WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evaleasy2start(A)    -> evaleasy2entryin(A)    True     (1,1)
          1. evaleasy2entryin(A)  -> evaleasy2bb1in(A)      True     (?,1)
          2. evaleasy2bb1in(A)    -> evaleasy2bbin(A)       [A >= 1] (?,1)
          3. evaleasy2bb1in(A)    -> evaleasy2returnin(A)   [0 >= A] (?,1)
          4. evaleasy2bbin(A)     -> evaleasy2bb1in(-1 + A) True     (?,1)
          5. evaleasy2returnin(A) -> evaleasy2stop(A)       True     (?,1)
        Signature:
          {(evaleasy2bb1in,1)
          ;(evaleasy2bbin,1)
          ;(evaleasy2entryin,1)
          ;(evaleasy2returnin,1)
          ;(evaleasy2start,1)
          ;(evaleasy2stop,1)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) 
          (<1,0,A>,     A, .= 0) 
          (<2,0,A>,     A, .= 0) 
          (<3,0,A>,     A, .= 0) 
          (<4,0,A>, 1 + A, .+ 1) 
          (<5,0,A>,     A, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evaleasy2start(A)    -> evaleasy2entryin(A)    True     (1,1)
          1. evaleasy2entryin(A)  -> evaleasy2bb1in(A)      True     (?,1)
          2. evaleasy2bb1in(A)    -> evaleasy2bbin(A)       [A >= 1] (?,1)
          3. evaleasy2bb1in(A)    -> evaleasy2returnin(A)   [0 >= A] (?,1)
          4. evaleasy2bbin(A)     -> evaleasy2bb1in(-1 + A) True     (?,1)
          5. evaleasy2returnin(A) -> evaleasy2stop(A)       True     (?,1)
        Signature:
          {(evaleasy2bb1in,1)
          ;(evaleasy2bbin,1)
          ;(evaleasy2entryin,1)
          ;(evaleasy2returnin,1)
          ;(evaleasy2start,1)
          ;(evaleasy2stop,1)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}]
        Sizebounds:
          (<0,0,A>, ?) 
          (<1,0,A>, ?) 
          (<2,0,A>, ?) 
          (<3,0,A>, ?) 
          (<4,0,A>, ?) 
          (<5,0,A>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) 
          (<1,0,A>, A) 
          (<2,0,A>, ?) 
          (<3,0,A>, ?) 
          (<4,0,A>, ?) 
          (<5,0,A>, ?) 
* Step 3: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evaleasy2start(A)    -> evaleasy2entryin(A)    True     (1,1)
          1. evaleasy2entryin(A)  -> evaleasy2bb1in(A)      True     (?,1)
          2. evaleasy2bb1in(A)    -> evaleasy2bbin(A)       [A >= 1] (?,1)
          3. evaleasy2bb1in(A)    -> evaleasy2returnin(A)   [0 >= A] (?,1)
          4. evaleasy2bbin(A)     -> evaleasy2bb1in(-1 + A) True     (?,1)
          5. evaleasy2returnin(A) -> evaleasy2stop(A)       True     (?,1)
        Signature:
          {(evaleasy2bb1in,1)
          ;(evaleasy2bbin,1)
          ;(evaleasy2entryin,1)
          ;(evaleasy2returnin,1)
          ;(evaleasy2start,1)
          ;(evaleasy2stop,1)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}]
        Sizebounds:
          (<0,0,A>, A) 
          (<1,0,A>, A) 
          (<2,0,A>, ?) 
          (<3,0,A>, ?) 
          (<4,0,A>, ?) 
          (<5,0,A>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,5]
* Step 4: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evaleasy2start(A)   -> evaleasy2entryin(A)    True     (1,1)
          1. evaleasy2entryin(A) -> evaleasy2bb1in(A)      True     (?,1)
          2. evaleasy2bb1in(A)   -> evaleasy2bbin(A)       [A >= 1] (?,1)
          4. evaleasy2bbin(A)    -> evaleasy2bb1in(-1 + A) True     (?,1)
        Signature:
          {(evaleasy2bb1in,1)
          ;(evaleasy2bbin,1)
          ;(evaleasy2entryin,1)
          ;(evaleasy2returnin,1)
          ;(evaleasy2start,1)
          ;(evaleasy2stop,1)}
        Flow Graph:
          [0->{1},1->{2},2->{4},4->{2}]
        Sizebounds:
          (<0,0,A>, A) 
          (<1,0,A>, A) 
          (<2,0,A>, ?) 
          (<4,0,A>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evaleasy2bb1in) = 2 + x1
             p(evaleasy2bbin) = 1 + x1
          p(evaleasy2entryin) = 2 + x1
            p(evaleasy2start) = 2 + x1
        
        The following rules are strictly oriented:
                   [A >= 1] ==>                 
          evaleasy2bb1in(A)   = 2 + A           
                              > 1 + A           
                              = evaleasy2bbin(A)
        
        
        The following rules are weakly oriented:
                         True ==>                       
            evaleasy2start(A)   = 2 + A                 
                               >= 2 + A                 
                                = evaleasy2entryin(A)   
        
                         True ==>                       
          evaleasy2entryin(A)   = 2 + A                 
                               >= 2 + A                 
                                = evaleasy2bb1in(A)     
        
                         True ==>                       
             evaleasy2bbin(A)   = 1 + A                 
                               >= 1 + A                 
                                = evaleasy2bb1in(-1 + A)
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evaleasy2start(A)   -> evaleasy2entryin(A)    True     (1,1)    
          1. evaleasy2entryin(A) -> evaleasy2bb1in(A)      True     (?,1)    
          2. evaleasy2bb1in(A)   -> evaleasy2bbin(A)       [A >= 1] (2 + A,1)
          4. evaleasy2bbin(A)    -> evaleasy2bb1in(-1 + A) True     (?,1)    
        Signature:
          {(evaleasy2bb1in,1)
          ;(evaleasy2bbin,1)
          ;(evaleasy2entryin,1)
          ;(evaleasy2returnin,1)
          ;(evaleasy2start,1)
          ;(evaleasy2stop,1)}
        Flow Graph:
          [0->{1},1->{2},2->{4},4->{2}]
        Sizebounds:
          (<0,0,A>, A) 
          (<1,0,A>, A) 
          (<2,0,A>, ?) 
          (<4,0,A>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evaleasy2start(A)   -> evaleasy2entryin(A)    True     (1,1)    
          1. evaleasy2entryin(A) -> evaleasy2bb1in(A)      True     (1,1)    
          2. evaleasy2bb1in(A)   -> evaleasy2bbin(A)       [A >= 1] (2 + A,1)
          4. evaleasy2bbin(A)    -> evaleasy2bb1in(-1 + A) True     (2 + A,1)
        Signature:
          {(evaleasy2bb1in,1)
          ;(evaleasy2bbin,1)
          ;(evaleasy2entryin,1)
          ;(evaleasy2returnin,1)
          ;(evaleasy2start,1)
          ;(evaleasy2stop,1)}
        Flow Graph:
          [0->{1},1->{2},2->{4},4->{2}]
        Sizebounds:
          (<0,0,A>, A) 
          (<1,0,A>, A) 
          (<2,0,A>, ?) 
          (<4,0,A>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))