WORST_CASE(?,O(n^9)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (?,1) 3. evalfbb10in(A,B,C,D,E) -> evalfreturnin(A,B,C,D,E) [0 >= B] (?,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (?,1) 14. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{14},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7} ,12->{4,5},13->{2,3},14->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 1,0,A>, B, .= 0) (< 1,0,B>, A, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>, E, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, 1, .= 1) (< 2,0,D>, D, .= 0) (< 2,0,E>, E, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, B, .= 0) (< 4,0,E>, E, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, 1, .= 1) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 1 + E, .+ 1) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, 1 + D, .+ 1) (<11,0,E>, E, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, 1 + C, .+ 1) (<12,0,D>, D, .= 0) (<12,0,E>, E, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, 1 + B, .+ 1) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<13,0,E>, E, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) (<14,0,E>, E, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (?,1) 3. evalfbb10in(A,B,C,D,E) -> evalfreturnin(A,B,C,D,E) [0 >= B] (?,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (?,1) 14. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{14},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7} ,12->{4,5},13->{2,3},14->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 3,0,A>, B) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) * Step 3: LeafRules WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (?,1) 3. evalfbb10in(A,B,C,D,E) -> evalfreturnin(A,B,C,D,E) [0 >= B] (?,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (?,1) 14. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{14},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7} ,12->{4,5},13->{2,3},14->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 3,0,A>, B) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,14] * Step 4: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (?,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 2 + x2 p(evalfbb3in) = 1 + x2 p(evalfbb4in) = 1 + x2 p(evalfbb5in) = 1 + x2 p(evalfbb6in) = 1 + x2 p(evalfbb7in) = 1 + x2 p(evalfbb8in) = 1 + x2 p(evalfbb9in) = 1 + x2 p(evalfentryin) = 2 + x1 p(evalfstart) = 2 + x1 The following rules are strictly oriented: [B >= 1] ==> evalfbb10in(A,B,C,D,E) = 2 + B > 1 + B = evalfbb8in(A,B,1,D,E) The following rules are weakly oriented: True ==> evalfstart(A,B,C,D,E) = 2 + A >= 2 + A = evalfentryin(A,B,C,D,E) True ==> evalfentryin(A,B,C,D,E) = 2 + A >= 2 + A = evalfbb10in(B,A,C,D,E) [A >= C] ==> evalfbb8in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb6in(A,B,C,B,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb9in(A,B,C,D,E) [B + C >= D] ==> evalfbb6in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb4in(A,B,C,D,1) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb7in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb8in(A,B,1 + C,D,E) True ==> evalfbb9in(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb10in(A,-1 + B,C,D,E) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [13,5,12,7,4,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 0 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbb5in) = 1 p(evalfbb6in) = 1 p(evalfbb7in) = 1 p(evalfbb8in) = 1 p(evalfbb9in) = 1 The following rules are strictly oriented: True ==> evalfbb9in(A,B,C,D,E) = 1 > 0 = evalfbb10in(A,-1 + B,C,D,E) The following rules are weakly oriented: [A >= C] ==> evalfbb8in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,B,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 1 >= 1 = evalfbb9in(A,B,C,D,E) [B + C >= D] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb7in(A,B,C,D,E) = 1 >= 1 = evalfbb8in(A,B,1 + C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) * Step 7: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [13,5,12,7,4,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 0 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbb5in) = 1 p(evalfbb6in) = 1 p(evalfbb7in) = 1 p(evalfbb8in) = 1 p(evalfbb9in) = 0 The following rules are strictly oriented: [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 1 > 0 = evalfbb9in(A,B,C,D,E) The following rules are weakly oriented: [A >= C] ==> evalfbb8in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,B,E) [B + C >= D] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb7in(A,B,C,D,E) = 1 >= 1 = evalfbb8in(A,B,1 + C,D,E) True ==> evalfbb9in(A,B,C,D,E) = 0 >= 0 = evalfbb10in(A,-1 + B,C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) * Step 8: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,13,12,7,4,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = x1 p(evalfbb3in) = x1 + -1*x3 p(evalfbb4in) = x1 + -1*x3 p(evalfbb5in) = x1 + -1*x3 p(evalfbb6in) = x1 + -1*x3 p(evalfbb7in) = x1 + -1*x3 p(evalfbb8in) = 1 + x1 + -1*x3 p(evalfbb9in) = x1 The following rules are strictly oriented: [A >= C] ==> evalfbb8in(A,B,C,D,E) = 1 + A + -1*C > A + -1*C = evalfbb6in(A,B,C,B,E) The following rules are weakly oriented: [B >= 1] ==> evalfbb10in(A,B,C,D,E) = A >= A = evalfbb8in(A,B,1,D,E) [B + C >= D] ==> evalfbb6in(A,B,C,D,E) = A + -1*C >= A + -1*C = evalfbb4in(A,B,C,D,1) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = A + -1*C >= A + -1*C = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = A + -1*C >= A + -1*C = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = A + -1*C >= A + -1*C = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = A + -1*C >= A + -1*C = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = A + -1*C >= A + -1*C = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb7in(A,B,C,D,E) = A + -1*C >= A + -1*C = evalfbb8in(A,B,1 + C,D,E) True ==> evalfbb9in(A,B,C,D,E) = A >= A = evalfbb10in(A,-1 + B,C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) * Step 9: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (A*B + 3*B,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,13,5,12,7,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 0 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbb5in) = 1 p(evalfbb6in) = 1 p(evalfbb7in) = 1 p(evalfbb8in) = 0 p(evalfbb9in) = 0 The following rules are strictly oriented: True ==> evalfbb7in(A,B,C,D,E) = 1 > 0 = evalfbb8in(A,B,1 + C,D,E) The following rules are weakly oriented: [B >= 1] ==> evalfbb10in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1,D,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 0 >= 0 = evalfbb9in(A,B,C,D,E) [B + C >= D] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb9in(A,B,C,D,E) = 0 >= 0 = evalfbb10in(A,-1 + B,C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) * Step 10: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (A*B + 3*B,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,13,5,12,7,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 0 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbb5in) = 1 p(evalfbb6in) = 1 p(evalfbb7in) = 0 p(evalfbb8in) = 0 p(evalfbb9in) = 0 The following rules are strictly oriented: [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = 1 > 0 = evalfbb7in(A,B,C,D,E) The following rules are weakly oriented: [B >= 1] ==> evalfbb10in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1,D,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 0 >= 0 = evalfbb9in(A,B,C,D,E) [B + C >= D] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb7in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1 + C,D,E) True ==> evalfbb9in(A,B,C,D,E) = 0 >= 0 = evalfbb10in(A,-1 + B,C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) * Step 11: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (A*B + 3*B,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,13,5,7,4,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 1 + x1 p(evalfbb3in) = x2 + x3 + -1*x4 p(evalfbb4in) = x2 + x3 + -1*x4 p(evalfbb5in) = x2 + x3 + -1*x4 p(evalfbb6in) = 1 + x2 + x3 + -1*x4 p(evalfbb7in) = 1 + x2 + x3 + -1*x4 p(evalfbb8in) = 1 + x1 p(evalfbb9in) = 1 + x1 The following rules are strictly oriented: [B + C >= D] ==> evalfbb6in(A,B,C,D,E) = 1 + B + C + -1*D > B + C + -1*D = evalfbb4in(A,B,C,D,1) The following rules are weakly oriented: [B >= 1] ==> evalfbb10in(A,B,C,D,E) = 1 + A >= 1 + A = evalfbb8in(A,B,1,D,E) [A >= C] ==> evalfbb8in(A,B,C,D,E) = 1 + A >= 1 + C = evalfbb6in(A,B,C,B,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 1 + A >= 1 + A = evalfbb9in(A,B,C,D,E) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = 1 + B + C + -1*D >= 1 + B + C + -1*D = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = B + C + -1*D >= B + C + -1*D = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = B + C + -1*D >= B + C + -1*D = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = B + C + -1*D >= B + C + -1*D = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = B + C + -1*D >= B + C + -1*D = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb9in(A,B,C,D,E) = 1 + A >= 1 + A = evalfbb10in(A,-1 + B,C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) * Step 12: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (A*B + 3*B,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,13,5,12,7,4,11,9,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 0 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbb5in) = 1 p(evalfbb6in) = 0 p(evalfbb7in) = 0 p(evalfbb8in) = 0 p(evalfbb9in) = 0 The following rules are strictly oriented: True ==> evalfbb5in(A,B,C,D,E) = 1 > 0 = evalfbb6in(A,B,C,1 + D,E) The following rules are weakly oriented: [B >= 1] ==> evalfbb10in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1,D,E) [A >= C] ==> evalfbb8in(A,B,C,D,E) = 0 >= 0 = evalfbb6in(A,B,C,B,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 0 >= 0 = evalfbb9in(A,B,C,D,E) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = 0 >= 0 = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb7in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1 + C,D,E) True ==> evalfbb9in(A,B,C,D,E) = 0 >= 0 = evalfbb10in(A,-1 + B,C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) * Step 13: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (A*B + 3*B,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,13,5,12,7,4,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 1 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbb5in) = 0 p(evalfbb6in) = 1 p(evalfbb7in) = 1 p(evalfbb8in) = 1 p(evalfbb9in) = 1 The following rules are strictly oriented: [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 > 0 = evalfbb5in(A,B,C,D,E) The following rules are weakly oriented: [B >= 1] ==> evalfbb10in(A,B,C,D,E) = 1 >= 1 = evalfbb8in(A,B,1,D,E) [A >= C] ==> evalfbb8in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,B,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 1 >= 1 = evalfbb9in(A,B,C,D,E) [B + C >= D] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb7in(A,B,C,D,E) = 1 >= 1 = evalfbb8in(A,B,1 + C,D,E) True ==> evalfbb9in(A,B,C,D,E) = 1 >= 1 = evalfbb10in(A,-1 + B,C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) * Step 14: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (A*B + 3*B,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5} ,13->{2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: ChainProcessor False [0,1,2,4,5,6,7,8,9,10,11,12,13] + Details: We chained rule 0 to obtain the rules [14] . * Step 15: UnreachableRules WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (A*B + 3*B,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{2} ,14->{2}] Sizebounds: (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1] * Step 16: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= 1] (2 + A,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (A*B + 3*B,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{2},14->{2}] Sizebounds: (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) + Applied Processor: ChainProcessor False [2,4,5,6,7,8,9,10,11,12,13,14] + Details: We chained rule 2 to obtain the rules [15,16] . * Step 17: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,B,E) [A >= C] (A*B + 3*B,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{15,16},14->{15,16} ,15->{6,7},16->{13}] Sizebounds: (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) + Applied Processor: ChainProcessor False [4,5,6,7,8,9,10,11,12,13,14,15,16] + Details: We chained rule 4 to obtain the rules [17,18] . * Step 18: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb9in(A,B,C,D,E) [C >= 1 + A] (2 + A,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{5,17,18},13->{15,16},14->{15,16},15->{6 ,7},16->{13},17->{8,9},18->{12}] Sizebounds: (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) + Applied Processor: ChainProcessor False [5,6,7,8,9,10,11,12,13,14,15,16,17,18] + Details: We chained rule 5 to obtain the rules [19] . * Step 19: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B + C >= D] (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{17,18,19},13->{15,16},14->{15,16},15->{6,7} ,16->{13},17->{8,9},18->{12},19->{15,16}] Sizebounds: (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) + Applied Processor: ChainProcessor False [6,7,8,9,10,11,12,13,14,15,16,17,18,19] + Details: We chained rule 6 to obtain the rules [20,21] . * Step 20: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B + C] (A*B + 3*B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [7->{12},8->{10},9->{11},10->{8,9},11->{7,20,21},12->{17,18,19},13->{15,16},14->{15,16},15->{7,20,21} ,16->{13},17->{8,9},18->{12},19->{15,16},20->{10},21->{11}] Sizebounds: (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) + Applied Processor: ChainProcessor False [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] + Details: We chained rule 7 to obtain the rules [22] . * Step 21: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [8->{10},9->{11},10->{8,9},11->{20,21,22},12->{17,18,19},13->{15,16},14->{15,16},15->{20,21,22},16->{13} ,17->{8,9},18->{12},19->{15,16},20->{10},21->{11},22->{17,18,19}] Sizebounds: (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) + Applied Processor: ChainProcessor False [8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] + Details: We chained rule 8 to obtain the rules [23] . * Step 22: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [9->{11},10->{9,23},11->{20,21,22},12->{17,18,19},13->{15,16},14->{15,16},15->{20,21,22},16->{13},17->{9 ,23},18->{12},19->{15,16},20->{10},21->{11},22->{17,18,19},23->{9,23}] Sizebounds: (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) + Applied Processor: ChainProcessor False [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] + Details: We chained rule 9 to obtain the rules [24] . * Step 23: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (1 + A*B + A*B^2 + 4*B + 3*B^2,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},11->{20,21,22},12->{17,18,19},13->{15,16},14->{15,16},15->{20,21,22},16->{13},17->{23,24} ,18->{12},19->{15,16},20->{10},21->{11},22->{17,18,19},23->{23,24},24->{20,21,22}] Sizebounds: (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, B) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) + Applied Processor: ChainProcessor False [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] + Details: We chained rule 11 to obtain the rules [25,26,27] . * Step 24: ChainProcessor WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (A*B + 3*B,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) 25. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 26. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 27. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},12->{17,18,19},13->{15,16},14->{15,16},15->{20,21,22},16->{13},17->{23,24},18->{12},19->{15 ,16},20->{10},21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18 ,19}] Sizebounds: (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, B) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, B) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<26,0,A>, B) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<27,0,A>, B) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) + Applied Processor: ChainProcessor False [10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27] + Details: We chained rule 12 to obtain the rules [28,29,30] . * Step 25: UnsatPaths WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) 25. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 26. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 27. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,B,1) [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3) 29. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,B,E) [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3) 30. evalfbb7in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A] (A*B + 3*B,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},13->{15,16},14->{15,16},15->{20,21,22},16->{13},17->{23,24},18->{28,29,30},19->{15,16} ,20->{10},21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19} ,28->{23,24},29->{28,29,30},30->{15,16}] Sizebounds: (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, B) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, B) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<26,0,A>, B) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<27,0,A>, B) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) (<28,0,A>, B) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) (<30,0,A>, B) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(15,21),(15,22)] * Step 26: LocalSizeboundsProc WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) 25. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 26. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 27. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,B,1) [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3) 29. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,B,E) [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3) 30. evalfbb7in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A] (A*B + 3*B,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10} ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24} ,29->{28,29,30},30->{15,16}] Sizebounds: (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, B) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, B) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<26,0,A>, B) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<27,0,A>, B) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) (<28,0,A>, B) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) (<30,0,A>, B) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 1 + E, .+ 1) (<13,0,A>, A, .= 0) (<13,0,B>, 1 + B, .+ 1) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<13,0,E>, E, .= 0) (<14,0,A>, B, .= 0) (<14,0,B>, A, .= 0) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) (<14,0,E>, E, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, 1, .= 1) (<15,0,D>, B, .= 0) (<15,0,E>, E, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, 1, .= 1) (<16,0,D>, D, .= 0) (<16,0,E>, E, .= 0) (<17,0,A>, A, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, C, .= 0) (<17,0,D>, B, .= 0) (<17,0,E>, 1, .= 1) (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, C, .= 0) (<18,0,D>, B, .= 0) (<18,0,E>, E, .= 0) (<19,0,A>, A, .= 0) (<19,0,B>, 1 + B, .+ 1) (<19,0,C>, C, .= 0) (<19,0,D>, D, .= 0) (<19,0,E>, E, .= 0) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, C, .= 0) (<20,0,D>, D, .= 0) (<20,0,E>, 1, .= 1) (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>, C, .= 0) (<21,0,D>, D, .= 0) (<21,0,E>, 1, .= 1) (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, 1 + C, .+ 1) (<22,0,D>, D, .= 0) (<22,0,E>, E, .= 0) (<23,0,A>, A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>, C, .= 0) (<23,0,D>, D, .= 0) (<23,0,E>, 1 + E, .+ 1) (<24,0,A>, A, .= 0) (<24,0,B>, B, .= 0) (<24,0,C>, C, .= 0) (<24,0,D>, 1 + D, .+ 1) (<24,0,E>, E, .= 0) (<25,0,A>, A, .= 0) (<25,0,B>, B, .= 0) (<25,0,C>, C, .= 0) (<25,0,D>, 1 + B + C + D, .* 1) (<25,0,E>, 1, .= 1) (<26,0,A>, A, .= 0) (<26,0,B>, B, .= 0) (<26,0,C>, C, .= 0) (<26,0,D>, 1 + B + C + D, .* 1) (<26,0,E>, 1, .= 1) (<27,0,A>, A, .= 0) (<27,0,B>, B, .= 0) (<27,0,C>, 1 + C, .+ 1) (<27,0,D>, 1 + D, .+ 1) (<27,0,E>, E, .= 0) (<28,0,A>, A, .= 0) (<28,0,B>, B, .= 0) (<28,0,C>, 1 + A + C, .* 1) (<28,0,D>, B, .= 0) (<28,0,E>, 1, .= 1) (<29,0,A>, A, .= 0) (<29,0,B>, B, .= 0) (<29,0,C>, 1 + A + C, .* 1) (<29,0,D>, B, .= 0) (<29,0,E>, E, .= 0) (<30,0,A>, A, .= 0) (<30,0,B>, 1 + B, .+ 1) (<30,0,C>, 1 + C, .+ 1) (<30,0,D>, D, .= 0) (<30,0,E>, E, .= 0) * Step 27: SizeboundsProc WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) 25. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 26. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 27. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,B,1) [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3) 29. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,B,E) [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3) 30. evalfbb7in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A] (A*B + 3*B,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10} ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24} ,29->{28,29,30},30->{15,16}] Sizebounds: (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>, 2) (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>, 1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>, 1) (<15,0,D>, 4 + 3*A + A*B + 3*B) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>, 1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>, 4 + 3*A + A*B + 3*B) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>, 4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>, 1) (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>, 1) (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>, 1) (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>, 1) (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>, 1) (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>, 4 + 3*A + A*B + 3*B) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>, 4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>, 4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) * Step 28: LocationConstraintsProc WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) 25. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 26. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 27. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,B,1) [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3) 29. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,B,E) [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3) 30. evalfbb7in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A] (A*B + 3*B,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10} ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24} ,29->{28,29,30},30->{15,16}] Sizebounds: (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>, 2) (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>, 1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>, 1) (<15,0,D>, 4 + 3*A + A*B + 3*B) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>, 1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>, 4 + 3*A + A*B + 3*B) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>, 4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>, 1) (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>, 1) (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>, 1) (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>, 1) (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>, 1) (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>, 4 + 3*A + A*B + 3*B) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>, 4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>, 4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 10 : [B + C >= D] 13 : [B >= 1] 14 : True 15 : True 16 : True 17 : True 18 : True 19 : True 20 : True 21 : [False] 22 : [False] 23 : True 24 : True 25 : [B + C >= D] 26 : [B + C >= D] 27 : [B + C >= D] 28 : [A >= C] 29 : [A >= C] 30 : [A >= C] . * Step 29: SizeboundsProc WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) 25. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 26. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 27. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,B,1) [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3) 29. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,B,E) [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3) 30. evalfbb7in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A] (A*B + 3*B,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10} ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24} ,29->{28,29,30},30->{15,16}] Sizebounds: (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>, 2) (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>, 1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, ?) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>, 1) (<15,0,D>, 4 + 3*A + A*B + 3*B) (<15,0,E>, ?) (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>, 1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, ?) (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>, 4 + 3*A + A*B + 3*B) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>, 4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>, 1) (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>, 1) (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>, 1) (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>, 1) (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>, 1) (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>, 4 + 3*A + A*B + 3*B) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>, 4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>, 4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>, 2) (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>, 1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>, 1) (<15,0,D>, 4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>, 1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>, 4 + 3*A + A*B + 3*B) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>, 4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>, 1) (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>, 1) (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>, 1) (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>, 1) (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>, 1) (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>, 4 + 3*A + A*B + 3*B) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>, 4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>, 4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) * Step 30: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) 25. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 26. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 27. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,B,1) [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3) 29. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,B,E) [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3) 30. evalfbb7in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A] (A*B + 3*B,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10} ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24} ,29->{28,29,30},30->{15,16}] Sizebounds: (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>, 2) (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>, 1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>, 1) (<15,0,D>, 4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>, 1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>, 4 + 3*A + A*B + 3*B) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>, 4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>, 1) (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>, 1) (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>, 1) (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>, 1) (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>, 1) (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>, 4 + 3*A + A*B + 3*B) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>, 4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>, 4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [10,20,15,13,16,19,22,17,27,21,26,23,28,18,29,30,25], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 1 p(evalfbb3in) = 1 p(evalfbb4in) = 0 p(evalfbb5in) = 1 p(evalfbb6in) = 1 p(evalfbb7in) = 1 p(evalfbb8in) = 1 p(evalfbb9in) = 1 The following rules are strictly oriented: True ==> evalfbb3in(A,B,C,D,E) = 1 > 0 = evalfbb4in(A,B,C,D,1 + E) [A >= 1 + C && 1 + B + C >= B] ==> evalfbb7in(A,B,C,D,E) = 1 > 0 = evalfbb4in(A,B,1 + C,B,1) The following rules are weakly oriented: True ==> evalfbb9in(A,B,C,D,E) = 1 >= 1 = evalfbb10in(A,-1 + B,C,D,E) [B >= 1 && A >= 1] ==> evalfbb10in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,1,B,E) [B >= 1 && 1 >= 1 + A] ==> evalfbb10in(A,B,C,D,E) = 1 >= 1 = evalfbb9in(A,B,1,D,E) [A >= C && B + C >= B] ==> evalfbb8in(A,B,C,D,E) = 1 >= 0 = evalfbb4in(A,B,C,B,1) [A >= C && B >= 1 + B + C] ==> evalfbb8in(A,B,C,D,E) = 1 >= 1 = evalfbb7in(A,B,C,B,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 1 >= 1 = evalfbb10in(A,-1 + B,C,D,E) [B + C >= D && D >= 1] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,D,1) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb8in(A,B,1 + C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 0 >= 0 = evalfbb4in(A,B,C,D,1 + E) [B + C >= 1 + D && 1 + D >= 1] ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,1 + D,1) [1 + D >= 1 + B + C] ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb8in(A,B,1 + C,1 + D,E) [A >= 1 + C && B >= 2 + B + C] ==> evalfbb7in(A,B,C,D,E) = 1 >= 1 = evalfbb7in(A,B,1 + C,B,E) [1 + C >= 1 + A] ==> evalfbb7in(A,B,C,D,E) = 1 >= 1 = evalfbb10in(A,-1 + B,1 + C,D,E) We use the following global sizebounds: (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>, 2) (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>, 1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>, 1) (<15,0,D>, 4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>, 1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>, 4 + 3*A + A*B + 3*B) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>, 4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>, 1) (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>, 1) (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>, 1) (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>, 1) (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>, 1) (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>, 4 + 3*A + A*B + 3*B) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>, 4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>, 4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) * Step 31: PolyRank WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (3 + A*B + A*B^2 + 4*B + 3*B^2,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) 25. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 26. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 27. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,B,1) [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3) 29. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,B,E) [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3) 30. evalfbb7in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A] (A*B + 3*B,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10} ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24} ,29->{28,29,30},30->{15,16}] Sizebounds: (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>, 2) (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>, 1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>, 1) (<15,0,D>, 4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>, 1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>, 4 + 3*A + A*B + 3*B) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>, 4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>, 1) (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>, 1) (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>, 1) (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>, 1) (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>, 1) (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>, 4 + 3*A + A*B + 3*B) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>, 4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>, 4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [20,15,13,16,19,22,17,27,21,26,23,28,18,29,30,25], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = x2 p(evalfbb3in) = x2 p(evalfbb4in) = 1 + x4 + -1*x5 p(evalfbb5in) = x2 p(evalfbb6in) = x2 p(evalfbb7in) = x2 p(evalfbb8in) = x2 p(evalfbb9in) = -1 + x2 The following rules are strictly oriented: [B >= 1 && 1 >= 1 + A] ==> evalfbb10in(A,B,C,D,E) = B > -1 + B = evalfbb9in(A,B,1,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 + D + -1*E > D + -1*E = evalfbb4in(A,B,C,D,1 + E) The following rules are weakly oriented: True ==> evalfbb9in(A,B,C,D,E) = -1 + B >= -1 + B = evalfbb10in(A,-1 + B,C,D,E) [B >= 1 && A >= 1] ==> evalfbb10in(A,B,C,D,E) = B >= B = evalfbb6in(A,B,1,B,E) [A >= C && B + C >= B] ==> evalfbb8in(A,B,C,D,E) = B >= B = evalfbb4in(A,B,C,B,1) [A >= C && B >= 1 + B + C] ==> evalfbb8in(A,B,C,D,E) = B >= B = evalfbb7in(A,B,C,B,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = B >= -1 + B = evalfbb10in(A,-1 + B,C,D,E) [B + C >= D && D >= 1] ==> evalfbb6in(A,B,C,D,E) = B >= B = evalfbb3in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] ==> evalfbb6in(A,B,C,D,E) = B >= B = evalfbb5in(A,B,C,D,1) [D >= 1 + B + C] ==> evalfbb6in(A,B,C,D,E) = B >= B = evalfbb8in(A,B,1 + C,D,E) [B + C >= 1 + D && 1 + D >= 1] ==> evalfbb5in(A,B,C,D,E) = B >= B = evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] ==> evalfbb5in(A,B,C,D,E) = B >= B = evalfbb5in(A,B,C,1 + D,1) [1 + D >= 1 + B + C] ==> evalfbb5in(A,B,C,D,E) = B >= B = evalfbb8in(A,B,1 + C,1 + D,E) [A >= 1 + C && 1 + B + C >= B] ==> evalfbb7in(A,B,C,D,E) = B >= B = evalfbb4in(A,B,1 + C,B,1) [A >= 1 + C && B >= 2 + B + C] ==> evalfbb7in(A,B,C,D,E) = B >= B = evalfbb7in(A,B,1 + C,B,E) [1 + C >= 1 + A] ==> evalfbb7in(A,B,C,D,E) = B >= -1 + B = evalfbb10in(A,-1 + B,1 + C,D,E) We use the following global sizebounds: (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>, 2) (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>, 1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>, 1) (<15,0,D>, 4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>, 1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>, 4 + 3*A + A*B + 3*B) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>, 4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>, 1) (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>, 1) (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>, 1) (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>, 1) (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>, 1) (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>, 4 + 3*A + A*B + 3*B) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>, 4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>, 4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) * Step 32: KnowledgePropagation WORST_CASE(?,O(n^9)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (3 + A*B + A*B^2 + 4*B + 3*B^2,1) 13. evalfbb9in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) True (2 + A,1) 14. evalfstart(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E) [B >= 1 && A >= 1] (2 + A,2) 16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E) [B >= 1 && 1 >= 1 + A] (2 + A,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,B,1) [A >= C && B + C >= B] (A*B + 3*B,2) 18. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,B,E) [A >= C && B >= 1 + B + C] (A*B + 3*B,2) 19. evalfbb8in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A] (2 + A,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B + C >= D && D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 21. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2) 22. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B + C] (A*B + 3*B,2) 23. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (77 + 34*A + 236*A*B + 738*A*B^2 + 1263*A*B^3 + 1262*A*B^4 + 690*A*B^5 + 162*A*B^6 + 30*A^2*B + 138*A^2*B^2 + 300*A^2*B^3 + 352*A^2*B^4 + 214*A^2*B^5 + 54*A^2*B^6 + 6*A^3*B^2 + 22*A^3*B^3 + 32*A^3*B^4 + 22*A^3*B^5 + 6*A^3*B^6 + 438*B + 1149*B^2 + 1687*B^3 + 1482*B^4 + 738*B^5 + 162*B^6 ,2) 24. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (2 + A*B + A*B^2 + 4*B + 3*B^2,2) 25. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 26. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 27. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C] (1 + A*B + A*B^2 + 4*B + 3*B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,B,1) [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3) 29. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,B,E) [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3) 30. evalfbb7in(A,B,C,D,E) -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A] (A*B + 3*B,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfbb9in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10} ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24} ,29->{28,29,30},30->{15,16}] Sizebounds: (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>, 2) (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>, 1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>, 1) (<15,0,D>, 4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>, 1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>, 4 + 3*A + A*B + 3*B) (<17,0,E>, 1) (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>, 4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>, 1) (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>, 1) (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>, 1) (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>, 20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>, 1) (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>, 1) (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>, 4 + 3*A + A*B + 3*B) (<28,0,E>, 1) (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>, 4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>, 4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^9))