WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalexministart(A,B,C)    -> evalexminientryin(A,B,C)        True                 (1,1)
          1. evalexminientryin(A,B,C)  -> evalexminibb1in(B,A,C)          True                 (?,1)
          2. evalexminibb1in(A,B,C)    -> evalexminibbin(A,B,C)           [100 >= B && A >= C] (?,1)
          3. evalexminibb1in(A,B,C)    -> evalexminireturnin(A,B,C)       [B >= 101]           (?,1)
          4. evalexminibb1in(A,B,C)    -> evalexminireturnin(A,B,C)       [C >= 1 + A]         (?,1)
          5. evalexminibbin(A,B,C)     -> evalexminibb1in(-1 + A,C,1 + B) True                 (?,1)
          6. evalexminireturnin(A,B,C) -> evalexministop(A,B,C)           True                 (?,1)
        Signature:
          {(evalexminibb1in,3)
          ;(evalexminibbin,3)
          ;(evalexminientryin,3)
          ;(evalexminireturnin,3)
          ;(evalexministart,3)
          ;(evalexministop,3)}
        Flow Graph:
          [0->{1},1->{2,3,4},2->{5},3->{6},4->{6},5->{2,3,4},6->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>,     C, .= 0) 
          (<1,0,A>,     B, .= 0) (<1,0,B>, A, .= 0) (<1,0,C>,     C, .= 0) 
          (<2,0,A>,     A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>,     C, .= 0) 
          (<3,0,A>,     A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>,     C, .= 0) 
          (<4,0,A>,     A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>,     C, .= 0) 
          (<5,0,A>, 1 + A, .+ 1) (<5,0,B>, C, .= 0) (<5,0,C>, 1 + B, .+ 1) 
          (<6,0,A>,     A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>,     C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalexministart(A,B,C)    -> evalexminientryin(A,B,C)        True                 (1,1)
          1. evalexminientryin(A,B,C)  -> evalexminibb1in(B,A,C)          True                 (?,1)
          2. evalexminibb1in(A,B,C)    -> evalexminibbin(A,B,C)           [100 >= B && A >= C] (?,1)
          3. evalexminibb1in(A,B,C)    -> evalexminireturnin(A,B,C)       [B >= 101]           (?,1)
          4. evalexminibb1in(A,B,C)    -> evalexminireturnin(A,B,C)       [C >= 1 + A]         (?,1)
          5. evalexminibbin(A,B,C)     -> evalexminibb1in(-1 + A,C,1 + B) True                 (?,1)
          6. evalexminireturnin(A,B,C) -> evalexministop(A,B,C)           True                 (?,1)
        Signature:
          {(evalexminibb1in,3)
          ;(evalexminibbin,3)
          ;(evalexminientryin,3)
          ;(evalexminireturnin,3)
          ;(evalexministart,3)
          ;(evalexministop,3)}
        Flow Graph:
          [0->{1},1->{2,3,4},2->{5},3->{6},4->{6},5->{2,3,4},6->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>,           B) (<0,0,C>,       C) 
          (<1,0,A>, B) (<1,0,B>,           A) (<1,0,C>,       C) 
          (<2,0,A>, ?) (<2,0,B>,         100) (<2,0,C>, 100 + C) 
          (<3,0,A>, ?) (<3,0,B>, 100 + A + C) (<3,0,C>, 100 + C) 
          (<4,0,A>, ?) (<4,0,B>, 100 + A + C) (<4,0,C>, 100 + C) 
          (<5,0,A>, ?) (<5,0,B>,     100 + C) (<5,0,C>,     100) 
          (<6,0,A>, ?) (<6,0,B>, 100 + A + C) (<6,0,C>, 100 + C) 
* Step 3: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalexministart(A,B,C)    -> evalexminientryin(A,B,C)        True                 (1,1)
          1. evalexminientryin(A,B,C)  -> evalexminibb1in(B,A,C)          True                 (?,1)
          2. evalexminibb1in(A,B,C)    -> evalexminibbin(A,B,C)           [100 >= B && A >= C] (?,1)
          3. evalexminibb1in(A,B,C)    -> evalexminireturnin(A,B,C)       [B >= 101]           (?,1)
          4. evalexminibb1in(A,B,C)    -> evalexminireturnin(A,B,C)       [C >= 1 + A]         (?,1)
          5. evalexminibbin(A,B,C)     -> evalexminibb1in(-1 + A,C,1 + B) True                 (?,1)
          6. evalexminireturnin(A,B,C) -> evalexministop(A,B,C)           True                 (?,1)
        Signature:
          {(evalexminibb1in,3)
          ;(evalexminibbin,3)
          ;(evalexminientryin,3)
          ;(evalexminireturnin,3)
          ;(evalexministart,3)
          ;(evalexministop,3)}
        Flow Graph:
          [0->{1},1->{2,3,4},2->{5},3->{6},4->{6},5->{2,3,4},6->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,           B) (<0,0,C>,       C) 
          (<1,0,A>, B) (<1,0,B>,           A) (<1,0,C>,       C) 
          (<2,0,A>, ?) (<2,0,B>,         100) (<2,0,C>, 100 + C) 
          (<3,0,A>, ?) (<3,0,B>, 100 + A + C) (<3,0,C>, 100 + C) 
          (<4,0,A>, ?) (<4,0,B>, 100 + A + C) (<4,0,C>, 100 + C) 
          (<5,0,A>, ?) (<5,0,B>,     100 + C) (<5,0,C>,     100) 
          (<6,0,A>, ?) (<6,0,B>, 100 + A + C) (<6,0,C>, 100 + C) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,4,6]
* Step 4: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalexministart(A,B,C)   -> evalexminientryin(A,B,C)        True                 (1,1)
          1. evalexminientryin(A,B,C) -> evalexminibb1in(B,A,C)          True                 (?,1)
          2. evalexminibb1in(A,B,C)   -> evalexminibbin(A,B,C)           [100 >= B && A >= C] (?,1)
          5. evalexminibbin(A,B,C)    -> evalexminibb1in(-1 + A,C,1 + B) True                 (?,1)
        Signature:
          {(evalexminibb1in,3)
          ;(evalexminibbin,3)
          ;(evalexminientryin,3)
          ;(evalexminireturnin,3)
          ;(evalexministart,3)
          ;(evalexministop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5},5->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,       B) (<0,0,C>,       C) 
          (<1,0,A>, B) (<1,0,B>,       A) (<1,0,C>,       C) 
          (<2,0,A>, ?) (<2,0,B>,     100) (<2,0,C>, 100 + C) 
          (<5,0,A>, ?) (<5,0,B>, 100 + C) (<5,0,C>,     100) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalexminibb1in) = 101 + x1 + -1*x2 + -1*x3
             p(evalexminibbin) = 100 + x1 + -1*x2 + -1*x3
          p(evalexminientryin) = 101 + -1*x1 + x2 + -1*x3
            p(evalexministart) = 101 + -1*x1 + x2 + -1*x3
        
        The following rules are strictly oriented:
            [100 >= B && A >= C] ==>                      
          evalexminibb1in(A,B,C)   = 101 + A + -1*B + -1*C
                                   > 100 + A + -1*B + -1*C
                                   = evalexminibbin(A,B,C)
        
        
        The following rules are weakly oriented:
                              True ==>                                
            evalexministart(A,B,C)   = 101 + -1*A + B + -1*C          
                                    >= 101 + -1*A + B + -1*C          
                                     = evalexminientryin(A,B,C)       
        
                              True ==>                                
          evalexminientryin(A,B,C)   = 101 + -1*A + B + -1*C          
                                    >= 101 + -1*A + B + -1*C          
                                     = evalexminibb1in(B,A,C)         
        
                              True ==>                                
             evalexminibbin(A,B,C)   = 100 + A + -1*B + -1*C          
                                    >= 99 + A + -1*B + -1*C           
                                     = evalexminibb1in(-1 + A,C,1 + B)
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalexministart(A,B,C)   -> evalexminientryin(A,B,C)        True                 (1,1)              
          1. evalexminientryin(A,B,C) -> evalexminibb1in(B,A,C)          True                 (?,1)              
          2. evalexminibb1in(A,B,C)   -> evalexminibbin(A,B,C)           [100 >= B && A >= C] (101 + A + B + C,1)
          5. evalexminibbin(A,B,C)    -> evalexminibb1in(-1 + A,C,1 + B) True                 (?,1)              
        Signature:
          {(evalexminibb1in,3)
          ;(evalexminibbin,3)
          ;(evalexminientryin,3)
          ;(evalexminireturnin,3)
          ;(evalexministart,3)
          ;(evalexministop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5},5->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,       B) (<0,0,C>,       C) 
          (<1,0,A>, B) (<1,0,B>,       A) (<1,0,C>,       C) 
          (<2,0,A>, ?) (<2,0,B>,     100) (<2,0,C>, 100 + C) 
          (<5,0,A>, ?) (<5,0,B>, 100 + C) (<5,0,C>,     100) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalexministart(A,B,C)   -> evalexminientryin(A,B,C)        True                 (1,1)              
          1. evalexminientryin(A,B,C) -> evalexminibb1in(B,A,C)          True                 (1,1)              
          2. evalexminibb1in(A,B,C)   -> evalexminibbin(A,B,C)           [100 >= B && A >= C] (101 + A + B + C,1)
          5. evalexminibbin(A,B,C)    -> evalexminibb1in(-1 + A,C,1 + B) True                 (101 + A + B + C,1)
        Signature:
          {(evalexminibb1in,3)
          ;(evalexminibbin,3)
          ;(evalexminientryin,3)
          ;(evalexminireturnin,3)
          ;(evalexministart,3)
          ;(evalexministop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5},5->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,       B) (<0,0,C>,       C) 
          (<1,0,A>, B) (<1,0,B>,       A) (<1,0,C>,       C) 
          (<2,0,A>, ?) (<2,0,B>,     100) (<2,0,C>, 100 + C) 
          (<5,0,A>, ?) (<5,0,B>, 100 + C) (<5,0,C>,     100) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))