WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D) -> f8(0,B,C,D) True (1,1) 1. f8(A,B,C,D) -> f8(1 + A,B,C,D) [3 >= A] (?,1) 2. f8(A,B,C,D) -> f8(1 + A,A,1 + A,E) [3 >= A] (?,1) 3. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 4 && 0 >= 1 + E] (?,1) 4. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 4] (?,1) Signature: {(f0,4);(f23,4);(f8,4)} Flow Graph: [0->{1,2,3,4},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B,C,D] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A) -> f8(0) True (1,1) 1. f8(A) -> f8(1 + A) [3 >= A] (?,1) 2. f8(A) -> f8(1 + A) [3 >= A] (?,1) 3. f8(A) -> f23(A) [A >= 4 && 0 >= 1 + E] (?,1) 4. f8(A) -> f23(A) [A >= 4] (?,1) Signature: {(f0,1);(f23,1);(f8,1)} Flow Graph: [0->{1,2,3,4},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 0, .= 0) (<1,0,A>, 1 + A, .+ 1) (<2,0,A>, 1 + A, .+ 1) (<3,0,A>, A, .= 0) (<4,0,A>, A, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A) -> f8(0) True (1,1) 1. f8(A) -> f8(1 + A) [3 >= A] (?,1) 2. f8(A) -> f8(1 + A) [3 >= A] (?,1) 3. f8(A) -> f23(A) [A >= 4 && 0 >= 1 + E] (?,1) 4. f8(A) -> f23(A) [A >= 4] (?,1) Signature: {(f0,1);(f23,1);(f8,1)} Flow Graph: [0->{1,2,3,4},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] Sizebounds: (<0,0,A>, ?) (<1,0,A>, ?) (<2,0,A>, ?) (<3,0,A>, ?) (<4,0,A>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 0) (<1,0,A>, 4) (<2,0,A>, 4) (<3,0,A>, 4) (<4,0,A>, 4) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A) -> f8(0) True (1,1) 1. f8(A) -> f8(1 + A) [3 >= A] (?,1) 2. f8(A) -> f8(1 + A) [3 >= A] (?,1) 3. f8(A) -> f23(A) [A >= 4 && 0 >= 1 + E] (?,1) 4. f8(A) -> f23(A) [A >= 4] (?,1) Signature: {(f0,1);(f23,1);(f8,1)} Flow Graph: [0->{1,2,3,4},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] Sizebounds: (<0,0,A>, 0) (<1,0,A>, 4) (<2,0,A>, 4) (<3,0,A>, 4) (<4,0,A>, 4) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,3),(0,4)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A) -> f8(0) True (1,1) 1. f8(A) -> f8(1 + A) [3 >= A] (?,1) 2. f8(A) -> f8(1 + A) [3 >= A] (?,1) 3. f8(A) -> f23(A) [A >= 4 && 0 >= 1 + E] (?,1) 4. f8(A) -> f23(A) [A >= 4] (?,1) Signature: {(f0,1);(f23,1);(f8,1)} Flow Graph: [0->{1,2},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] Sizebounds: (<0,0,A>, 0) (<1,0,A>, 4) (<2,0,A>, 4) (<3,0,A>, 4) (<4,0,A>, 4) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,4] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A) -> f8(0) True (1,1) 1. f8(A) -> f8(1 + A) [3 >= A] (?,1) 2. f8(A) -> f8(1 + A) [3 >= A] (?,1) Signature: {(f0,1);(f23,1);(f8,1)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] Sizebounds: (<0,0,A>, 0) (<1,0,A>, 4) (<2,0,A>, 4) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 4 p(f8) = 4 + -1*x1 The following rules are strictly oriented: [3 >= A] ==> f8(A) = 4 + -1*A > 3 + -1*A = f8(1 + A) The following rules are weakly oriented: True ==> f0(A) = 4 >= 4 = f8(0) [3 >= A] ==> f8(A) = 4 + -1*A >= 3 + -1*A = f8(1 + A) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A) -> f8(0) True (1,1) 1. f8(A) -> f8(1 + A) [3 >= A] (?,1) 2. f8(A) -> f8(1 + A) [3 >= A] (4,1) Signature: {(f0,1);(f23,1);(f8,1)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] Sizebounds: (<0,0,A>, 0) (<1,0,A>, 4) (<2,0,A>, 4) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 4 p(f8) = 4 + -1*x1 The following rules are strictly oriented: [3 >= A] ==> f8(A) = 4 + -1*A > 3 + -1*A = f8(1 + A) [3 >= A] ==> f8(A) = 4 + -1*A > 3 + -1*A = f8(1 + A) The following rules are weakly oriented: True ==> f0(A) = 4 >= 4 = f8(0) * Step 8: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A) -> f8(0) True (1,1) 1. f8(A) -> f8(1 + A) [3 >= A] (4,1) 2. f8(A) -> f8(1 + A) [3 >= A] (4,1) Signature: {(f0,1);(f23,1);(f8,1)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] Sizebounds: (<0,0,A>, 0) (<1,0,A>, 4) (<2,0,A>, 4) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))