WORST_CASE(?,O(n^1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f300(A,B) -> f1(A,C)        [0 >= 1 + A] (?,1)
          1. f300(A,B) -> f300(-1 + A,B) [A >= 0]     (?,1)
          2. f2(A,B)   -> f300(A,B)      True         (1,1)
        Signature:
          {(f1,2);(f2,2);(f300,2)}
        Flow Graph:
          [0->{},1->{0,1},2->{0,1}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f300(A) -> f1(A)        [0 >= 1 + A] (?,1)
          1. f300(A) -> f300(-1 + A) [A >= 0]     (?,1)
          2. f2(A)   -> f300(A)      True         (1,1)
        Signature:
          {(f1,1);(f2,1);(f300,1)}
        Flow Graph:
          [0->{},1->{0,1},2->{0,1}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) 
          (<1,0,A>, 1 + A, .+ 1) 
          (<2,0,A>,     A, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f300(A) -> f1(A)        [0 >= 1 + A] (?,1)
          1. f300(A) -> f300(-1 + A) [A >= 0]     (?,1)
          2. f2(A)   -> f300(A)      True         (1,1)
        Signature:
          {(f1,1);(f2,1);(f300,1)}
        Flow Graph:
          [0->{},1->{0,1},2->{0,1}]
        Sizebounds:
          (<0,0,A>, ?) 
          (<1,0,A>, ?) 
          (<2,0,A>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, ?) 
          (<1,0,A>, ?) 
          (<2,0,A>, A) 
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. f300(A) -> f1(A)        [0 >= 1 + A] (?,1)
          1. f300(A) -> f300(-1 + A) [A >= 0]     (?,1)
          2. f2(A)   -> f300(A)      True         (1,1)
        Signature:
          {(f1,1);(f2,1);(f300,1)}
        Flow Graph:
          [0->{},1->{0,1},2->{0,1}]
        Sizebounds:
          (<0,0,A>, ?) 
          (<1,0,A>, ?) 
          (<2,0,A>, A) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [0]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. f300(A) -> f300(-1 + A) [A >= 0] (?,1)
          2. f2(A)   -> f300(A)      True     (1,1)
        Signature:
          {(f1,1);(f2,1);(f300,1)}
        Flow Graph:
          [1->{1},2->{1}]
        Sizebounds:
          (<1,0,A>, ?) 
          (<2,0,A>, A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(f2) = 1 + x1
          p(f300) = 1 + x1
        
        The following rules are strictly oriented:
         [A >= 0] ==>             
          f300(A)   = 1 + A       
                    > A           
                    = f300(-1 + A)
        
        
        The following rules are weakly oriented:
           True ==>        
          f2(A)   = 1 + A  
                 >= 1 + A  
                  = f300(A)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. f300(A) -> f300(-1 + A) [A >= 0] (1 + A,1)
          2. f2(A)   -> f300(A)      True     (1,1)    
        Signature:
          {(f1,1);(f2,1);(f300,1)}
        Flow Graph:
          [1->{1},2->{1}]
        Sizebounds:
          (<1,0,A>, ?) 
          (<2,0,A>, A) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))