WORST_CASE(?,O(1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1)
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (?,1)
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (?,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (?,1)
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1)
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1)
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1)
          8.  f21(A,B,C) -> f39(A,B,C)     [A >= 6] (?,1)
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (?,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (?,1)
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1,10},1->{2,9},2->{2,9},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8},8->{},9->{1,10},10->{3,8}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     1, .= 1) (< 0,0,B>,     B, .= 0) (< 0,0,C>,     C, .= 0) 
          (< 1,0,A>,     A, .= 0) (< 1,0,B>,     1, .= 1) (< 1,0,C>,     C, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,B>, 1 + B, .+ 1) (< 2,0,C>,     C, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,B>,     1, .= 1) (< 3,0,C>,     C, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,B>,     B, .= 0) (< 4,0,C>,     1, .= 1) 
          (< 5,0,A>,     A, .= 0) (< 5,0,B>,     B, .= 0) (< 5,0,C>, 1 + C, .+ 1) 
          (< 6,0,A>,     A, .= 0) (< 6,0,B>, 1 + B, .+ 1) (< 6,0,C>,     C, .= 0) 
          (< 7,0,A>, 1 + A, .+ 1) (< 7,0,B>,     B, .= 0) (< 7,0,C>,     C, .= 0) 
          (< 8,0,A>,     A, .= 0) (< 8,0,B>,     B, .= 0) (< 8,0,C>,     C, .= 0) 
          (< 9,0,A>, 1 + A, .+ 1) (< 9,0,B>,     B, .= 0) (< 9,0,C>,     C, .= 0) 
          (<10,0,A>,     1, .= 1) (<10,0,B>,     B, .= 0) (<10,0,C>,     C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1)
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (?,1)
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (?,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (?,1)
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1)
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1)
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1)
          8.  f21(A,B,C) -> f39(A,B,C)     [A >= 6] (?,1)
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (?,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (?,1)
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1,10},1->{2,9},2->{2,9},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8},8->{},9->{1,10},10->{3,8}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, 6 + B) (< 8,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
* Step 3: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1)
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (?,1)
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (?,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (?,1)
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1)
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1)
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1)
          8.  f21(A,B,C) -> f39(A,B,C)     [A >= 6] (?,1)
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (?,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (?,1)
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1,10},1->{2,9},2->{2,9},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8},8->{},9->{1,10},10->{3,8}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, 6 + B) (< 8,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,10),(1,9),(3,7),(4,6),(10,8)]
* Step 4: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1)
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (?,1)
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (?,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (?,1)
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1)
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1)
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1)
          8.  f21(A,B,C) -> f39(A,B,C)     [A >= 6] (?,1)
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (?,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (?,1)
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3,8},8->{},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, 6 + B) (< 8,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [8]
* Step 5: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1)
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (?,1)
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (?,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (?,1)
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1)
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1)
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1)
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (?,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (?,1)
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f10) = 1
          p(f13) = 1
          p(f21) = 0
          p(f24) = 0
          p(f27) = 0
        
        The following rules are strictly oriented:
            [A >= 6] ==>           
          f10(A,B,C)   = 1         
                       > 0         
                       = f21(1,B,C)
        
        
        The following rules are weakly oriented:
                True ==>               
           f0(A,B,C)   = 1             
                      >= 1             
                       = f10(1,B,C)    
        
            [5 >= A] ==>               
          f10(A,B,C)   = 1             
                      >= 1             
                       = f13(A,1,C)    
        
            [5 >= B] ==>               
          f13(A,B,C)   = 1             
                      >= 1             
                       = f13(A,1 + B,C)
        
            [5 >= A] ==>               
          f21(A,B,C)   = 0             
                      >= 0             
                       = f24(A,1,C)    
        
            [5 >= B] ==>               
          f24(A,B,C)   = 0             
                      >= 0             
                       = f27(A,B,1)    
        
            [5 >= C] ==>               
          f27(A,B,C)   = 0             
                      >= 0             
                       = f27(A,B,1 + C)
        
            [C >= 6] ==>               
          f27(A,B,C)   = 0             
                      >= 0             
                       = f24(A,1 + B,C)
        
            [B >= 6] ==>               
          f24(A,B,C)   = 0             
                      >= 0             
                       = f21(1 + A,B,C)
        
            [B >= 6] ==>               
          f13(A,B,C)   = 1             
                      >= 1             
                       = f10(1 + A,B,C)
        
        
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1)
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (?,1)
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (?,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (?,1)
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1)
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1)
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1)
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (?,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (1,1)
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 5        
          p(f10) = 5        
          p(f13) = 5        
          p(f21) = 6 + -1*x1
          p(f24) = 5 + -1*x1
          p(f27) = 5 + -1*x1
        
        The following rules are strictly oriented:
            [5 >= A] ==>           
          f21(A,B,C)   = 6 + -1*A  
                       > 5 + -1*A  
                       = f24(A,1,C)
        
        
        The following rules are weakly oriented:
                True ==>               
           f0(A,B,C)   = 5             
                      >= 5             
                       = f10(1,B,C)    
        
            [5 >= A] ==>               
          f10(A,B,C)   = 5             
                      >= 5             
                       = f13(A,1,C)    
        
            [5 >= B] ==>               
          f13(A,B,C)   = 5             
                      >= 5             
                       = f13(A,1 + B,C)
        
            [5 >= B] ==>               
          f24(A,B,C)   = 5 + -1*A      
                      >= 5 + -1*A      
                       = f27(A,B,1)    
        
            [5 >= C] ==>               
          f27(A,B,C)   = 5 + -1*A      
                      >= 5 + -1*A      
                       = f27(A,B,1 + C)
        
            [C >= 6] ==>               
          f27(A,B,C)   = 5 + -1*A      
                      >= 5 + -1*A      
                       = f24(A,1 + B,C)
        
            [B >= 6] ==>               
          f24(A,B,C)   = 5 + -1*A      
                      >= 5 + -1*A      
                       = f21(1 + A,B,C)
        
            [B >= 6] ==>               
          f13(A,B,C)   = 5             
                      >= 5             
                       = f10(1 + A,B,C)
        
            [A >= 6] ==>               
          f10(A,B,C)   = 5             
                      >= 5             
                       = f21(1,B,C)    
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1)
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (?,1)
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (?,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (5,1)
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1)
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1)
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1)
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (?,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (1,1)
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,9,2], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f10) = 6 + -1*x1
          p(f13) = 5 + -1*x1
        
        The following rules are strictly oriented:
            [5 >= A] ==>           
          f10(A,B,C)   = 6 + -1*A  
                       > 5 + -1*A  
                       = f13(A,1,C)
        
        
        The following rules are weakly oriented:
            [5 >= B] ==>               
          f13(A,B,C)   = 5 + -1*A      
                      >= 5 + -1*A      
                       = f13(A,1 + B,C)
        
            [B >= 6] ==>               
          f13(A,B,C)   = 5 + -1*A      
                      >= 5 + -1*A      
                       = f10(1 + A,B,C)
        
        We use the following global sizebounds:
        (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
        (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
        (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
        (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
        (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
        (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
        (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
        (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
        (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1)
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (7,1)
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (?,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (5,1)
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1)
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1)
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1)
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (?,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (1,1)
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f13) = 6 + -1*x2
        
        The following rules are strictly oriented:
            [5 >= B] ==>               
          f13(A,B,C)   = 6 + -1*B      
                       > 5 + -1*B      
                       = f13(A,1 + B,C)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
        (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
        (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
        (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
        (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
        (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
        (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
        (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
        (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
* Step 9: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1) 
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (7,1) 
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (49,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (5,1) 
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1) 
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1) 
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1) 
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1) 
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (?,1) 
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (1,1) 
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1) 
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (7,1) 
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (49,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (5,1) 
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1) 
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1) 
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1) 
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (?,1) 
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (49,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (1,1) 
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,6,5,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f21) = 0
          p(f24) = 1
          p(f27) = 1
        
        The following rules are strictly oriented:
            [B >= 6] ==>               
          f24(A,B,C)   = 1             
                       > 0             
                       = f21(1 + A,B,C)
        
        
        The following rules are weakly oriented:
            [5 >= B] ==>               
          f24(A,B,C)   = 1             
                      >= 1             
                       = f27(A,B,1)    
        
            [5 >= C] ==>               
          f27(A,B,C)   = 1             
                      >= 1             
                       = f27(A,B,1 + C)
        
            [C >= 6] ==>               
          f27(A,B,C)   = 1             
                      >= 1             
                       = f24(A,1 + B,C)
        
        We use the following global sizebounds:
        (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
        (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
        (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
        (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
        (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
        (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
        (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
        (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
        (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1) 
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (7,1) 
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (49,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (5,1) 
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (?,1) 
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1) 
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1) 
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (5,1) 
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (49,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (1,1) 
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,6,5,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f21) = 6 + -1*x2
          p(f24) = 6 + -1*x2
          p(f27) = 5 + -1*x2
        
        The following rules are strictly oriented:
            [5 >= B] ==>           
          f24(A,B,C)   = 6 + -1*B  
                       > 5 + -1*B  
                       = f27(A,B,1)
        
        
        The following rules are weakly oriented:
            [5 >= C] ==>               
          f27(A,B,C)   = 5 + -1*B      
                      >= 5 + -1*B      
                       = f27(A,B,1 + C)
        
            [C >= 6] ==>               
          f27(A,B,C)   = 5 + -1*B      
                      >= 5 + -1*B      
                       = f24(A,1 + B,C)
        
            [B >= 6] ==>               
          f24(A,B,C)   = 6 + -1*B      
                      >= 6 + -1*B      
                       = f21(1 + A,B,C)
        
        We use the following global sizebounds:
        (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
        (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
        (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
        (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
        (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
        (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
        (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
        (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
        (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
* Step 12: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1) 
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (7,1) 
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (49,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (5,1) 
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (35,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1) 
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (?,1) 
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (5,1) 
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (49,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (1,1) 
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3,7,6,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f21) = 0
          p(f24) = 0
          p(f27) = 1
        
        The following rules are strictly oriented:
            [C >= 6] ==>               
          f27(A,B,C)   = 1             
                       > 0             
                       = f24(A,1 + B,C)
        
        
        The following rules are weakly oriented:
            [5 >= A] ==>               
          f21(A,B,C)   = 0             
                      >= 0             
                       = f24(A,1,C)    
        
            [5 >= C] ==>               
          f27(A,B,C)   = 1             
                      >= 1             
                       = f27(A,B,1 + C)
        
            [B >= 6] ==>               
          f24(A,B,C)   = 0             
                      >= 0             
                       = f21(1 + A,B,C)
        
        We use the following global sizebounds:
        (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
        (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
        (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
        (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
        (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
        (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
        (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
        (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
        (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
* Step 13: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1) 
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (7,1) 
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (49,1)
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (5,1) 
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (35,1)
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (?,1) 
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (35,1)
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (5,1) 
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (49,1)
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (1,1) 
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,5,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f21) = 5        
          p(f24) = 5        
          p(f27) = 6 + -1*x3
        
        The following rules are strictly oriented:
            [5 >= C] ==>               
          f27(A,B,C)   = 6 + -1*C      
                       > 5 + -1*C      
                       = f27(A,B,1 + C)
        
        
        The following rules are weakly oriented:
            [5 >= B] ==>               
          f24(A,B,C)   = 5             
                      >= 5             
                       = f27(A,B,1)    
        
            [B >= 6] ==>               
          f24(A,B,C)   = 5             
                      >= 5             
                       = f21(1 + A,B,C)
        
        We use the following global sizebounds:
        (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
        (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
        (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
        (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
        (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
        (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
        (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
        (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
        (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
* Step 14: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C)  -> f10(1,B,C)     True     (1,1)  
          1.  f10(A,B,C) -> f13(A,1,C)     [5 >= A] (7,1)  
          2.  f13(A,B,C) -> f13(A,1 + B,C) [5 >= B] (49,1) 
          3.  f21(A,B,C) -> f24(A,1,C)     [5 >= A] (5,1)  
          4.  f24(A,B,C) -> f27(A,B,1)     [5 >= B] (35,1) 
          5.  f27(A,B,C) -> f27(A,B,1 + C) [5 >= C] (200,1)
          6.  f27(A,B,C) -> f24(A,1 + B,C) [C >= 6] (35,1) 
          7.  f24(A,B,C) -> f21(1 + A,B,C) [B >= 6] (5,1)  
          9.  f13(A,B,C) -> f10(1 + A,B,C) [B >= 6] (49,1) 
          10. f10(A,B,C) -> f21(1,B,C)     [A >= 6] (1,1)  
        Signature:
          {(f0,3);(f10,3);(f13,3);(f21,3);(f24,3);(f27,3);(f39,3)}
        Flow Graph:
          [0->{1},1->{2},2->{2,9},3->{4},4->{5},5->{5,6},6->{4,7},7->{3},9->{1,10},10->{3}]
        Sizebounds:
          (< 0,0,A>, 1) (< 0,0,B>,     B) (< 0,0,C>, C) 
          (< 1,0,A>, 5) (< 1,0,B>,     1) (< 1,0,C>, C) 
          (< 2,0,A>, 5) (< 2,0,B>,     6) (< 2,0,C>, C) 
          (< 3,0,A>, 5) (< 3,0,B>,     1) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>,     5) (< 4,0,C>, 1) 
          (< 5,0,A>, ?) (< 5,0,B>,     5) (< 5,0,C>, 6) 
          (< 6,0,A>, ?) (< 6,0,B>,     5) (< 6,0,C>, 6) 
          (< 7,0,A>, ?) (< 7,0,B>,     5) (< 7,0,C>, ?) 
          (< 9,0,A>, 5) (< 9,0,B>,     6) (< 9,0,C>, C) 
          (<10,0,A>, 1) (<10,0,B>, 6 + B) (<10,0,C>, C) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))