WORST_CASE(?,O(n^2))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E,F,G)  -> f10(H,0,C,D,E,F,G)     True             (1,1)
          1. f10(A,B,C,D,E,F,G) -> f10(A,1 + B,C,D,E,F,G) [C >= 1 + B]     (?,1)
          2. f18(A,B,C,D,E,F,G) -> f21(A,B,C,D,E,0,G)     [D >= 2 + E]     (?,1)
          3. f21(A,B,C,D,E,F,G) -> f21(A,B,C,D,E,1 + F,G) [D >= 2 + E + F] (?,1)
          4. f21(A,B,C,D,E,F,G) -> f21(A,B,C,D,E,1 + F,H) [D >= 2 + E + F] (?,1)
          5. f32(A,B,C,D,E,F,G) -> f32(A,B,C,D,1 + E,F,G) [D >= 2 + E]     (?,1)
          6. f32(A,B,C,D,E,F,G) -> f41(A,B,C,D,E,F,G)     [1 + E >= D]     (?,1)
          7. f21(A,B,C,D,E,F,G) -> f18(A,B,C,D,1 + E,F,G) [1 + E + F >= D] (?,1)
          8. f18(A,B,C,D,E,F,G) -> f32(A,B,C,D,0,F,G)     [1 + E >= D]     (?,1)
          9. f10(A,B,C,D,E,F,G) -> f18(A,B,C,C,0,F,G)     [B >= C]         (?,1)
        Signature:
          {(f0,7);(f10,7);(f18,7);(f21,7);(f32,7);(f41,7)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [A,G] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (?,1)
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (?,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (?,1)
          6. f32(B,C,D,E,F) -> f41(B,C,D,E,F)     [1 + E >= D]     (?,1)
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (?,1)
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,B>,     0, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>,     E, .= 0) (<0,0,F>,     F, .= 0) 
          (<1,0,B>, 1 + B, .+ 1) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<1,0,E>,     E, .= 0) (<1,0,F>,     F, .= 0) 
          (<2,0,B>,     B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>,     E, .= 0) (<2,0,F>,     0, .= 0) 
          (<3,0,B>,     B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>,     E, .= 0) (<3,0,F>, 1 + F, .+ 1) 
          (<4,0,B>,     B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>,     E, .= 0) (<4,0,F>, 1 + F, .+ 1) 
          (<5,0,B>,     B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>, 1 + E, .+ 1) (<5,0,F>,     F, .= 0) 
          (<6,0,B>,     B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>,     E, .= 0) (<6,0,F>,     F, .= 0) 
          (<7,0,B>,     B, .= 0) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<7,0,E>, 1 + E, .+ 1) (<7,0,F>,     F, .= 0) 
          (<8,0,B>,     B, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) (<8,0,E>,     0, .= 0) (<8,0,F>,     F, .= 0) 
          (<9,0,B>,     B, .= 0) (<9,0,C>, C, .= 0) (<9,0,D>, C, .= 0) (<9,0,E>,     0, .= 0) (<9,0,F>,     F, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (?,1)
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (?,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (?,1)
          6. f32(B,C,D,E,F) -> f41(B,C,D,E,F)     [1 + E >= D]     (?,1)
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (?,1)
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        Sizebounds:
          (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) 
          (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) 
          (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) 
          (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) 
          (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) 
          (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) 
          (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) 
          (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) 
          (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) 
          (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) (<9,0,F>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
* Step 4: UnsatPaths WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (?,1)
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (?,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (?,1)
          6. f32(B,C,D,E,F) -> f41(B,C,D,E,F)     [1 + E >= D]     (?,1)
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (?,1)
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4,7},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,7)]
* Step 5: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (?,1)
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (?,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (?,1)
          6. f32(B,C,D,E,F) -> f41(B,C,D,E,F)     [1 + E >= D]     (?,1)
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (?,1)
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5,6},6->{},7->{2,8},8->{5,6},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, C) (<6,0,E>, C) (<6,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [6]
* Step 6: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (?,1)
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (?,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (?,1)
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (?,1)
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (?,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f10) = 1
          p(f18) = 0
          p(f21) = 0
          p(f32) = 0
        
        The following rules are strictly oriented:
                [B >= C] ==>               
          f10(B,C,D,E,F)   = 1             
                           > 0             
                           = f18(B,C,C,0,F)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f10(0,C,D,E,F)    
        
            [C >= 1 + B] ==>                   
          f10(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f10(1 + B,C,D,E,F)
        
            [D >= 2 + E] ==>                   
          f18(B,C,D,E,F)   = 0                 
                          >= 0                 
                           = f21(B,C,D,E,0)    
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = 0                 
                          >= 0                 
                           = f21(B,C,D,E,1 + F)
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = 0                 
                          >= 0                 
                           = f21(B,C,D,E,1 + F)
        
            [D >= 2 + E] ==>                   
          f32(B,C,D,E,F)   = 0                 
                          >= 0                 
                           = f32(B,C,D,1 + E,F)
        
        [1 + E + F >= D] ==>                   
          f21(B,C,D,E,F)   = 0                 
                          >= 0                 
                           = f18(B,C,D,1 + E,F)
        
            [1 + E >= D] ==>                   
          f18(B,C,D,E,F)   = 0                 
                          >= 0                 
                           = f32(B,C,D,0,F)    
        
        
* Step 7: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (?,1)
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (?,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (?,1)
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (?,1)
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (1,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f10) = 1
          p(f18) = 1
          p(f21) = 1
          p(f32) = 0
        
        The following rules are strictly oriented:
            [1 + E >= D] ==>               
          f18(B,C,D,E,F)   = 1             
                           > 0             
                           = f32(B,C,D,0,F)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f10(0,C,D,E,F)    
        
            [C >= 1 + B] ==>                   
          f10(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f10(1 + B,C,D,E,F)
        
            [D >= 2 + E] ==>                   
          f18(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f21(B,C,D,E,0)    
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f21(B,C,D,E,1 + F)
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f21(B,C,D,E,1 + F)
        
            [D >= 2 + E] ==>                   
          f32(B,C,D,E,F)   = 0                 
                          >= 0                 
                           = f32(B,C,D,1 + E,F)
        
        [1 + E + F >= D] ==>                   
          f21(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f18(B,C,D,1 + E,F)
        
                [B >= C] ==>                   
          f10(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f18(B,C,C,0,F)    
        
        
* Step 8: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (?,1)
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (?,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (?,1)
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (1,1)
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (1,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x2             
          p(f10) = x2             
          p(f18) = x3             
          p(f21) = x3             
          p(f32) = -1 + x3 + -1*x4
        
        The following rules are strictly oriented:
            [D >= 2 + E] ==>                   
          f32(B,C,D,E,F)   = -1 + D + -1*E     
                           > -2 + D + -1*E     
                           = f32(B,C,D,1 + E,F)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(B,C,D,E,F)   = C                 
                          >= C                 
                           = f10(0,C,D,E,F)    
        
            [C >= 1 + B] ==>                   
          f10(B,C,D,E,F)   = C                 
                          >= C                 
                           = f10(1 + B,C,D,E,F)
        
            [D >= 2 + E] ==>                   
          f18(B,C,D,E,F)   = D                 
                          >= D                 
                           = f21(B,C,D,E,0)    
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = D                 
                          >= D                 
                           = f21(B,C,D,E,1 + F)
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = D                 
                          >= D                 
                           = f21(B,C,D,E,1 + F)
        
        [1 + E + F >= D] ==>                   
          f21(B,C,D,E,F)   = D                 
                          >= D                 
                           = f18(B,C,D,1 + E,F)
        
            [1 + E >= D] ==>                   
          f18(B,C,D,E,F)   = D                 
                          >= -1 + D            
                           = f32(B,C,D,0,F)    
        
                [B >= C] ==>                   
          f10(B,C,D,E,F)   = C                 
                          >= C                 
                           = f18(B,C,C,0,F)    
        
        
* Step 9: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (?,1)
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (?,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (C,1)
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (1,1)
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (1,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x2        
          p(f10) = -1*x1 + x2
          p(f18) = -1*x1 + x2
          p(f21) = -1*x1 + x2
          p(f32) = -1*x1 + x2
        
        The following rules are strictly oriented:
            [C >= 1 + B] ==>                   
          f10(B,C,D,E,F)   = -1*B + C          
                           > -1 + -1*B + C     
                           = f10(1 + B,C,D,E,F)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(B,C,D,E,F)   = C                 
                          >= C                 
                           = f10(0,C,D,E,F)    
        
            [D >= 2 + E] ==>                   
          f18(B,C,D,E,F)   = -1*B + C          
                          >= -1*B + C          
                           = f21(B,C,D,E,0)    
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = -1*B + C          
                          >= -1*B + C          
                           = f21(B,C,D,E,1 + F)
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = -1*B + C          
                          >= -1*B + C          
                           = f21(B,C,D,E,1 + F)
        
            [D >= 2 + E] ==>                   
          f32(B,C,D,E,F)   = -1*B + C          
                          >= -1*B + C          
                           = f32(B,C,D,1 + E,F)
        
        [1 + E + F >= D] ==>                   
          f21(B,C,D,E,F)   = -1*B + C          
                          >= -1*B + C          
                           = f18(B,C,D,1 + E,F)
        
            [1 + E >= D] ==>                   
          f18(B,C,D,E,F)   = -1*B + C          
                          >= -1*B + C          
                           = f32(B,C,D,0,F)    
        
                [B >= C] ==>                   
          f10(B,C,D,E,F)   = -1*B + C          
                          >= -1*B + C          
                           = f18(B,C,C,0,F)    
        
        
* Step 10: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (C,1)
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (?,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (C,1)
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (1,1)
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (1,1)
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,7,3,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f18) = 2 + x3 + -1*x4
          p(f21) = 1 + x3 + -1*x4
        
        The following rules are strictly oriented:
            [D >= 2 + E] ==>               
          f18(B,C,D,E,F)   = 2 + D + -1*E  
                           > 1 + D + -1*E  
                           = f21(B,C,D,E,0)
        
        
        The following rules are weakly oriented:
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = 1 + D + -1*E      
                          >= 1 + D + -1*E      
                           = f21(B,C,D,E,1 + F)
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = 1 + D + -1*E      
                          >= 1 + D + -1*E      
                           = f21(B,C,D,E,1 + F)
        
        [1 + E + F >= D] ==>                   
          f21(B,C,D,E,F)   = 1 + D + -1*E      
                          >= 1 + D + -1*E      
                           = f18(B,C,D,1 + E,F)
        
        We use the following global sizebounds:
        (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
        (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
        (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
        (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
        (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
        (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
        (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
        (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
        (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
* Step 11: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)    
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (C,1)    
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (2 + C,1)
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)    
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)    
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (C,1)    
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)    
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (1,1)    
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (1,1)    
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f21) = -1 + x3 + -1*x4 + -1*x5
        
        The following rules are strictly oriented:
        [D >= 2 + E + F] ==>                     
          f21(B,C,D,E,F)   = -1 + D + -1*E + -1*F
                           > -2 + D + -1*E + -1*F
                           = f21(B,C,D,E,1 + F)  
        
        
        The following rules are weakly oriented:
        [D >= 2 + E + F] ==>                     
          f21(B,C,D,E,F)   = -1 + D + -1*E + -1*F
                          >= -2 + D + -1*E + -1*F
                           = f21(B,C,D,E,1 + F)  
        
        We use the following global sizebounds:
        (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
        (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
        (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
        (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
        (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
        (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
        (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
        (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
        (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
* Step 12: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)              
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (C,1)              
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (2 + C,1)          
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)              
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (2 + 5*C + 2*C^2,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (C,1)              
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (?,1)              
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (1,1)              
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (1,1)              
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,3,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f18) = 0
          p(f21) = 1
        
        The following rules are strictly oriented:
        [1 + E + F >= D] ==>                   
          f21(B,C,D,E,F)   = 1                 
                           > 0                 
                           = f18(B,C,D,1 + E,F)
        
        
        The following rules are weakly oriented:
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f21(B,C,D,E,1 + F)
        
        [D >= 2 + E + F] ==>                   
          f21(B,C,D,E,F)   = 1                 
                          >= 1                 
                           = f21(B,C,D,E,1 + F)
        
        We use the following global sizebounds:
        (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
        (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
        (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
        (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
        (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
        (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
        (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
        (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
        (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
* Step 13: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)              
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (C,1)              
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (2 + C,1)          
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (?,1)              
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (2 + 5*C + 2*C^2,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (C,1)              
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (2 + C,1)          
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (1,1)              
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (1,1)              
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,3,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f18) = x3 + -1*x4             
          p(f21) = -1 + x3 + -1*x4 + -1*x5
        
        The following rules are strictly oriented:
        [D >= 2 + E + F] ==>                     
          f21(B,C,D,E,F)   = -1 + D + -1*E + -1*F
                           > -2 + D + -1*E + -1*F
                           = f21(B,C,D,E,1 + F)  
        
        [D >= 2 + E + F] ==>                     
          f21(B,C,D,E,F)   = -1 + D + -1*E + -1*F
                           > -2 + D + -1*E + -1*F
                           = f21(B,C,D,E,1 + F)  
        
        
        The following rules are weakly oriented:
            [D >= 2 + E] ==>               
          f18(B,C,D,E,F)   = D + -1*E      
                          >= -1 + D + -1*E 
                           = f21(B,C,D,E,0)
        
        We use the following global sizebounds:
        (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
        (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
        (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
        (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
        (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
        (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
        (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
        (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
        (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
* Step 14: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. f0(B,C,D,E,F)  -> f10(0,C,D,E,F)     True             (1,1)          
          1. f10(B,C,D,E,F) -> f10(1 + B,C,D,E,F) [C >= 1 + B]     (C,1)          
          2. f18(B,C,D,E,F) -> f21(B,C,D,E,0)     [D >= 2 + E]     (2 + C,1)      
          3. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (5*C + 2*C^2,1)
          4. f21(B,C,D,E,F) -> f21(B,C,D,E,1 + F) [D >= 2 + E + F] (5*C + 2*C^2,1)
          5. f32(B,C,D,E,F) -> f32(B,C,D,1 + E,F) [D >= 2 + E]     (C,1)          
          7. f21(B,C,D,E,F) -> f18(B,C,D,1 + E,F) [1 + E + F >= D] (2 + C,1)      
          8. f18(B,C,D,E,F) -> f32(B,C,D,0,F)     [1 + E >= D]     (1,1)          
          9. f10(B,C,D,E,F) -> f18(B,C,C,0,F)     [B >= C]         (1,1)          
        Signature:
          {(f0,5);(f10,5);(f18,5);(f21,5);(f32,5);(f41,5)}
        Flow Graph:
          [0->{1,9},1->{1,9},2->{3,4},3->{3,4,7},4->{3,4,7},5->{5},7->{2,8},8->{5},9->{2,8}]
        Sizebounds:
          (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) (<0,0,F>,     F) 
          (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, D) (<1,0,E>, E) (<1,0,F>,     F) 
          (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, C) (<2,0,E>, C) (<2,0,F>,     0) 
          (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, C) (<3,0,E>, C) (<3,0,F>,     C) 
          (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, C) (<4,0,E>, C) (<4,0,F>,     C) 
          (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, C) (<5,0,E>, C) (<5,0,F>, C + F) 
          (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, C) (<7,0,E>, C) (<7,0,F>,     C) 
          (<8,0,B>, ?) (<8,0,C>, C) (<8,0,D>, C) (<8,0,E>, 0) (<8,0,F>, C + F) 
          (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, C) (<9,0,E>, 0) (<9,0,F>,     F) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))