WORST_CASE(?,O(n^2)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G) -> f10(H,0,C,D,E,F,G) True (1,1) 1. f10(A,B,C,D,E,F,G) -> f10(A,1 + B,C,D,E,F,G) [C >= 1 + B] (?,1) 2. f18(A,B,C,D,E,F,G) -> f21(A,B,C,D,E,0,G) [D >= 2 + E] (?,1) 3. f21(A,B,C,D,E,F,G) -> f21(A,B,C,D,E,1 + F,G) [D >= 2 + E + F] (?,1) 4. f21(A,B,C,D,E,F,G) -> f21(A,B,C,D,E,1 + F,H) [D >= 2 + E + F] (?,1) 5. f32(A,B,C,D,E,F,G) -> f32(A,B,C,D,1 + E,F,G) [D >= 2 + E] (?,1) 6. f32(A,B,C,D,E,F,G) -> f41(A,B,C,D,E,F,G) [1 + E >= D] (?,1) 7. f21(A,B,C,D,E,F,G) -> f18(A,B,C,D,1 + E,F,G) [1 + E + F >= D] (?,1) 8. f18(A,B,C,D,E,F,G) -> f32(A,B,C,D,0,F,G) [1 + E >= D] (?,1) 9. f10(A,B,C,D,E,F,G) -> f18(A,B,C,C,0,F,G) [B >= C] (?,1) Signature: {(f0,7);(f10,7);(f18,7);(f21,7);(f32,7);(f41,7)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [A,G] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (?,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (?,1) 6. f32(B,C,D,E,F) -> f41(B,C,D,E,F) [1 + E >= D] (?,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (?,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,B>, 0, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>, E, .= 0) (<0,0,F>, F, .= 0) (<1,0,B>, 1 + B, .+ 1) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<1,0,E>, E, .= 0) (<1,0,F>, F, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>, E, .= 0) (<2,0,F>, 0, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>, E, .= 0) (<3,0,F>, 1 + F, .+ 1) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>, E, .= 0) (<4,0,F>, 1 + F, .+ 1) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>, 1 + E, .+ 1) (<5,0,F>, F, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>, E, .= 0) (<6,0,F>, F, .= 0) (<7,0,B>, B, .= 0) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<7,0,E>, 1 + E, .+ 1) (<7,0,F>, F, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) (<8,0,E>, 0, .= 0) (<8,0,F>, F, .= 0) (<9,0,B>, B, .= 0) (<9,0,C>, C, .= 0) (<9,0,D>, C, .= 0) (<9,0,E>, 0, .= 0) (<9,0,F>, F, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (?,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (?,1) 6. f32(B,C,D,E,F) -> f41(B,C,D,E,F) [1 + E >= D] (?,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (?,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] Sizebounds: (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) (<9,0,F>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) * Step 4: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (?,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (?,1) 6. f32(B,C,D,E,F) -> f41(B,C,D,E,F) [1 + E >= D] (?,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (?,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,7)] * Step 5: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (?,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (?,1) 6. f32(B,C,D,E,F) -> f41(B,C,D,E,F) [1 + E >= D] (?,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (?,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [6] * Step 6: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (?,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (?,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (?,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (?,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f10) = 1 p(f18) = 0 p(f21) = 0 p(f32) = 0 The following rules are strictly oriented: [B >= C] ==> f10(B,C,D,E,F) = 1 > 0 = f18(B,C,C,0,F) The following rules are weakly oriented: True ==> f0(B,C,D,E,F) = 1 >= 1 = f10(0,C,D,E,F) [C >= 1 + B] ==> f10(B,C,D,E,F) = 1 >= 1 = f10(1 + B,C,D,E,F) [D >= 2 + E] ==> f18(B,C,D,E,F) = 0 >= 0 = f21(B,C,D,E,0) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = 0 >= 0 = f21(B,C,D,E,1 + F) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = 0 >= 0 = f21(B,C,D,E,1 + F) [D >= 2 + E] ==> f32(B,C,D,E,F) = 0 >= 0 = f32(B,C,D,1 + E,F) [1 + E + F >= D] ==> f21(B,C,D,E,F) = 0 >= 0 = f18(B,C,D,1 + E,F) [1 + E >= D] ==> f18(B,C,D,E,F) = 0 >= 0 = f32(B,C,D,0,F) * Step 7: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (?,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (?,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (?,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f10) = 1 p(f18) = 1 p(f21) = 1 p(f32) = 0 The following rules are strictly oriented: [1 + E >= D] ==> f18(B,C,D,E,F) = 1 > 0 = f32(B,C,D,0,F) The following rules are weakly oriented: True ==> f0(B,C,D,E,F) = 1 >= 1 = f10(0,C,D,E,F) [C >= 1 + B] ==> f10(B,C,D,E,F) = 1 >= 1 = f10(1 + B,C,D,E,F) [D >= 2 + E] ==> f18(B,C,D,E,F) = 1 >= 1 = f21(B,C,D,E,0) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = 1 >= 1 = f21(B,C,D,E,1 + F) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = 1 >= 1 = f21(B,C,D,E,1 + F) [D >= 2 + E] ==> f32(B,C,D,E,F) = 0 >= 0 = f32(B,C,D,1 + E,F) [1 + E + F >= D] ==> f21(B,C,D,E,F) = 1 >= 1 = f18(B,C,D,1 + E,F) [B >= C] ==> f10(B,C,D,E,F) = 1 >= 1 = f18(B,C,C,0,F) * Step 8: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (?,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (?,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (1,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x2 p(f10) = x2 p(f18) = x3 p(f21) = x3 p(f32) = -1 + x3 + -1*x4 The following rules are strictly oriented: [D >= 2 + E] ==> f32(B,C,D,E,F) = -1 + D + -1*E > -2 + D + -1*E = f32(B,C,D,1 + E,F) The following rules are weakly oriented: True ==> f0(B,C,D,E,F) = C >= C = f10(0,C,D,E,F) [C >= 1 + B] ==> f10(B,C,D,E,F) = C >= C = f10(1 + B,C,D,E,F) [D >= 2 + E] ==> f18(B,C,D,E,F) = D >= D = f21(B,C,D,E,0) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = D >= D = f21(B,C,D,E,1 + F) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = D >= D = f21(B,C,D,E,1 + F) [1 + E + F >= D] ==> f21(B,C,D,E,F) = D >= D = f18(B,C,D,1 + E,F) [1 + E >= D] ==> f18(B,C,D,E,F) = D >= -1 + D = f32(B,C,D,0,F) [B >= C] ==> f10(B,C,D,E,F) = C >= C = f18(B,C,C,0,F) * Step 9: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (?,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (?,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (C,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (1,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x2 p(f10) = -1*x1 + x2 p(f18) = -1*x1 + x2 p(f21) = -1*x1 + x2 p(f32) = -1*x1 + x2 The following rules are strictly oriented: [C >= 1 + B] ==> f10(B,C,D,E,F) = -1*B + C > -1 + -1*B + C = f10(1 + B,C,D,E,F) The following rules are weakly oriented: True ==> f0(B,C,D,E,F) = C >= C = f10(0,C,D,E,F) [D >= 2 + E] ==> f18(B,C,D,E,F) = -1*B + C >= -1*B + C = f21(B,C,D,E,0) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = -1*B + C >= -1*B + C = f21(B,C,D,E,1 + F) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = -1*B + C >= -1*B + C = f21(B,C,D,E,1 + F) [D >= 2 + E] ==> f32(B,C,D,E,F) = -1*B + C >= -1*B + C = f32(B,C,D,1 + E,F) [1 + E + F >= D] ==> f21(B,C,D,E,F) = -1*B + C >= -1*B + C = f18(B,C,D,1 + E,F) [1 + E >= D] ==> f18(B,C,D,E,F) = -1*B + C >= -1*B + C = f32(B,C,D,0,F) [B >= C] ==> f10(B,C,D,E,F) = -1*B + C >= -1*B + C = f18(B,C,C,0,F) * Step 10: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (?,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (C,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (1,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,7,3,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f18) = 2 + x3 + -1*x4 p(f21) = 1 + x3 + -1*x4 The following rules are strictly oriented: [D >= 2 + E] ==> f18(B,C,D,E,F) = 2 + D + -1*E > 1 + D + -1*E = f21(B,C,D,E,0) The following rules are weakly oriented: [D >= 2 + E + F] ==> f21(B,C,D,E,F) = 1 + D + -1*E >= 1 + D + -1*E = f21(B,C,D,E,1 + F) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = 1 + D + -1*E >= 1 + D + -1*E = f21(B,C,D,E,1 + F) [1 + E + F >= D] ==> f21(B,C,D,E,F) = 1 + D + -1*E >= 1 + D + -1*E = f18(B,C,D,1 + E,F) We use the following global sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) * Step 11: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (2 + C,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (C,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (1,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f21) = -1 + x3 + -1*x4 + -1*x5 The following rules are strictly oriented: [D >= 2 + E + F] ==> f21(B,C,D,E,F) = -1 + D + -1*E + -1*F > -2 + D + -1*E + -1*F = f21(B,C,D,E,1 + F) The following rules are weakly oriented: [D >= 2 + E + F] ==> f21(B,C,D,E,F) = -1 + D + -1*E + -1*F >= -2 + D + -1*E + -1*F = f21(B,C,D,E,1 + F) We use the following global sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) * Step 12: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (2 + C,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (2 + 5*C + 2*C^2,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (C,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (1,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [7,3,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f18) = 0 p(f21) = 1 The following rules are strictly oriented: [1 + E + F >= D] ==> f21(B,C,D,E,F) = 1 > 0 = f18(B,C,D,1 + E,F) The following rules are weakly oriented: [D >= 2 + E + F] ==> f21(B,C,D,E,F) = 1 >= 1 = f21(B,C,D,E,1 + F) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = 1 >= 1 = f21(B,C,D,E,1 + F) We use the following global sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) * Step 13: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (2 + C,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (2 + 5*C + 2*C^2,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (C,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (2 + C,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (1,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,3,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f18) = x3 + -1*x4 p(f21) = -1 + x3 + -1*x4 + -1*x5 The following rules are strictly oriented: [D >= 2 + E + F] ==> f21(B,C,D,E,F) = -1 + D + -1*E + -1*F > -2 + D + -1*E + -1*F = f21(B,C,D,E,1 + F) [D >= 2 + E + F] ==> f21(B,C,D,E,F) = -1 + D + -1*E + -1*F > -2 + D + -1*E + -1*F = f21(B,C,D,E,1 + F) The following rules are weakly oriented: [D >= 2 + E] ==> f18(B,C,D,E,F) = D + -1*E >= -1 + D + -1*E = f21(B,C,D,E,0) We use the following global sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) * Step 14: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. f0(B,C,D,E,F) -> f10(0,C,D,E,F) True (1,1) 1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B] (C,1) 2. f18(B,C,D,E,F) -> f21(B,C,D,E,0) [D >= 2 + E] (2 + C,1) 3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (5*C + 2*C^2,1) 4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (5*C + 2*C^2,1) 5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E] (C,1) 7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (2 + C,1) 8. f18(B,C,D,E,F) -> f32(B,C,D,0,F) [1 + E >= D] (1,1) 9. f10(B,C,D,E,F) -> f18(B,C,C,0,F) [B >= C] (1,1) Signature: {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)} Flow Graph: [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}] Sizebounds: (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>, F) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>, F) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>, 0) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>, C) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>, C) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>, C) (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>, F) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))