WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f12(3,T,3,1,0,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) True (1,1) 1. f12(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f12(A,B,C,T,1 + E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) [C >= 1 + E] (?,1) 2. f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f24(A,B,C,D,E,F,1 + G,T,I,J,K,L,M,N,O,P,Q,R,S) [F >= 1 + G] (?,1) 3. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f36(A,B,C,D,E,F,G,H,I,1 + J,T,L,M,N,O,P,Q,R,S) [I >= 1 + J] (?,1) 4. f36(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f46(A,B,C,D,E,F,G,H,I,J,K,K,K,N,O,P,Q,R,S) [J >= I] (?,1) 5. f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f36(A,B,C,D,E,F,G,H,A,0,1,L,M,H,H,T,Q,R,S) [G >= F] (?,1) 6. f12(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S) -> f24(A,B,C,D,E,A,0,1,I,J,K,L,M,N,O,P,D,D,T) [E >= C] (?,1) Signature: {(f0,19);(f12,19);(f24,19);(f36,19);(f46,19)} Flow Graph: [0->{1,6},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B,L,M,N,O,P,Q,R,S] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1) 4. f36(A,C,D,E,F,G,H,I,J,K) -> f46(A,C,D,E,F,G,H,I,J,K) [J >= I] (?,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (?,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (?,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1,6},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 3, .= 3) (<0,0,C>, 3, .= 3) (<0,0,D>, 1, .= 1) (<0,0,E>, 0, .= 0) (<0,0,F>, F, .= 0) (<0,0,G>, G, .= 0) (<0,0,H>, H, .= 0) (<0,0,I>, I, .= 0) (<0,0,J>, J, .= 0) (<0,0,K>, K, .= 0) (<1,0,A>, A, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, ?, .?) (<1,0,E>, 1 + E, .+ 1) (<1,0,F>, F, .= 0) (<1,0,G>, G, .= 0) (<1,0,H>, H, .= 0) (<1,0,I>, I, .= 0) (<1,0,J>, J, .= 0) (<1,0,K>, K, .= 0) (<2,0,A>, A, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>, E, .= 0) (<2,0,F>, F, .= 0) (<2,0,G>, 1 + G, .+ 1) (<2,0,H>, ?, .?) (<2,0,I>, I, .= 0) (<2,0,J>, J, .= 0) (<2,0,K>, K, .= 0) (<3,0,A>, A, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>, E, .= 0) (<3,0,F>, F, .= 0) (<3,0,G>, G, .= 0) (<3,0,H>, H, .= 0) (<3,0,I>, I, .= 0) (<3,0,J>, 1 + J, .+ 1) (<3,0,K>, ?, .?) (<4,0,A>, A, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>, E, .= 0) (<4,0,F>, F, .= 0) (<4,0,G>, G, .= 0) (<4,0,H>, H, .= 0) (<4,0,I>, I, .= 0) (<4,0,J>, J, .= 0) (<4,0,K>, K, .= 0) (<5,0,A>, A, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>, E, .= 0) (<5,0,F>, F, .= 0) (<5,0,G>, G, .= 0) (<5,0,H>, H, .= 0) (<5,0,I>, A, .= 0) (<5,0,J>, 0, .= 0) (<5,0,K>, 1, .= 1) (<6,0,A>, A, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>, E, .= 0) (<6,0,F>, A, .= 0) (<6,0,G>, 0, .= 0) (<6,0,H>, 1, .= 1) (<6,0,I>, I, .= 0) (<6,0,J>, J, .= 0) (<6,0,K>, K, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1) 4. f36(A,C,D,E,F,G,H,I,J,K) -> f46(A,C,D,E,F,G,H,I,J,K) [J >= I] (?,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (?,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (?,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1,6},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}] Sizebounds: (<0,0,A>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<0,0,G>, ?) (<0,0,H>, ?) (<0,0,I>, ?) (<0,0,J>, ?) (<0,0,K>, ?) (<1,0,A>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) (<1,0,I>, ?) (<1,0,J>, ?) (<1,0,K>, ?) (<2,0,A>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) (<2,0,I>, ?) (<2,0,J>, ?) (<2,0,K>, ?) (<3,0,A>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) (<3,0,I>, ?) (<3,0,J>, ?) (<3,0,K>, ?) (<4,0,A>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) (<4,0,I>, ?) (<4,0,J>, ?) (<4,0,K>, ?) (<5,0,A>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) (<5,0,I>, ?) (<5,0,J>, ?) (<5,0,K>, ?) (<6,0,A>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) (<6,0,G>, ?) (<6,0,H>, ?) (<6,0,I>, ?) (<6,0,J>, ?) (<6,0,K>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) (<4,0,A>, 3) (<4,0,C>, 3) (<4,0,D>, ?) (<4,0,E>, 3) (<4,0,F>, 3) (<4,0,G>, 3) (<4,0,H>, ?) (<4,0,I>, 3) (<4,0,J>, 3) (<4,0,K>, ?) (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1) 4. f36(A,C,D,E,F,G,H,I,J,K) -> f46(A,C,D,E,F,G,H,I,J,K) [J >= I] (?,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (?,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (?,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1,6},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}] Sizebounds: (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) (<4,0,A>, 3) (<4,0,C>, 3) (<4,0,D>, ?) (<4,0,E>, 3) (<4,0,F>, 3) (<4,0,G>, 3) (<4,0,H>, ?) (<4,0,I>, 3) (<4,0,J>, 3) (<4,0,K>, ?) (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,6)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1) 4. f36(A,C,D,E,F,G,H,I,J,K) -> f46(A,C,D,E,F,G,H,I,J,K) [J >= I] (?,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (?,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (?,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1},1->{1,6},2->{2,5},3->{3,4},4->{},5->{3,4},6->{2,5}] Sizebounds: (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) (<4,0,A>, 3) (<4,0,C>, 3) (<4,0,D>, ?) (<4,0,E>, 3) (<4,0,F>, 3) (<4,0,G>, 3) (<4,0,H>, ?) (<4,0,I>, 3) (<4,0,J>, 3) (<4,0,K>, ?) (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [4] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (?,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (?,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}] Sizebounds: (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f12) = 1 p(f24) = 0 p(f36) = 0 The following rules are strictly oriented: [E >= C] ==> f12(A,C,D,E,F,G,H,I,J,K) = 1 > 0 = f24(A,C,D,E,A,0,1,I,J,K) The following rules are weakly oriented: True ==> f0(A,C,D,E,F,G,H,I,J,K) = 1 >= 1 = f12(3,3,1,0,F,G,H,I,J,K) [C >= 1 + E] ==> f12(A,C,D,E,F,G,H,I,J,K) = 1 >= 1 = f12(A,C,T,1 + E,F,G,H,I,J,K) [F >= 1 + G] ==> f24(A,C,D,E,F,G,H,I,J,K) = 0 >= 0 = f24(A,C,D,E,F,1 + G,T,I,J,K) [I >= 1 + J] ==> f36(A,C,D,E,F,G,H,I,J,K) = 0 >= 0 = f36(A,C,D,E,F,G,H,I,1 + J,T) [G >= F] ==> f24(A,C,D,E,F,G,H,I,J,K) = 0 >= 0 = f36(A,C,D,E,F,G,H,A,0,1) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (?,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (1,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}] Sizebounds: (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f12) = 1 p(f24) = 1 p(f36) = 0 The following rules are strictly oriented: [G >= F] ==> f24(A,C,D,E,F,G,H,I,J,K) = 1 > 0 = f36(A,C,D,E,F,G,H,A,0,1) The following rules are weakly oriented: True ==> f0(A,C,D,E,F,G,H,I,J,K) = 1 >= 1 = f12(3,3,1,0,F,G,H,I,J,K) [C >= 1 + E] ==> f12(A,C,D,E,F,G,H,I,J,K) = 1 >= 1 = f12(A,C,T,1 + E,F,G,H,I,J,K) [F >= 1 + G] ==> f24(A,C,D,E,F,G,H,I,J,K) = 1 >= 1 = f24(A,C,D,E,F,1 + G,T,I,J,K) [I >= 1 + J] ==> f36(A,C,D,E,F,G,H,I,J,K) = 0 >= 0 = f36(A,C,D,E,F,G,H,I,1 + J,T) [E >= C] ==> f12(A,C,D,E,F,G,H,I,J,K) = 1 >= 1 = f24(A,C,D,E,A,0,1,I,J,K) * Step 8: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (?,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (1,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (1,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}] Sizebounds: (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 3 p(f12) = x1 p(f24) = x1 p(f36) = x8 + -1*x9 The following rules are strictly oriented: [I >= 1 + J] ==> f36(A,C,D,E,F,G,H,I,J,K) = I + -1*J > -1 + I + -1*J = f36(A,C,D,E,F,G,H,I,1 + J,T) The following rules are weakly oriented: True ==> f0(A,C,D,E,F,G,H,I,J,K) = 3 >= 3 = f12(3,3,1,0,F,G,H,I,J,K) [C >= 1 + E] ==> f12(A,C,D,E,F,G,H,I,J,K) = A >= A = f12(A,C,T,1 + E,F,G,H,I,J,K) [F >= 1 + G] ==> f24(A,C,D,E,F,G,H,I,J,K) = A >= A = f24(A,C,D,E,F,1 + G,T,I,J,K) [G >= F] ==> f24(A,C,D,E,F,G,H,I,J,K) = A >= A = f36(A,C,D,E,F,G,H,A,0,1) [E >= C] ==> f12(A,C,D,E,F,G,H,I,J,K) = A >= A = f24(A,C,D,E,A,0,1,I,J,K) * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (?,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (3,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (1,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (1,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}] Sizebounds: (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 3 p(f12) = x1 p(f24) = x5 + -1*x6 p(f36) = x5 + -1*x6 The following rules are strictly oriented: [F >= 1 + G] ==> f24(A,C,D,E,F,G,H,I,J,K) = F + -1*G > -1 + F + -1*G = f24(A,C,D,E,F,1 + G,T,I,J,K) The following rules are weakly oriented: True ==> f0(A,C,D,E,F,G,H,I,J,K) = 3 >= 3 = f12(3,3,1,0,F,G,H,I,J,K) [C >= 1 + E] ==> f12(A,C,D,E,F,G,H,I,J,K) = A >= A = f12(A,C,T,1 + E,F,G,H,I,J,K) [I >= 1 + J] ==> f36(A,C,D,E,F,G,H,I,J,K) = F + -1*G >= F + -1*G = f36(A,C,D,E,F,G,H,I,1 + J,T) [G >= F] ==> f24(A,C,D,E,F,G,H,I,J,K) = F + -1*G >= F + -1*G = f36(A,C,D,E,F,G,H,A,0,1) [E >= C] ==> f12(A,C,D,E,F,G,H,I,J,K) = A >= A = f24(A,C,D,E,A,0,1,I,J,K) * Step 10: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (?,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (3,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (3,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (1,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (1,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}] Sizebounds: (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 3 p(f12) = x2 + -1*x4 p(f24) = x2 + -1*x4 p(f36) = x2 + -1*x4 The following rules are strictly oriented: [C >= 1 + E] ==> f12(A,C,D,E,F,G,H,I,J,K) = C + -1*E > -1 + C + -1*E = f12(A,C,T,1 + E,F,G,H,I,J,K) The following rules are weakly oriented: True ==> f0(A,C,D,E,F,G,H,I,J,K) = 3 >= 3 = f12(3,3,1,0,F,G,H,I,J,K) [F >= 1 + G] ==> f24(A,C,D,E,F,G,H,I,J,K) = C + -1*E >= C + -1*E = f24(A,C,D,E,F,1 + G,T,I,J,K) [I >= 1 + J] ==> f36(A,C,D,E,F,G,H,I,J,K) = C + -1*E >= C + -1*E = f36(A,C,D,E,F,G,H,I,1 + J,T) [G >= F] ==> f24(A,C,D,E,F,G,H,I,J,K) = C + -1*E >= C + -1*E = f36(A,C,D,E,F,G,H,A,0,1) [E >= C] ==> f12(A,C,D,E,F,G,H,I,J,K) = C + -1*E >= C + -1*E = f24(A,C,D,E,A,0,1,I,J,K) * Step 11: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C,D,E,F,G,H,I,J,K) -> f12(3,3,1,0,F,G,H,I,J,K) True (1,1) 1. f12(A,C,D,E,F,G,H,I,J,K) -> f12(A,C,T,1 + E,F,G,H,I,J,K) [C >= 1 + E] (3,1) 2. f24(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,F,1 + G,T,I,J,K) [F >= 1 + G] (3,1) 3. f36(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,I,1 + J,T) [I >= 1 + J] (3,1) 5. f24(A,C,D,E,F,G,H,I,J,K) -> f36(A,C,D,E,F,G,H,A,0,1) [G >= F] (1,1) 6. f12(A,C,D,E,F,G,H,I,J,K) -> f24(A,C,D,E,A,0,1,I,J,K) [E >= C] (1,1) Signature: {(f0,10);(f12,10);(f24,10);(f36,10);(f46,10)} Flow Graph: [0->{1},1->{1,6},2->{2,5},3->{3},5->{3},6->{2,5}] Sizebounds: (<0,0,A>, 3) (<0,0,C>, 3) (<0,0,D>, 1) (<0,0,E>, 0) (<0,0,F>, F) (<0,0,G>, G) (<0,0,H>, H) (<0,0,I>, I) (<0,0,J>, J) (<0,0,K>, K) (<1,0,A>, 3) (<1,0,C>, 3) (<1,0,D>, ?) (<1,0,E>, 3) (<1,0,F>, F) (<1,0,G>, G) (<1,0,H>, H) (<1,0,I>, I) (<1,0,J>, J) (<1,0,K>, K) (<2,0,A>, 3) (<2,0,C>, 3) (<2,0,D>, ?) (<2,0,E>, 3) (<2,0,F>, 3) (<2,0,G>, 3) (<2,0,H>, ?) (<2,0,I>, I) (<2,0,J>, J) (<2,0,K>, K) (<3,0,A>, 3) (<3,0,C>, 3) (<3,0,D>, ?) (<3,0,E>, 3) (<3,0,F>, 3) (<3,0,G>, 3) (<3,0,H>, ?) (<3,0,I>, 3) (<3,0,J>, 3) (<3,0,K>, ?) (<5,0,A>, 3) (<5,0,C>, 3) (<5,0,D>, ?) (<5,0,E>, 3) (<5,0,F>, 3) (<5,0,G>, 3) (<5,0,H>, ?) (<5,0,I>, 3) (<5,0,J>, 0) (<5,0,K>, 1) (<6,0,A>, 3) (<6,0,C>, 3) (<6,0,D>, ?) (<6,0,E>, 3) (<6,0,F>, 3) (<6,0,G>, 0) (<6,0,H>, 1) (<6,0,I>, I) (<6,0,J>, J) (<6,0,K>, K) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))