WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I,J) -> f17(0,K,L,0,E,F,G,H,I,J) True (1,1) 1. f17(A,B,C,D,E,F,G,H,I,J) -> f17(A,B,C,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,B,C,D,E,F,G,H,I,J) -> f27(A,B,C,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,B,C,D,E,F,G,H,I,J) -> f37(A,B,C,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,B,C,D,E,F,G,H,I,J) -> f45(1 + A,B,C,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,B,C,D,E,F,G,H,I,J) -> f55(A,B,C,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,B,C,D,E,F,G,H,I,J) -> f65(A,B,C,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,B,C,D,E,F,G,H,I,J) -> f75(A,B,C,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,B,C,D,E,F,G,H,I,J) -> f83(1 + A,B,C,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 9. f83(A,B,C,D,E,F,G,H,I,J) -> f93(A,B,C,D,E,F,G,H,I,J) [A >= E] (?,1) 10. f75(A,B,C,D,E,F,G,H,I,J) -> f83(0,B,C,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,B,C,D,E,F,G,H,I,J) -> f75(A,B,C,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,B,C,D,E,F,G,H,I,J) -> f65(A,B,C,D,E,F,G,H,0,J) [H >= E] (?,1) 13. f45(A,B,C,D,E,F,G,H,I,J) -> f55(A,B,C,D,E,F,G,0,I,J) [A >= E] (?,1) 14. f37(A,B,C,D,E,F,G,H,I,J) -> f45(0,B,C,D,E,F,G,H,I,J) [G >= E] (?,1) 15. f27(A,B,C,D,E,F,G,H,I,J) -> f37(A,B,C,D,E,F,0,H,I,J) [F >= E] (?,1) 16. f17(A,B,C,D,E,F,G,H,I,J) -> f27(A,B,C,D,E,0,G,H,I,J) [D >= E] (?,1) Signature: {(f0,10);(f17,10);(f27,10);(f37,10);(f45,10);(f55,10);(f65,10);(f75,10);(f83,10);(f93,10)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9} ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B,C] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 9. f83(A,D,E,F,G,H,I,J) -> f93(A,D,E,F,G,H,I,J) [A >= E] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (?,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (?,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (?,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (?,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (?,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9} ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, 0, .= 0) (< 0,0,D>, 0, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>, G, .= 0) (< 0,0,H>, H, .= 0) (< 0,0,I>, I, .= 0) (< 0,0,J>, J, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,D>, 1 + D, .+ 1) (< 1,0,E>, E, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, G, .= 0) (< 1,0,H>, H, .= 0) (< 1,0,I>, I, .= 0) (< 1,0,J>, J, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,F>, 1 + F, .+ 1) (< 2,0,G>, G, .= 0) (< 2,0,H>, H, .= 0) (< 2,0,I>, I, .= 0) (< 2,0,J>, J, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 3,0,G>, 1 + G, .+ 1) (< 3,0,H>, H, .= 0) (< 3,0,I>, I, .= 0) (< 3,0,J>, J, .= 0) (< 4,0,A>, 1 + A, .+ 1) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, H, .= 0) (< 4,0,I>, I, .= 0) (< 4,0,J>, J, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>, G, .= 0) (< 5,0,H>, 1 + H, .+ 1) (< 5,0,I>, I, .= 0) (< 5,0,J>, J, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>, G, .= 0) (< 6,0,H>, H, .= 0) (< 6,0,I>, 1 + I, .+ 1) (< 6,0,J>, J, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,I>, I, .= 0) (< 7,0,J>, 1 + J, .+ 1) (< 8,0,A>, 1 + A, .+ 1) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, G, .= 0) (< 8,0,H>, H, .= 0) (< 8,0,I>, I, .= 0) (< 8,0,J>, J, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, G, .= 0) (< 9,0,H>, H, .= 0) (< 9,0,I>, I, .= 0) (< 9,0,J>, J, .= 0) (<10,0,A>, 0, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, F, .= 0) (<10,0,G>, G, .= 0) (<10,0,H>, H, .= 0) (<10,0,I>, I, .= 0) (<10,0,J>, J, .= 0) (<11,0,A>, A, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>, F, .= 0) (<11,0,G>, G, .= 0) (<11,0,H>, H, .= 0) (<11,0,I>, I, .= 0) (<11,0,J>, 0, .= 0) (<12,0,A>, A, .= 0) (<12,0,D>, D, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>, G, .= 0) (<12,0,H>, H, .= 0) (<12,0,I>, 0, .= 0) (<12,0,J>, J, .= 0) (<13,0,A>, A, .= 0) (<13,0,D>, D, .= 0) (<13,0,E>, E, .= 0) (<13,0,F>, F, .= 0) (<13,0,G>, G, .= 0) (<13,0,H>, 0, .= 0) (<13,0,I>, I, .= 0) (<13,0,J>, J, .= 0) (<14,0,A>, 0, .= 0) (<14,0,D>, D, .= 0) (<14,0,E>, E, .= 0) (<14,0,F>, F, .= 0) (<14,0,G>, G, .= 0) (<14,0,H>, H, .= 0) (<14,0,I>, I, .= 0) (<14,0,J>, J, .= 0) (<15,0,A>, A, .= 0) (<15,0,D>, D, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>, F, .= 0) (<15,0,G>, 0, .= 0) (<15,0,H>, H, .= 0) (<15,0,I>, I, .= 0) (<15,0,J>, J, .= 0) (<16,0,A>, A, .= 0) (<16,0,D>, D, .= 0) (<16,0,E>, E, .= 0) (<16,0,F>, 0, .= 0) (<16,0,G>, G, .= 0) (<16,0,H>, H, .= 0) (<16,0,I>, I, .= 0) (<16,0,J>, J, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 9. f83(A,D,E,F,G,H,I,J) -> f93(A,D,E,F,G,H,I,J) [A >= E] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (?,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (?,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (?,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (?,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (?,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9} ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) (< 0,0,J>, ?) (< 1,0,A>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) (< 1,0,J>, ?) (< 2,0,A>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) (< 2,0,J>, ?) (< 3,0,A>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) (< 3,0,J>, ?) (< 4,0,A>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) (< 4,0,J>, ?) (< 5,0,A>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) (< 5,0,J>, ?) (< 6,0,A>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,I>, ?) (< 6,0,J>, ?) (< 7,0,A>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) (< 7,0,J>, ?) (< 8,0,A>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,I>, ?) (< 8,0,J>, ?) (< 9,0,A>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,J>, ?) (<10,0,A>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,J>, ?) (<11,0,A>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,J>, ?) (<12,0,A>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,J>, ?) (<13,0,A>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,J>, ?) (<14,0,A>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,I>, ?) (<14,0,J>, ?) (<15,0,A>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<15,0,I>, ?) (<15,0,J>, ?) (<16,0,A>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,I>, ?) (<16,0,J>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (< 9,0,A>, E) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, E) (< 9,0,G>, E) (< 9,0,H>, E) (< 9,0,I>, E) (< 9,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 9. f83(A,D,E,F,G,H,I,J) -> f93(A,D,E,F,G,H,I,J) [A >= E] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (?,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (?,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (?,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (?,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (?,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9} ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (< 9,0,A>, E) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, E) (< 9,0,G>, E) (< 9,0,H>, E) (< 9,0,I>, E) (< 9,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [9] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (?,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (?,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (?,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (?,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (?,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f17) = 1 p(f27) = 0 p(f37) = 0 p(f45) = 0 p(f55) = 0 p(f65) = 0 p(f75) = 0 p(f83) = 0 The following rules are strictly oriented: [D >= E] ==> f17(A,D,E,F,G,H,I,J) = 1 > 0 = f27(A,D,E,0,G,H,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = 0 >= 0 = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = 0 >= 0 = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = 0 >= 0 = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = 0 >= 0 = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = 0 >= 0 = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = 0 >= 0 = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = 0 >= 0 = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = 0 >= 0 = f37(A,D,E,F,0,H,I,J) * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (?,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (?,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (?,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (?,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f17) = 1 p(f27) = 1 p(f37) = 0 p(f45) = 0 p(f55) = 0 p(f65) = 0 p(f75) = 0 p(f83) = 0 The following rules are strictly oriented: [F >= E] ==> f27(A,D,E,F,G,H,I,J) = 1 > 0 = f37(A,D,E,F,0,H,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = 0 >= 0 = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = 0 >= 0 = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = 0 >= 0 = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = 0 >= 0 = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = 0 >= 0 = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = 0 >= 0 = f45(0,D,E,F,G,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,0,G,H,I,J) * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (?,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (?,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (?,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f17) = 1 p(f27) = 1 p(f37) = 1 p(f45) = 0 p(f55) = 0 p(f65) = 0 p(f75) = 0 p(f83) = 0 The following rules are strictly oriented: [G >= E] ==> f37(A,D,E,F,G,H,I,J) = 1 > 0 = f45(0,D,E,F,G,H,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = 0 >= 0 = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = 0 >= 0 = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = 0 >= 0 = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = 0 >= 0 = f55(A,D,E,F,G,0,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,0,G,H,I,J) * Step 8: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (?,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (?,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f17) = 1 p(f27) = 1 p(f37) = 1 p(f45) = 1 p(f55) = 0 p(f65) = 0 p(f75) = 0 p(f83) = 0 The following rules are strictly oriented: [A >= E] ==> f45(A,D,E,F,G,H,I,J) = 1 > 0 = f55(A,D,E,F,G,0,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = 1 >= 1 = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = 0 >= 0 = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = 0 >= 0 = f65(A,D,E,F,G,H,0,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = 1 >= 1 = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,0,G,H,I,J) * Step 9: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (?,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f17) = 1 p(f27) = 1 p(f37) = 1 p(f45) = 1 p(f55) = 1 p(f65) = 0 p(f75) = 0 p(f83) = 0 The following rules are strictly oriented: [H >= E] ==> f55(A,D,E,F,G,H,I,J) = 1 > 0 = f65(A,D,E,F,G,H,0,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = 1 >= 1 = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = 1 >= 1 = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,0) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = 1 >= 1 = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = 1 >= 1 = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,0,G,H,I,J) * Step 10: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (?,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f17) = 1 p(f27) = 1 p(f37) = 1 p(f45) = 1 p(f55) = 1 p(f65) = 1 p(f75) = 0 p(f83) = 0 The following rules are strictly oriented: [I >= E] ==> f65(A,D,E,F,G,H,I,J) = 1 > 0 = f75(A,D,E,F,G,H,I,0) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = 1 >= 1 = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = 1 >= 1 = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = 1 >= 1 = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(0,D,E,F,G,H,I,J) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = 1 >= 1 = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = 1 >= 1 = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = 1 >= 1 = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,0,G,H,I,J) * Step 11: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (?,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f17) = 1 p(f27) = 1 p(f37) = 1 p(f45) = 1 p(f55) = 1 p(f65) = 1 p(f75) = 1 p(f83) = 0 The following rules are strictly oriented: [J >= E] ==> f75(A,D,E,F,G,H,I,J) = 1 > 0 = f83(0,D,E,F,G,H,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = 1 >= 1 = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = 1 >= 1 = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = 1 >= 1 = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = 1 >= 1 = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = 0 >= 0 = f83(1 + A,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = 1 >= 1 = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = 1 >= 1 = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = 1 >= 1 = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = 1 >= 1 = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = 1 >= 1 = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = 1 >= 1 = f27(A,D,E,0,G,H,I,J) * Step 12: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (1,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x3 p(f17) = x3 p(f27) = x3 p(f37) = x3 p(f45) = x3 p(f55) = x3 p(f65) = x3 p(f75) = x3 p(f83) = -1*x1 + x3 The following rules are strictly oriented: [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = -1*A + E > -1 + -1*A + E = f83(1 + A,D,E,F,G,H,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = E >= E = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = E >= E = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = E >= E = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = E >= E = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = E >= E = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = E >= E = f75(A,D,E,F,G,H,I,1 + J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = E >= E = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = E >= E = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = E >= E = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = E >= E = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = E >= E = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,0,G,H,I,J) * Step 13: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (1,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x3 p(f17) = x3 p(f27) = x3 p(f37) = x3 p(f45) = x3 p(f55) = x3 p(f65) = x3 p(f75) = x3 + -1*x8 p(f83) = x3 + -1*x8 The following rules are strictly oriented: [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = E + -1*J > -1 + E + -1*J = f75(A,D,E,F,G,H,I,1 + J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = E >= E = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = E >= E = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = E >= E = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = E >= E = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = E >= E = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = E + -1*J >= E + -1*J = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = E + -1*J >= E + -1*J = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = E >= E = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = E >= E = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = E >= E = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = E >= E = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,0,G,H,I,J) * Step 14: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (1,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x3 p(f17) = x3 p(f27) = x3 p(f37) = x3 p(f45) = x3 p(f55) = x3 p(f65) = x3 + -1*x7 p(f75) = x3 + -1*x7 p(f83) = x3 + -1*x7 The following rules are strictly oriented: [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = E + -1*I > -1 + E + -1*I = f65(A,D,E,F,G,H,1 + I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = E >= E = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = E >= E = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = E >= E = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = E >= E = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = E + -1*I >= E + -1*I = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = E + -1*I >= E + -1*I = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = E + -1*I >= E + -1*I = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = E + -1*I >= E + -1*I = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = E >= E = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = E >= E = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = E >= E = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,0,G,H,I,J) * Step 15: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (1,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x3 p(f17) = x3 p(f27) = x3 p(f37) = x3 p(f45) = x3 p(f55) = x3 + -1*x6 p(f65) = x3 + -1*x6 p(f75) = x3 + -1*x6 p(f83) = x3 + -1*x6 The following rules are strictly oriented: [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = E + -1*H > -1 + E + -1*H = f55(A,D,E,F,G,1 + H,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = E >= E = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = E >= E = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = E >= E = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = E + -1*H >= E + -1*H = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = E + -1*H >= E + -1*H = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = E + -1*H >= E + -1*H = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = E + -1*H >= E + -1*H = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = E + -1*H >= E + -1*H = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = E + -1*H >= E + -1*H = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = E >= E = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = E >= E = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,0,G,H,I,J) * Step 16: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (1,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x3 p(f17) = x3 p(f27) = x3 p(f37) = x3 + -1*x5 p(f45) = x3 + -1*x5 p(f55) = x3 + -1*x5 p(f65) = x3 + -1*x5 p(f75) = x3 + -1*x5 p(f83) = x3 + -1*x5 The following rules are strictly oriented: [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = E + -1*G > -1 + E + -1*G = f37(A,D,E,F,1 + G,H,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = E >= E = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = E + -1*G >= E + -1*G = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = E >= E = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,0,G,H,I,J) * Step 17: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (E,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (1,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x3 p(f17) = x3 p(f27) = x3 + -1*x4 p(f37) = x3 + -1*x4 p(f45) = x3 + -1*x4 p(f55) = x3 + -1*x4 p(f65) = x3 + -1*x4 p(f75) = x3 + -1*x4 p(f83) = x3 + -1*x4 The following rules are strictly oriented: [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = E + -1*F > -1 + E + -1*F = f27(A,D,E,1 + F,G,H,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = E >= E = f17(0,0,E,F,G,H,I,J) [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = E + -1*F >= E + -1*F = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = E >= E = f27(A,D,E,0,G,H,I,J) * Step 18: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (E,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (E,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (1,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = x3 p(f17) = -1*x2 + x3 p(f27) = -1*x2 + x3 p(f37) = -1*x2 + x3 p(f45) = -1*x2 + x3 p(f55) = -1*x2 + x3 p(f65) = -1*x2 + x3 p(f75) = -1*x2 + x3 p(f83) = -1*x2 + x3 The following rules are strictly oriented: [E >= 1 + D] ==> f17(A,D,E,F,G,H,I,J) = -1*D + E > -1 + -1*D + E = f17(A,1 + D,E,F,G,H,I,J) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I,J) = E >= E = f17(0,0,E,F,G,H,I,J) [E >= 1 + F] ==> f27(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + G] ==> f37(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + H] ==> f55(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + I] ==> f65(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + J] ==> f75(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + A] ==> f83(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f83(1 + A,D,E,F,G,H,I,J) [J >= E] ==> f75(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f83(0,D,E,F,G,H,I,J) [I >= E] ==> f65(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f75(A,D,E,F,G,H,I,0) [H >= E] ==> f55(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f65(A,D,E,F,G,H,0,J) [A >= E] ==> f45(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f55(A,D,E,F,G,0,I,J) [G >= E] ==> f37(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f45(0,D,E,F,G,H,I,J) [F >= E] ==> f27(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f37(A,D,E,F,0,H,I,J) [D >= E] ==> f17(A,D,E,F,G,H,I,J) = -1*D + E >= -1*D + E = f27(A,D,E,0,G,H,I,J) * Step 19: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (E,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (E,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (E,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (1,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f45) = -1*x1 + x3 The following rules are strictly oriented: [E >= 1 + A] ==> f45(A,D,E,F,G,H,I,J) = -1*A + E > -1 + -1*A + E = f45(1 + A,D,E,F,G,H,I,J) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) * Step 20: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I,J) -> f17(0,0,E,F,G,H,I,J) True (1,1) 1. f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (E,1) 2. f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (E,1) 3. f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (E,1) 4. f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1) 5. f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1) 6. f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1) 7. f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1) 8. f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1) 10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J) [J >= E] (1,1) 11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0) [I >= E] (1,1) 12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J) [H >= E] (1,1) 13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J) [A >= E] (1,1) 14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J) [G >= E] (1,1) 15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J) [F >= E] (1,1) 16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J) [D >= E] (1,1) Signature: {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10} ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))