WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f1(A,B,C) -> f1(A,1 + B,C) [A >= 1 + B] (?,1) 1. f3(A,B,C) -> f1(A,B,C) [B >= 1 + C] (1,1) 2. f1(A,B,C) -> f1(A,B,1 + C) [B >= 2 + C && B >= A] (?,1) Signature: {(f1,3);(f3,3)} Flow Graph: [0->{0,2},1->{0,2},2->{0,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, 1 + B, .+ 1) (<0,0,C>, C, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>, C, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, 1 + C, .+ 1) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f1(A,B,C) -> f1(A,1 + B,C) [A >= 1 + B] (?,1) 1. f3(A,B,C) -> f1(A,B,C) [B >= 1 + C] (1,1) 2. f1(A,B,C) -> f1(A,B,1 + C) [B >= 2 + C && B >= A] (?,1) Signature: {(f1,3);(f3,3)} Flow Graph: [0->{0,2},1->{0,2},2->{0,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, A + B + C) (<1,0,A>, A) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, A) (<2,0,B>, A + B) (<2,0,C>, A + B) * Step 3: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f1(A,B,C) -> f1(A,1 + B,C) [A >= 1 + B] (?,1) 1. f3(A,B,C) -> f1(A,B,C) [B >= 1 + C] (1,1) 2. f1(A,B,C) -> f1(A,B,1 + C) [B >= 2 + C && B >= A] (?,1) Signature: {(f1,3);(f3,3)} Flow Graph: [0->{0,2},1->{0,2},2->{0,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, A + B + C) (<1,0,A>, A) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, A) (<2,0,B>, A + B) (<2,0,C>, A + B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,0)] * Step 4: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f1(A,B,C) -> f1(A,1 + B,C) [A >= 1 + B] (?,1) 1. f3(A,B,C) -> f1(A,B,C) [B >= 1 + C] (1,1) 2. f1(A,B,C) -> f1(A,B,1 + C) [B >= 2 + C && B >= A] (?,1) Signature: {(f1,3);(f3,3)} Flow Graph: [0->{0,2},1->{0,2},2->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, A + B + C) (<1,0,A>, A) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, A) (<2,0,B>, A + B) (<2,0,C>, A + B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = 1 + x1 + -1*x2 p(f3) = 1 + x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + B] ==> f1(A,B,C) = 1 + A + -1*B > A + -1*B = f1(A,1 + B,C) The following rules are weakly oriented: [B >= 1 + C] ==> f3(A,B,C) = 1 + A + -1*B >= 1 + A + -1*B = f1(A,B,C) [B >= 2 + C && B >= A] ==> f1(A,B,C) = 1 + A + -1*B >= 1 + A + -1*B = f1(A,B,1 + C) * Step 5: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f1(A,B,C) -> f1(A,1 + B,C) [A >= 1 + B] (1 + A + B,1) 1. f3(A,B,C) -> f1(A,B,C) [B >= 1 + C] (1,1) 2. f1(A,B,C) -> f1(A,B,1 + C) [B >= 2 + C && B >= A] (?,1) Signature: {(f1,3);(f3,3)} Flow Graph: [0->{0,2},1->{0,2},2->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, A + B + C) (<1,0,A>, A) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, A) (<2,0,B>, A + B) (<2,0,C>, A + B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = -1 + x2 + -1*x3 The following rules are strictly oriented: [B >= 2 + C && B >= A] ==> f1(A,B,C) = -1 + B + -1*C > -2 + B + -1*C = f1(A,B,1 + C) The following rules are weakly oriented: We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, A + B + C) (<1,0,A>, A) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, A) (<2,0,B>, A + B) (<2,0,C>, A + B) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f1(A,B,C) -> f1(A,1 + B,C) [A >= 1 + B] (1 + A + B,1) 1. f3(A,B,C) -> f1(A,B,C) [B >= 1 + C] (1,1) 2. f1(A,B,C) -> f1(A,B,1 + C) [B >= 2 + C && B >= A] (2 + 3*A + 3*A*B + A*C + 2*A^2 + 3*B + B*C + B^2 + 2*C,1) Signature: {(f1,3);(f3,3)} Flow Graph: [0->{0,2},1->{0,2},2->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, A + B + C) (<1,0,A>, A) (<1,0,B>, B) (<1,0,C>, C) (<2,0,A>, A) (<2,0,B>, A + B) (<2,0,C>, A + B) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))