WORST_CASE(?,O(n^1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E,F,G,H,I,J)  -> f17(0,K,L,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,B,C,D,E,F,G,H,I,J) -> f17(A,B,C,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,B,C,D,E,F,G,H,I,J) -> f27(A,B,C,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,B,C,D,E,F,G,H,I,J) -> f37(A,B,C,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,B,C,D,E,F,G,H,I,J) -> f45(1 + A,B,C,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,B,C,D,E,F,G,H,I,J) -> f55(A,B,C,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,B,C,D,E,F,G,H,I,J) -> f65(A,B,C,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,B,C,D,E,F,G,H,I,J) -> f75(A,B,C,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,B,C,D,E,F,G,H,I,J) -> f83(1 + A,B,C,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          9.  f83(A,B,C,D,E,F,G,H,I,J) -> f93(A,B,C,D,E,F,G,H,I,J)     [A >= E]     (?,1)
          10. f75(A,B,C,D,E,F,G,H,I,J) -> f83(0,B,C,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,B,C,D,E,F,G,H,I,J) -> f75(A,B,C,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,B,C,D,E,F,G,H,I,J) -> f65(A,B,C,D,E,F,G,H,0,J)     [H >= E]     (?,1)
          13. f45(A,B,C,D,E,F,G,H,I,J) -> f55(A,B,C,D,E,F,G,0,I,J)     [A >= E]     (?,1)
          14. f37(A,B,C,D,E,F,G,H,I,J) -> f45(0,B,C,D,E,F,G,H,I,J)     [G >= E]     (?,1)
          15. f27(A,B,C,D,E,F,G,H,I,J) -> f37(A,B,C,D,E,F,0,H,I,J)     [F >= E]     (?,1)
          16. f17(A,B,C,D,E,F,G,H,I,J) -> f27(A,B,C,D,E,0,G,H,I,J)     [D >= E]     (?,1)
        Signature:
          {(f0,10);(f17,10);(f27,10);(f37,10);(f45,10);(f55,10);(f65,10);(f75,10);(f83,10);(f93,10)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9}
          ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B,C] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          9.  f83(A,D,E,F,G,H,I,J) -> f93(A,D,E,F,G,H,I,J)     [A >= E]     (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (?,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (?,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (?,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (?,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (?,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9}
          ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     0, .= 0) (< 0,0,D>,     0, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>,     F, .= 0) (< 0,0,G>,     G, .= 0) (< 0,0,H>,     H, .= 0) (< 0,0,I>,     I, .= 0) (< 0,0,J>,     J, .= 0) 
          (< 1,0,A>,     A, .= 0) (< 1,0,D>, 1 + D, .+ 1) (< 1,0,E>, E, .= 0) (< 1,0,F>,     F, .= 0) (< 1,0,G>,     G, .= 0) (< 1,0,H>,     H, .= 0) (< 1,0,I>,     I, .= 0) (< 1,0,J>,     J, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,D>,     D, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,F>, 1 + F, .+ 1) (< 2,0,G>,     G, .= 0) (< 2,0,H>,     H, .= 0) (< 2,0,I>,     I, .= 0) (< 2,0,J>,     J, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,D>,     D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>,     F, .= 0) (< 3,0,G>, 1 + G, .+ 1) (< 3,0,H>,     H, .= 0) (< 3,0,I>,     I, .= 0) (< 3,0,J>,     J, .= 0) 
          (< 4,0,A>, 1 + A, .+ 1) (< 4,0,D>,     D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>,     F, .= 0) (< 4,0,G>,     G, .= 0) (< 4,0,H>,     H, .= 0) (< 4,0,I>,     I, .= 0) (< 4,0,J>,     J, .= 0) 
          (< 5,0,A>,     A, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>,     F, .= 0) (< 5,0,G>,     G, .= 0) (< 5,0,H>, 1 + H, .+ 1) (< 5,0,I>,     I, .= 0) (< 5,0,J>,     J, .= 0) 
          (< 6,0,A>,     A, .= 0) (< 6,0,D>,     D, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>,     F, .= 0) (< 6,0,G>,     G, .= 0) (< 6,0,H>,     H, .= 0) (< 6,0,I>, 1 + I, .+ 1) (< 6,0,J>,     J, .= 0) 
          (< 7,0,A>,     A, .= 0) (< 7,0,D>,     D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>,     F, .= 0) (< 7,0,G>,     G, .= 0) (< 7,0,H>,     H, .= 0) (< 7,0,I>,     I, .= 0) (< 7,0,J>, 1 + J, .+ 1) 
          (< 8,0,A>, 1 + A, .+ 1) (< 8,0,D>,     D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>,     F, .= 0) (< 8,0,G>,     G, .= 0) (< 8,0,H>,     H, .= 0) (< 8,0,I>,     I, .= 0) (< 8,0,J>,     J, .= 0) 
          (< 9,0,A>,     A, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>,     F, .= 0) (< 9,0,G>,     G, .= 0) (< 9,0,H>,     H, .= 0) (< 9,0,I>,     I, .= 0) (< 9,0,J>,     J, .= 0) 
          (<10,0,A>,     0, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>,     F, .= 0) (<10,0,G>,     G, .= 0) (<10,0,H>,     H, .= 0) (<10,0,I>,     I, .= 0) (<10,0,J>,     J, .= 0) 
          (<11,0,A>,     A, .= 0) (<11,0,D>,     D, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>,     F, .= 0) (<11,0,G>,     G, .= 0) (<11,0,H>,     H, .= 0) (<11,0,I>,     I, .= 0) (<11,0,J>,     0, .= 0) 
          (<12,0,A>,     A, .= 0) (<12,0,D>,     D, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>,     F, .= 0) (<12,0,G>,     G, .= 0) (<12,0,H>,     H, .= 0) (<12,0,I>,     0, .= 0) (<12,0,J>,     J, .= 0) 
          (<13,0,A>,     A, .= 0) (<13,0,D>,     D, .= 0) (<13,0,E>, E, .= 0) (<13,0,F>,     F, .= 0) (<13,0,G>,     G, .= 0) (<13,0,H>,     0, .= 0) (<13,0,I>,     I, .= 0) (<13,0,J>,     J, .= 0) 
          (<14,0,A>,     0, .= 0) (<14,0,D>,     D, .= 0) (<14,0,E>, E, .= 0) (<14,0,F>,     F, .= 0) (<14,0,G>,     G, .= 0) (<14,0,H>,     H, .= 0) (<14,0,I>,     I, .= 0) (<14,0,J>,     J, .= 0) 
          (<15,0,A>,     A, .= 0) (<15,0,D>,     D, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>,     F, .= 0) (<15,0,G>,     0, .= 0) (<15,0,H>,     H, .= 0) (<15,0,I>,     I, .= 0) (<15,0,J>,     J, .= 0) 
          (<16,0,A>,     A, .= 0) (<16,0,D>,     D, .= 0) (<16,0,E>, E, .= 0) (<16,0,F>,     0, .= 0) (<16,0,G>,     G, .= 0) (<16,0,H>,     H, .= 0) (<16,0,I>,     I, .= 0) (<16,0,J>,     J, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          9.  f83(A,D,E,F,G,H,I,J) -> f93(A,D,E,F,G,H,I,J)     [A >= E]     (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (?,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (?,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (?,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (?,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (?,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9}
          ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) (< 0,0,J>, ?) 
          (< 1,0,A>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) (< 1,0,J>, ?) 
          (< 2,0,A>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) (< 2,0,J>, ?) 
          (< 3,0,A>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) (< 3,0,J>, ?) 
          (< 4,0,A>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) (< 4,0,J>, ?) 
          (< 5,0,A>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) (< 5,0,J>, ?) 
          (< 6,0,A>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,I>, ?) (< 6,0,J>, ?) 
          (< 7,0,A>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) (< 7,0,J>, ?) 
          (< 8,0,A>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,I>, ?) (< 8,0,J>, ?) 
          (< 9,0,A>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,J>, ?) 
          (<10,0,A>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,J>, ?) 
          (<11,0,A>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,J>, ?) 
          (<12,0,A>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,J>, ?) 
          (<13,0,A>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<13,0,J>, ?) 
          (<14,0,A>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,I>, ?) (<14,0,J>, ?) 
          (<15,0,A>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<15,0,I>, ?) (<15,0,J>, ?) 
          (<16,0,A>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,I>, ?) (<16,0,J>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (< 9,0,A>, E) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, E) (< 9,0,G>, E) (< 9,0,H>, E) (< 9,0,I>, E) (< 9,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          9.  f83(A,D,E,F,G,H,I,J) -> f93(A,D,E,F,G,H,I,J)     [A >= E]     (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (?,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (?,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (?,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (?,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (?,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9}
          ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (< 9,0,A>, E) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, E) (< 9,0,G>, E) (< 9,0,H>, E) (< 9,0,I>, E) (< 9,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [9]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (?,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (?,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (?,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (?,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (?,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f17) = 1
          p(f27) = 0
          p(f37) = 0
          p(f45) = 0
          p(f55) = 0
          p(f65) = 0
          p(f75) = 0
          p(f83) = 0
        
        The following rules are strictly oriented:
                      [D >= E] ==>                     
          f17(A,D,E,F,G,H,I,J)   = 1                   
                                 > 0                   
                                 = f27(A,D,E,0,G,H,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
        
* Step 6: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (?,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (?,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (?,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (?,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f17) = 1
          p(f27) = 1
          p(f37) = 0
          p(f45) = 0
          p(f55) = 0
          p(f65) = 0
          p(f75) = 0
          p(f83) = 0
        
        The following rules are strictly oriented:
                      [F >= E] ==>                     
          f27(A,D,E,F,G,H,I,J)   = 1                   
                                 > 0                   
                                 = f37(A,D,E,F,0,H,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 7: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (?,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (?,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (?,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f17) = 1
          p(f27) = 1
          p(f37) = 1
          p(f45) = 0
          p(f55) = 0
          p(f65) = 0
          p(f75) = 0
          p(f83) = 0
        
        The following rules are strictly oriented:
                      [G >= E] ==>                     
          f37(A,D,E,F,G,H,I,J)   = 1                   
                                 > 0                   
                                 = f45(0,D,E,F,G,H,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 8: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (?,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (?,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f17) = 1
          p(f27) = 1
          p(f37) = 1
          p(f45) = 1
          p(f55) = 0
          p(f65) = 0
          p(f75) = 0
          p(f83) = 0
        
        The following rules are strictly oriented:
                      [A >= E] ==>                     
          f45(A,D,E,F,G,H,I,J)   = 1                   
                                 > 0                   
                                 = f55(A,D,E,F,G,0,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 9: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (?,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f17) = 1
          p(f27) = 1
          p(f37) = 1
          p(f45) = 1
          p(f55) = 1
          p(f65) = 0
          p(f75) = 0
          p(f83) = 0
        
        The following rules are strictly oriented:
                      [H >= E] ==>                     
          f55(A,D,E,F,G,H,I,J)   = 1                   
                                 > 0                   
                                 = f65(A,D,E,F,G,H,0,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 10: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (?,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f17) = 1
          p(f27) = 1
          p(f37) = 1
          p(f45) = 1
          p(f55) = 1
          p(f65) = 1
          p(f75) = 0
          p(f83) = 0
        
        The following rules are strictly oriented:
                      [I >= E] ==>                     
          f65(A,D,E,F,G,H,I,J)   = 1                   
                                 > 0                   
                                 = f75(A,D,E,F,G,H,I,0)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 11: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (?,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f17) = 1
          p(f27) = 1
          p(f37) = 1
          p(f45) = 1
          p(f55) = 1
          p(f65) = 1
          p(f75) = 1
          p(f83) = 0
        
        The following rules are strictly oriented:
                      [J >= E] ==>                     
          f75(A,D,E,F,G,H,I,J)   = 1                   
                                 > 0                   
                                 = f83(0,D,E,F,G,H,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = 0                       
                                >= 0                       
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = 1                       
                                >= 1                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 12: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (1,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x3        
          p(f17) = x3        
          p(f27) = x3        
          p(f37) = x3        
          p(f45) = x3        
          p(f55) = x3        
          p(f65) = x3        
          p(f75) = x3        
          p(f83) = -1*x1 + x3
        
        The following rules are strictly oriented:
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = -1*A + E                
                                 > -1 + -1*A + E           
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 13: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (?,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (1,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x3        
          p(f17) = x3        
          p(f27) = x3        
          p(f37) = x3        
          p(f45) = x3        
          p(f55) = x3        
          p(f65) = x3        
          p(f75) = x3 + -1*x8
          p(f83) = x3 + -1*x8
        
        The following rules are strictly oriented:
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*J                
                                 > -1 + E + -1*J           
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = E + -1*J                
                                >= E + -1*J                
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*J                
                                >= E + -1*J                
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 14: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (?,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (1,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x3        
          p(f17) = x3        
          p(f27) = x3        
          p(f37) = x3        
          p(f45) = x3        
          p(f55) = x3        
          p(f65) = x3 + -1*x7
          p(f75) = x3 + -1*x7
          p(f83) = x3 + -1*x7
        
        The following rules are strictly oriented:
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E + -1*I                
                                 > -1 + E + -1*I           
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*I                
                                >= E + -1*I                
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = E + -1*I                
                                >= E + -1*I                
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*I                
                                >= E + -1*I                
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E + -1*I                
                                >= E + -1*I                
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 15: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (?,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (1,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x3        
          p(f17) = x3        
          p(f27) = x3        
          p(f37) = x3        
          p(f45) = x3        
          p(f55) = x3 + -1*x6
          p(f65) = x3 + -1*x6
          p(f75) = x3 + -1*x6
          p(f83) = x3 + -1*x6
        
        The following rules are strictly oriented:
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E + -1*H                
                                 > -1 + E + -1*H           
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E + -1*H                
                                >= E + -1*H                
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*H                
                                >= E + -1*H                
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = E + -1*H                
                                >= E + -1*H                
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*H                
                                >= E + -1*H                
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E + -1*H                
                                >= E + -1*H                
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E + -1*H                
                                >= E + -1*H                
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 16: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (?,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (1,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x3        
          p(f17) = x3        
          p(f27) = x3        
          p(f37) = x3 + -1*x5
          p(f45) = x3 + -1*x5
          p(f55) = x3 + -1*x5
          p(f65) = x3 + -1*x5
          p(f75) = x3 + -1*x5
          p(f83) = x3 + -1*x5
        
        The following rules are strictly oriented:
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E + -1*G                
                                 > -1 + E + -1*G           
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E + -1*G                
                                >= E + -1*G                
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 17: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (?,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (E,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (1,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x3        
          p(f17) = x3        
          p(f27) = x3 + -1*x4
          p(f37) = x3 + -1*x4
          p(f45) = x3 + -1*x4
          p(f55) = x3 + -1*x4
          p(f65) = x3 + -1*x4
          p(f75) = x3 + -1*x4
          p(f83) = x3 + -1*x4
        
        The following rules are strictly oriented:
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E + -1*F                
                                 > -1 + E + -1*F           
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = E + -1*F                
                                >= E + -1*F                
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 18: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (?,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (E,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (E,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (1,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = x3        
          p(f17) = -1*x2 + x3
          p(f27) = -1*x2 + x3
          p(f37) = -1*x2 + x3
          p(f45) = -1*x2 + x3
          p(f55) = -1*x2 + x3
          p(f65) = -1*x2 + x3
          p(f75) = -1*x2 + x3
          p(f83) = -1*x2 + x3
        
        The following rules are strictly oriented:
                  [E >= 1 + D] ==>                         
          f17(A,D,E,F,G,H,I,J)   = -1*D + E                
                                 > -1 + -1*D + E           
                                 = f17(A,1 + D,E,F,G,H,I,J)
        
        
        The following rules are weakly oriented:
                          True ==>                         
           f0(A,D,E,F,G,H,I,J)   = E                       
                                >= E                       
                                 = f17(0,0,E,F,G,H,I,J)    
        
                  [E >= 1 + F] ==>                         
          f27(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f27(A,D,E,1 + F,G,H,I,J)
        
                  [E >= 1 + G] ==>                         
          f37(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f37(A,D,E,F,1 + G,H,I,J)
        
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
                  [E >= 1 + H] ==>                         
          f55(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f55(A,D,E,F,G,1 + H,I,J)
        
                  [E >= 1 + I] ==>                         
          f65(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f65(A,D,E,F,G,H,1 + I,J)
        
                  [E >= 1 + J] ==>                         
          f75(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f75(A,D,E,F,G,H,I,1 + J)
        
                  [E >= 1 + A] ==>                         
          f83(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f83(1 + A,D,E,F,G,H,I,J)
        
                      [J >= E] ==>                         
          f75(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f83(0,D,E,F,G,H,I,J)    
        
                      [I >= E] ==>                         
          f65(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f75(A,D,E,F,G,H,I,0)    
        
                      [H >= E] ==>                         
          f55(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f65(A,D,E,F,G,H,0,J)    
        
                      [A >= E] ==>                         
          f45(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f55(A,D,E,F,G,0,I,J)    
        
                      [G >= E] ==>                         
          f37(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f45(0,D,E,F,G,H,I,J)    
        
                      [F >= E] ==>                         
          f27(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f37(A,D,E,F,0,H,I,J)    
        
                      [D >= E] ==>                         
          f17(A,D,E,F,G,H,I,J)   = -1*D + E                
                                >= -1*D + E                
                                 = f27(A,D,E,0,G,H,I,J)    
        
        
* Step 19: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (E,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (E,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (E,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (?,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (1,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f45) = -1*x1 + x3
        
        The following rules are strictly oriented:
                  [E >= 1 + A] ==>                         
          f45(A,D,E,F,G,H,I,J)   = -1*A + E                
                                 > -1 + -1*A + E           
                                 = f45(1 + A,D,E,F,G,H,I,J)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
        (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
        (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
        (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
        (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
        (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
        (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
        (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
        (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
        (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
        (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
        (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
        (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
        (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
        (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
        (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
* Step 20: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I,J)  -> f17(0,0,E,F,G,H,I,J)     True         (1,1)
          1.  f17(A,D,E,F,G,H,I,J) -> f17(A,1 + D,E,F,G,H,I,J) [E >= 1 + D] (E,1)
          2.  f27(A,D,E,F,G,H,I,J) -> f27(A,D,E,1 + F,G,H,I,J) [E >= 1 + F] (E,1)
          3.  f37(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,1 + G,H,I,J) [E >= 1 + G] (E,1)
          4.  f45(A,D,E,F,G,H,I,J) -> f45(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1)
          5.  f55(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,1 + H,I,J) [E >= 1 + H] (E,1)
          6.  f65(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,1 + I,J) [E >= 1 + I] (E,1)
          7.  f75(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,1 + J) [E >= 1 + J] (E,1)
          8.  f83(A,D,E,F,G,H,I,J) -> f83(1 + A,D,E,F,G,H,I,J) [E >= 1 + A] (E,1)
          10. f75(A,D,E,F,G,H,I,J) -> f83(0,D,E,F,G,H,I,J)     [J >= E]     (1,1)
          11. f65(A,D,E,F,G,H,I,J) -> f75(A,D,E,F,G,H,I,0)     [I >= E]     (1,1)
          12. f55(A,D,E,F,G,H,I,J) -> f65(A,D,E,F,G,H,0,J)     [H >= E]     (1,1)
          13. f45(A,D,E,F,G,H,I,J) -> f55(A,D,E,F,G,0,I,J)     [A >= E]     (1,1)
          14. f37(A,D,E,F,G,H,I,J) -> f45(0,D,E,F,G,H,I,J)     [G >= E]     (1,1)
          15. f27(A,D,E,F,G,H,I,J) -> f37(A,D,E,F,0,H,I,J)     [F >= E]     (1,1)
          16. f17(A,D,E,F,G,H,I,J) -> f27(A,D,E,0,G,H,I,J)     [D >= E]     (1,1)
        Signature:
          {(f0,8);(f17,8);(f27,8);(f37,8);(f45,8);(f55,8);(f65,8);(f75,8);(f83,8);(f93,8)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7,10}
          ,12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 0,0,J>, J) 
          (< 1,0,A>, 0) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 1,0,J>, J) 
          (< 2,0,A>, 0) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, E) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 2,0,J>, J) 
          (< 3,0,A>, 0) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, E) (< 3,0,G>, E) (< 3,0,H>, H) (< 3,0,I>, I) (< 3,0,J>, J) 
          (< 4,0,A>, E) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, E) (< 4,0,G>, E) (< 4,0,H>, H) (< 4,0,I>, I) (< 4,0,J>, J) 
          (< 5,0,A>, E) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, E) (< 5,0,G>, E) (< 5,0,H>, E) (< 5,0,I>, I) (< 5,0,J>, J) 
          (< 6,0,A>, E) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, E) (< 6,0,G>, E) (< 6,0,H>, E) (< 6,0,I>, E) (< 6,0,J>, J) 
          (< 7,0,A>, E) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, E) (< 7,0,G>, E) (< 7,0,H>, E) (< 7,0,I>, E) (< 7,0,J>, E) 
          (< 8,0,A>, E) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, E) (< 8,0,G>, E) (< 8,0,H>, E) (< 8,0,I>, E) (< 8,0,J>, E) 
          (<10,0,A>, 0) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, E) (<10,0,G>, E) (<10,0,H>, E) (<10,0,I>, E) (<10,0,J>, E) 
          (<11,0,A>, E) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, E) (<11,0,G>, E) (<11,0,H>, E) (<11,0,I>, E) (<11,0,J>, 0) 
          (<12,0,A>, E) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, E) (<12,0,G>, E) (<12,0,H>, E) (<12,0,I>, 0) (<12,0,J>, J) 
          (<13,0,A>, E) (<13,0,D>, E) (<13,0,E>, E) (<13,0,F>, E) (<13,0,G>, E) (<13,0,H>, 0) (<13,0,I>, I) (<13,0,J>, J) 
          (<14,0,A>, 0) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, E) (<14,0,G>, E) (<14,0,H>, H) (<14,0,I>, I) (<14,0,J>, J) 
          (<15,0,A>, 0) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, E) (<15,0,G>, 0) (<15,0,H>, H) (<15,0,I>, I) (<15,0,J>, J) 
          (<16,0,A>, 0) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, 0) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) (<16,0,J>, J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))