WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S)  -> f12(3,T,3,1,0,F,G,H,I,J,K,L,M,N,O,P,Q,R,S)     True         (1,1)
          1. f12(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f12(A,B,C,T,1 + E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) [C >= 1 + E] (?,1)
          2. f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f24(A,B,C,D,E,F,1 + G,T,I,J,K,L,M,N,O,P,Q,R,S) [F >= 1 + G] (?,1)
          3. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f36(A,B,C,D,E,F,G,H,I,1 + J,T,L,M,N,O,P,Q,R,S) [I >= 1 + J] (?,1)
          4. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f46(A,B,C,D,E,F,G,H,I,J,K,K,K,N,O,P,Q,R,S)     [J >= I]     (?,1)
          5. f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f36(A,B,C,D,E,F,G,H,A,0,1,L,M,H,H,T,Q,R,S)     [G >= F]     (?,1)
          6. f12(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f24(A,B,C,D,E,A,0,1,I,J,K,L,M,N,O,P,D,D,T)     [E >= C]     (?,1)
        Signature:
          {(f0,19);(f12,19);(f24,19);(f36,19);(f46,19)}
        Flow Graph:
          [0->{1,6},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B,L,M,N,O,P,Q,R,S] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1)
          4. f36(A,C,D,E,F,G,H,I,J,K) -> f46(A,C,D,E,F,G,H,I,J,K)     [J >= I]     (?,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (?,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (?,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1,6},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, 3, .= 3) (<0,0,C>, 3, .= 3) (<0,0,D>, 1, .= 1) (<0,0,E>,     0, .= 0) (<0,0,F>, F, .= 0) (<0,0,G>,     G, .= 0) (<0,0,H>, H, .= 0) (<0,0,I>, I, .= 0) (<0,0,J>,     J, .= 0) (<0,0,K>, K, .= 0) 
          (<1,0,A>, A, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, ?,   .?) (<1,0,E>, 1 + E, .+ 1) (<1,0,F>, F, .= 0) (<1,0,G>,     G, .= 0) (<1,0,H>, H, .= 0) (<1,0,I>, I, .= 0) (<1,0,J>,     J, .= 0) (<1,0,K>, K, .= 0) 
          (<2,0,A>, A, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>,     E, .= 0) (<2,0,F>, F, .= 0) (<2,0,G>, 1 + G, .+ 1) (<2,0,H>, ?,   .?) (<2,0,I>, I, .= 0) (<2,0,J>,     J, .= 0) (<2,0,K>, K, .= 0) 
          (<3,0,A>, A, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>,     E, .= 0) (<3,0,F>, F, .= 0) (<3,0,G>,     G, .= 0) (<3,0,H>, H, .= 0) (<3,0,I>, I, .= 0) (<3,0,J>, 1 + J, .+ 1) (<3,0,K>, ?,   .?) 
          (<4,0,A>, A, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>,     E, .= 0) (<4,0,F>, F, .= 0) (<4,0,G>,     G, .= 0) (<4,0,H>, H, .= 0) (<4,0,I>, I, .= 0) (<4,0,J>,     J, .= 0) (<4,0,K>, K, .= 0) 
          (<5,0,A>, A, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>,     E, .= 0) (<5,0,F>, F, .= 0) (<5,0,G>,     G, .= 0) (<5,0,H>, H, .= 0) (<5,0,I>, A, .= 0) (<5,0,J>,     0, .= 0) (<5,0,K>, 1, .= 1) 
          (<6,0,A>, A, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>,     E, .= 0) (<6,0,F>, A, .= 0) (<6,0,G>,     0, .= 0) (<6,0,H>, 1, .= 1) (<6,0,I>, I, .= 0) (<6,0,J>,     J, .= 0) (<6,0,K>, K, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1)
          4. f36(A,C,D,E,F,G,H,I,J,K) -> f46(A,C,D,E,F,G,H,I,J,K)     [J >= I]     (?,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (?,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (?,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1,6},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<0,0,G>, ?) (<0,0,H>, ?) (<0,0,I>, ?) (<0,0,J>, ?) (<0,0,K>, ?) 
          (<1,0,A>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) (<1,0,I>, ?) (<1,0,J>, ?) (<1,0,K>, ?) 
          (<2,0,A>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) (<2,0,I>, ?) (<2,0,J>, ?) (<2,0,K>, ?) 
          (<3,0,A>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) (<3,0,I>, ?) (<3,0,J>, ?) (<3,0,K>, ?) 
          (<4,0,A>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) (<4,0,I>, ?) (<4,0,J>, ?) (<4,0,K>, ?) 
          (<5,0,A>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) (<5,0,I>, ?) (<5,0,J>, ?) (<5,0,K>, ?) 
          (<6,0,A>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) (<6,0,G>, ?) (<6,0,H>, ?) (<6,0,I>, ?) (<6,0,J>, ?) (<6,0,K>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) 
          (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) 
          (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) 
          (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) 
          (<4,0,A>, 3) (<4,0,C>, 3) (<4,0,D>, ?) (<4,0,E>, 3) (<4,0,F>, 3) (<4,0,G>, 3) (<4,0,H>, ?) (<4,0,I>, 3) (<4,0,J>, 3) (<4,0,K>, ?) 
          (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) 
          (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1)
          4. f36(A,C,D,E,F,G,H,I,J,K) -> f46(A,C,D,E,F,G,H,I,J,K)     [J >= I]     (?,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (?,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (?,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1,6},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}]
        Sizebounds:
          (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) 
          (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) 
          (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) 
          (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) 
          (<4,0,A>, 3) (<4,0,C>, 3) (<4,0,D>, ?) (<4,0,E>, 3) (<4,0,F>, 3) (<4,0,G>, 3) (<4,0,H>, ?) (<4,0,I>, 3) (<4,0,J>, 3) (<4,0,K>, ?) 
          (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) 
          (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,6)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1)
          4. f36(A,C,D,E,F,G,H,I,J,K) -> f46(A,C,D,E,F,G,H,I,J,K)     [J >= I]     (?,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (?,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (?,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}]
        Sizebounds:
          (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) 
          (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) 
          (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) 
          (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) 
          (<4,0,A>, 3) (<4,0,C>, 3) (<4,0,D>, ?) (<4,0,E>, 3) (<4,0,F>, 3) (<4,0,G>, 3) (<4,0,H>, ?) (<4,0,I>, 3) (<4,0,J>, 3) (<4,0,K>, ?) 
          (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) 
          (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [4]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (?,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (?,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}]
        Sizebounds:
          (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) 
          (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) 
          (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) 
          (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) 
          (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) 
          (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f12) = 1
          p(f24) = 0
          p(f36) = 0
        
        The following rules are strictly oriented:
                          [E >= C] ==>                         
          f12(A,C,D,E,F,G,H,I,J,K)   = 1                       
                                     > 0                       
                                     = f24(A,C,D,E,A,0,1,I,J,K)
        
        
        The following rules are weakly oriented:
                              True ==>                             
           f0(A,C,D,E,F,G,H,I,J,K)   = 1                           
                                    >= 1                           
                                     = f12(3,3,1,0,F,G,H,I,J,K)    
        
                      [C >= 1 + E] ==>                             
          f12(A,C,D,E,F,G,H,I,J,K)   = 1                           
                                    >= 1                           
                                     = f12(A,C,T,1 + E,F,G,H,I,J,K)
        
                      [F >= 1 + G] ==>                             
          f24(A,C,D,E,F,G,H,I,J,K)   = 0                           
                                    >= 0                           
                                     = f24(A,C,D,E,F,1 + G,T,I,J,K)
        
                      [I >= 1 + J] ==>                             
          f36(A,C,D,E,F,G,H,I,J,K)   = 0                           
                                    >= 0                           
                                     = f36(A,C,D,E,F,G,H,I,1 + J,T)
        
                          [G >= F] ==>                             
          f24(A,C,D,E,F,G,H,I,J,K)   = 0                           
                                    >= 0                           
                                     = f36(A,C,D,E,F,G,H,A,0,1)    
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (?,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (1,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}]
        Sizebounds:
          (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) 
          (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) 
          (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) 
          (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) 
          (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) 
          (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f12) = 1
          p(f24) = 1
          p(f36) = 0
        
        The following rules are strictly oriented:
                          [G >= F] ==>                         
          f24(A,C,D,E,F,G,H,I,J,K)   = 1                       
                                     > 0                       
                                     = f36(A,C,D,E,F,G,H,A,0,1)
        
        
        The following rules are weakly oriented:
                              True ==>                             
           f0(A,C,D,E,F,G,H,I,J,K)   = 1                           
                                    >= 1                           
                                     = f12(3,3,1,0,F,G,H,I,J,K)    
        
                      [C >= 1 + E] ==>                             
          f12(A,C,D,E,F,G,H,I,J,K)   = 1                           
                                    >= 1                           
                                     = f12(A,C,T,1 + E,F,G,H,I,J,K)
        
                      [F >= 1 + G] ==>                             
          f24(A,C,D,E,F,G,H,I,J,K)   = 1                           
                                    >= 1                           
                                     = f24(A,C,D,E,F,1 + G,T,I,J,K)
        
                      [I >= 1 + J] ==>                             
          f36(A,C,D,E,F,G,H,I,J,K)   = 0                           
                                    >= 0                           
                                     = f36(A,C,D,E,F,G,H,I,1 + J,T)
        
                          [E >= C] ==>                             
          f12(A,C,D,E,F,G,H,I,J,K)   = 1                           
                                    >= 1                           
                                     = f24(A,C,D,E,A,0,1,I,J,K)    
        
        
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (1,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (1,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}]
        Sizebounds:
          (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) 
          (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) 
          (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) 
          (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) 
          (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) 
          (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 3         
          p(f12) = x1        
          p(f24) = x1        
          p(f36) = x8 + -1*x9
        
        The following rules are strictly oriented:
                      [I >= 1 + J] ==>                             
          f36(A,C,D,E,F,G,H,I,J,K)   = I + -1*J                    
                                     > -1 + I + -1*J               
                                     = f36(A,C,D,E,F,G,H,I,1 + J,T)
        
        
        The following rules are weakly oriented:
                              True ==>                             
           f0(A,C,D,E,F,G,H,I,J,K)   = 3                           
                                    >= 3                           
                                     = f12(3,3,1,0,F,G,H,I,J,K)    
        
                      [C >= 1 + E] ==>                             
          f12(A,C,D,E,F,G,H,I,J,K)   = A                           
                                    >= A                           
                                     = f12(A,C,T,1 + E,F,G,H,I,J,K)
        
                      [F >= 1 + G] ==>                             
          f24(A,C,D,E,F,G,H,I,J,K)   = A                           
                                    >= A                           
                                     = f24(A,C,D,E,F,1 + G,T,I,J,K)
        
                          [G >= F] ==>                             
          f24(A,C,D,E,F,G,H,I,J,K)   = A                           
                                    >= A                           
                                     = f36(A,C,D,E,F,G,H,A,0,1)    
        
                          [E >= C] ==>                             
          f12(A,C,D,E,F,G,H,I,J,K)   = A                           
                                    >= A                           
                                     = f24(A,C,D,E,A,0,1,I,J,K)    
        
        
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (3,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (1,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (1,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}]
        Sizebounds:
          (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) 
          (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) 
          (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) 
          (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) 
          (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) 
          (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 3         
          p(f12) = x1        
          p(f24) = x5 + -1*x6
          p(f36) = x5 + -1*x6
        
        The following rules are strictly oriented:
                      [F >= 1 + G] ==>                             
          f24(A,C,D,E,F,G,H,I,J,K)   = F + -1*G                    
                                     > -1 + F + -1*G               
                                     = f24(A,C,D,E,F,1 + G,T,I,J,K)
        
        
        The following rules are weakly oriented:
                              True ==>                             
           f0(A,C,D,E,F,G,H,I,J,K)   = 3                           
                                    >= 3                           
                                     = f12(3,3,1,0,F,G,H,I,J,K)    
        
                      [C >= 1 + E] ==>                             
          f12(A,C,D,E,F,G,H,I,J,K)   = A                           
                                    >= A                           
                                     = f12(A,C,T,1 + E,F,G,H,I,J,K)
        
                      [I >= 1 + J] ==>                             
          f36(A,C,D,E,F,G,H,I,J,K)   = F + -1*G                    
                                    >= F + -1*G                    
                                     = f36(A,C,D,E,F,G,H,I,1 + J,T)
        
                          [G >= F] ==>                             
          f24(A,C,D,E,F,G,H,I,J,K)   = F + -1*G                    
                                    >= F + -1*G                    
                                     = f36(A,C,D,E,F,G,H,A,0,1)    
        
                          [E >= C] ==>                             
          f12(A,C,D,E,F,G,H,I,J,K)   = A                           
                                    >= A                           
                                     = f24(A,C,D,E,A,0,1,I,J,K)    
        
        
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (3,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (3,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (1,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (1,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}]
        Sizebounds:
          (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) 
          (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) 
          (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) 
          (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) 
          (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) 
          (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 3         
          p(f12) = x2 + -1*x4
          p(f24) = x2 + -1*x4
          p(f36) = x2 + -1*x4
        
        The following rules are strictly oriented:
                      [C >= 1 + E] ==>                             
          f12(A,C,D,E,F,G,H,I,J,K)   = C + -1*E                    
                                     > -1 + C + -1*E               
                                     = f12(A,C,T,1 + E,F,G,H,I,J,K)
        
        
        The following rules are weakly oriented:
                              True ==>                             
           f0(A,C,D,E,F,G,H,I,J,K)   = 3                           
                                    >= 3                           
                                     = f12(3,3,1,0,F,G,H,I,J,K)    
        
                      [F >= 1 + G] ==>                             
          f24(A,C,D,E,F,G,H,I,J,K)   = C + -1*E                    
                                    >= C + -1*E                    
                                     = f24(A,C,D,E,F,1 + G,T,I,J,K)
        
                      [I >= 1 + J] ==>                             
          f36(A,C,D,E,F,G,H,I,J,K)   = C + -1*E                    
                                    >= C + -1*E                    
                                     = f36(A,C,D,E,F,G,H,I,1 + J,T)
        
                          [G >= F] ==>                             
          f24(A,C,D,E,F,G,H,I,J,K)   = C + -1*E                    
                                    >= C + -1*E                    
                                     = f36(A,C,D,E,F,G,H,A,0,1)    
        
                          [E >= C] ==>                             
          f12(A,C,D,E,F,G,H,I,J,K)   = C + -1*E                    
                                    >= C + -1*E                    
                                     = f24(A,C,D,E,A,0,1,I,J,K)    
        
        
* Step 11: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,C,D,E,F,G,H,I,J,K)  -> f12(3,3,1,0,F,G,H,I,J,K)     True         (1,1)
          1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (3,1)
          2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (3,1)
          3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (3,1)
          5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1)     [G >= F]     (1,1)
          6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K)     [E >= C]     (1,1)
        Signature:
          {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)}
        Flow Graph:
          [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}]
        Sizebounds:
          (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) 
          (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) 
          (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) 
          (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) 
          (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) 
          (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))