in,1) ;(evaleasy2bbin,1) ;(evaleasy2entryin,1) ;(evaleasy2returnin,1) ;(evaleasy2start,1) ;(evaleasy2stop,1)} Flow Graph: [0->{1},1->{2},2->{4},4->{2}] Sizebounds: (<0,0,A>, A) (<1,0,A>, A) (<2,0,A>, ?) (<4,0,A>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evaleasy2bb1in) = 2 + x1 p(evaleasy2bbin) = 1 + x1 p(evaleasy2entryin) = 2 + x1 p(evaleasy2start) = 2 + x1 The following rules are strictly oriented: [A >= 1] ==> evaleasy2bb1in(A) = 2 + A > 1 + A = evaleasy2bbin(A) The following rules are weakly oriented: True ==> evaleasy2start(A) = 2 + A >= 2 + A = evaleasy2entryin(A) True ==> evaleasy2entryin(A) = 2 + A >= 2 + A = evaleasy2bb1in(A) True ==> evaleasy2bbin(A) = 1 + A >= 1 + A = evaleasy2bb1in(-1 + A) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evaleasy2start(A) -> evaleasy2entryin(A) True (1,1) 1. evaleasy2entryin(A) -> evaleasy2bb1in(A) True (?,1) 2. evaleasy2bb1in(A) -> evaleasy2bbin(A) [A >= 1] (2 + A,1) 4. evaleasy2bbin(A) -> evaleasy2bb1in(-1 + A) True (?,1) Signature: {(evaleasy2bb1in,1) ;(evaleasy2bbin,1) ;(evaleasy2entryin,1) ;(evaleasy2returnin,1) ;(evaleasy2start,1) ;(evaleasy2stop,1)} Flow Graph: [0->{1},1->{2},2->{4},4->{2}] Sizebounds: (<0,0,A>, A) (<1,0,A>, A) (<2,0,A>, ?) (<4,0,A>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evaleasy2start(A) -> evaleasy2entryin(A) True (1,1) 1. evaleasy2entryin(A) -> evaleasy2bb1in(A) True (1,1) 2. evaleasy2bb1in(A) -> evaleasy2bbin(A) [A >= 1] (2 + A,1) 4. evaleasy2bbin(A) -> evaleasy2bb1in(-1 + A) True (2 + A,1) Signature: {(evaleasy2bb1in,1) ;(evaleasy2bbin,1) ;(evaleasy2entryin,1) ;(evaleasy2returnin,1) ;(evaleasy2start,1) ;(evaleasy2stop,1)} Flow Graph: [0->{1},1->{2},2->{4},4->{2}] Sizebounds: (<0,0,A>, A) (<1,0,A>, A) (<2,0,A>, ?) (<4,0,A>, ?) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))