WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalexministart(A,B,C) -> evalexminientryin(A,B,C) True (1,1) 1. evalexminientryin(A,B,C) -> evalexminibb1in(B,A,C) True (?,1) 2. evalexminibb1in(A,B,C) -> evalexminibbin(A,B,C) [100 >= B && A >= C] (?,1) 3. evalexminibb1in(A,B,C) -> evalexminireturnin(A,B,C) [B >= 101] (?,1) 4. evalexminibb1in(A,B,C) -> evalexminireturnin(A,B,C) [C >= 1 + A] (?,1) 5. evalexminibbin(A,B,C) -> evalexminibb1in(-1 + A,C,1 + B) True (?,1) 6. evalexminireturnin(A,B,C) -> evalexministop(A,B,C) True (?,1) Signature: {(evalexminibb1in,3) ;(evalexminibbin,3) ;(evalexminientryin,3) ;(evalexminireturnin,3) ;(evalexministart,3) ;(evalexministop,3)} Flow Graph: [0->{1},1->{2,3,4},2->{5},3->{6},4->{6},5->{2,3,4},6->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<1,0,A>, B, .= 0) (<1,0,B>, A, .= 0) (<1,0,C>, C, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<5,0,A>, 1 + A, .+ 1) (<5,0,B>, C, .= 0) (<5,0,C>, 1 + B, .+ 1) (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalexministart(A,B,C) -> evalexminientryin(A,B,C) True (1,1) 1. evalexminientryin(A,B,C) -> evalexminibb1in(B,A,C) True (?,1) 2. evalexminibb1in(A,B,C) -> evalexminibbin(A,B,C) [100 >= B && A >= C] (?,1) 3. evalexminibb1in(A,B,C) -> evalexminireturnin(A,B,C) [B >= 101] (?,1) 4. evalexminibb1in(A,B,C) -> evalexminireturnin(A,B,C) [C >= 1 + A] (?,1) 5. evalexminibbin(A,B,C) -> evalexminibb1in(-1 + A,C,1 + B) True (?,1) 6. evalexminireturnin(A,B,C) -> evalexministop(A,B,C) True (?,1) Signature: {(evalexminibb1in,3) ;(evalexminibbin,3) ;(evalexminientryin,3) ;(evalexminireturnin,3) ;(evalexministart,3) ;(evalexministop,3)} Flow Graph: [0->{1},1->{2,3,4},2->{5},3->{6},4->{6},5->{2,3,4},6->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 100) (<2,0,C>, 100 + C) (<3,0,A>, ?) (<3,0,B>, 100 + A + C) (<3,0,C>, 100 + C) (<4,0,A>, ?) (<4,0,B>, 100 + A + C) (<4,0,C>, 100 + C) (<5,0,A>, ?) (<5,0,B>, 100 + C) (<5,0,C>, 100) (<6,0,A>, ?) (<6,0,B>, 100 + A + C) (<6,0,C>, 100 + C) * Step 3: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalexministart(A,B,C) -> evalexminientryin(A,B,C) True (1,1) 1. evalexminientryin(A,B,C) -> evalexminibb1in(B,A,C) True (?,1) 2. evalexminibb1in(A,B,C) -> evalexminibbin(A,B,C) [100 >= B && A >= C] (?,1) 3. evalexminibb1in(A,B,C) -> evalexminireturnin(A,B,C) [B >= 101] (?,1) 4. evalexminibb1in(A,B,C) -> evalexminireturnin(A,B,C) [C >= 1 + A] (?,1) 5. evalexminibbin(A,B,C) -> evalexminibb1in(-1 + A,C,1 + B) True (?,1) 6. evalexminireturnin(A,B,C) -> evalexministop(A,B,C) True (?,1) Signature: {(evalexminibb1in,3) ;(evalexminibbin,3) ;(evalexminientryin,3) ;(evalexminireturnin,3) ;(evalexministart,3) ;(evalexministop,3)} Flow Graph: [0->{1},1->{2,3,4},2->{5},3->{6},4->{6},5->{2,3,4},6->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 100) (<2,0,C>, 100 + C) (<3,0,A>, ?) (<3,0,B>, 100 + A + C) (<3,0,C>, 100 + C) (<4,0,A>, ?) (<4,0,B>, 100 + A + C) (<4,0,C>, 100 + C) (<5,0,A>, ?) (<5,0,B>, 100 + C) (<5,0,C>, 100) (<6,0,A>, ?) (<6,0,B>, 100 + A + C) (<6,0,C>, 100 + C) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,4,6] * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalexministart(A,B,C) -> evalexminientryin(A,B,C) True (1,1) 1. evalexminientryin(A,B,C) -> evalexminibb1in(B,A,C) True (?,1) 2. evalexminibb1in(A,B,C) -> evalexminibbin(A,B,C) [100 >= B && A >= C] (?,1) 5. evalexminibbin(A,B,C) -> evalexminibb1in(-1 + A,C,1 + B) True (?,1) Signature: {(evalexminibb1in,3) ;(evalexminibbin,3) ;(evalexminientryin,3) ;(evalexminireturnin,3) ;(evalexministart,3) ;(evalexministop,3)} Flow Graph: [0->{1},1->{2},2->{5},5->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 100) (<2,0,C>, 100 + C) (<5,0,A>, ?) (<5,0,B>, 100 + C) (<5,0,C>, 100) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalexminibb1in) = 101 + x1 + -1*x2 + -1*x3 p(evalexminibbin) = 100 + x1 + -1*x2 + -1*x3 p(evalexminientryin) = 101 + -1*x1 + x2 + -1*x3 p(evalexministart) = 101 + -1*x1 + x2 + -1*x3 The following rules are strictly oriented: [100 >= B && A >= C] ==> evalexminibb1in(A,B,C) = 101 + A + -1*B + -1*C > 100 + A + -1*B + -1*C = evalexminibbin(A,B,C) The following rules are weakly oriented: True ==> evalexministart(A,B,C) = 101 + -1*A + B + -1*C >= 101 + -1*A + B + -1*C = evalexminientryin(A,B,C) True ==> evalexminientryin(A,B,C) = 101 + -1*A + B + -1*C >= 101 + -1*A + B + -1*C = evalexminibb1in(B,A,C) True ==> evalexminibbin(A,B,C) = 100 + A + -1*B + -1*C >= 99 + A + -1*B + -1*C = evalexminibb1in(-1 + A,C,1 + B) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalexministart(A,B,C) -> evalexminientryin(A,B,C) True (1,1) 1. evalexminientryin(A,B,C) -> evalexminibb1in(B,A,C) True (?,1) 2. evalexminibb1in(A,B,C) -> evalexminibbin(A,B,C) [100 >= B && A >= C] (101 + A + B + C,1) 5. evalexminibbin(A,B,C) -> evalexminibb1in(-1 + A,C,1 + B) True (?,1) Signature: {(evalexminibb1in,3) ;(evalexminibbin,3) ;(evalexminientryin,3) ;(evalexminireturnin,3) ;(evalexministart,3) ;(evalexministop,3)} Flow Graph: [0->{1},1->{2},2->{5},5->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 100) (<2,0,C>, 100 + C) (<5,0,A>, ?) (<5,0,B>, 100 + C) (<5,0,C>, 100) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalexministart(A,B,C) -> evalexminientryin(A,B,C) True (1,1) 1. evalexminientryin(A,B,C) -> evalexminibb1in(B,A,C) True (1,1) 2. evalexminibb1in(A,B,C) -> evalexminibbin(A,B,C) [100 >= B && A >= C] (101 + A + B + C,1) 5. evalexminibbin(A,B,C) -> evalexminibb1in(-1 + A,C,1 + B) True (101 + A + B + C,1) Signature: {(evalexminibb1in,3) ;(evalexminibbin,3) ;(evalexminientryin,3) ;(evalexminireturnin,3) ;(evalexministart,3) ;(evalexministop,3)} Flow Graph: [0->{1},1->{2},2->{5},5->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 100) (<2,0,C>, 100 + C) (<5,0,A>, ?) (<5,0,B>, 100 + C) (<5,0,C>, 100) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))