WORST_CASE(?,O(n^9))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)     True             (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True             (?,1)
          2.  evalfbb10in(A,B,C,D,E)   -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (?,1)
          3.  evalfbb10in(A,B,C,D,E)   -> evalfreturnin(A,B,C,D,E)    [0 >= B]         (?,1)
          4.  evalfbb8in(A,B,C,D,E)    -> evalfbb6in(A,B,C,B,E)       [A >= C]         (?,1)
          5.  evalfbb8in(A,B,C,D,E)    -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (?,1)
          6.  evalfbb6in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)
          7.  evalfbb6in(A,B,C,D,E)    -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)
          8.  evalfbb4in(A,B,C,D,E)    -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)
          9.  evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)
          10. evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)
          11. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)
          12. evalfbb7in(A,B,C,D,E)    -> evalfbb8in(A,B,1 + C,D,E)   True             (?,1)
          13. evalfbb9in(A,B,C,D,E)    -> evalfbb10in(A,-1 + B,C,D,E) True             (?,1)
          14. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)        True             (?,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{14},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7}
          ,12->{4,5},13->{2,3},14->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>,     B, .= 0) (< 0,0,C>,     C, .= 0) (< 0,0,D>,     D, .= 0) (< 0,0,E>,     E, .= 0) 
          (< 1,0,A>, B, .= 0) (< 1,0,B>,     A, .= 0) (< 1,0,C>,     C, .= 0) (< 1,0,D>,     D, .= 0) (< 1,0,E>,     E, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>,     B, .= 0) (< 2,0,C>,     1, .= 1) (< 2,0,D>,     D, .= 0) (< 2,0,E>,     E, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,     B, .= 0) (< 3,0,C>,     C, .= 0) (< 3,0,D>,     D, .= 0) (< 3,0,E>,     E, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,     B, .= 0) (< 4,0,C>,     C, .= 0) (< 4,0,D>,     B, .= 0) (< 4,0,E>,     E, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>,     B, .= 0) (< 5,0,C>,     C, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>,     E, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>,     B, .= 0) (< 6,0,C>,     C, .= 0) (< 6,0,D>,     D, .= 0) (< 6,0,E>,     1, .= 1) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,     B, .= 0) (< 7,0,C>,     C, .= 0) (< 7,0,D>,     D, .= 0) (< 7,0,E>,     E, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>,     B, .= 0) (< 8,0,C>,     C, .= 0) (< 8,0,D>,     D, .= 0) (< 8,0,E>,     E, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,     B, .= 0) (< 9,0,C>,     C, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>,     E, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>,     B, .= 0) (<10,0,C>,     C, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>, 1 + E, .+ 1) 
          (<11,0,A>, A, .= 0) (<11,0,B>,     B, .= 0) (<11,0,C>,     C, .= 0) (<11,0,D>, 1 + D, .+ 1) (<11,0,E>,     E, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>,     B, .= 0) (<12,0,C>, 1 + C, .+ 1) (<12,0,D>,     D, .= 0) (<12,0,E>,     E, .= 0) 
          (<13,0,A>, A, .= 0) (<13,0,B>, 1 + B, .+ 1) (<13,0,C>,     C, .= 0) (<13,0,D>,     D, .= 0) (<13,0,E>,     E, .= 0) 
          (<14,0,A>, A, .= 0) (<14,0,B>,     B, .= 0) (<14,0,C>,     C, .= 0) (<14,0,D>,     D, .= 0) (<14,0,E>,     E, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)     True             (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True             (?,1)
          2.  evalfbb10in(A,B,C,D,E)   -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (?,1)
          3.  evalfbb10in(A,B,C,D,E)   -> evalfreturnin(A,B,C,D,E)    [0 >= B]         (?,1)
          4.  evalfbb8in(A,B,C,D,E)    -> evalfbb6in(A,B,C,B,E)       [A >= C]         (?,1)
          5.  evalfbb8in(A,B,C,D,E)    -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (?,1)
          6.  evalfbb6in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)
          7.  evalfbb6in(A,B,C,D,E)    -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)
          8.  evalfbb4in(A,B,C,D,E)    -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)
          9.  evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)
          10. evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)
          11. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)
          12. evalfbb7in(A,B,C,D,E)    -> evalfbb8in(A,B,1 + C,D,E)   True             (?,1)
          13. evalfbb9in(A,B,C,D,E)    -> evalfbb10in(A,-1 + B,C,D,E) True             (?,1)
          14. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)        True             (?,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{14},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7}
          ,12->{4,5},13->{2,3},14->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, B) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
* Step 3: LeafRules WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)     True             (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True             (?,1)
          2.  evalfbb10in(A,B,C,D,E)   -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (?,1)
          3.  evalfbb10in(A,B,C,D,E)   -> evalfreturnin(A,B,C,D,E)    [0 >= B]         (?,1)
          4.  evalfbb8in(A,B,C,D,E)    -> evalfbb6in(A,B,C,B,E)       [A >= C]         (?,1)
          5.  evalfbb8in(A,B,C,D,E)    -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (?,1)
          6.  evalfbb6in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)
          7.  evalfbb6in(A,B,C,D,E)    -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)
          8.  evalfbb4in(A,B,C,D,E)    -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)
          9.  evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)
          10. evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)
          11. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)
          12. evalfbb7in(A,B,C,D,E)    -> evalfbb8in(A,B,1 + C,D,E)   True             (?,1)
          13. evalfbb9in(A,B,C,D,E)    -> evalfbb10in(A,-1 + B,C,D,E) True             (?,1)
          14. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)        True             (?,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{14},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7}
          ,12->{4,5},13->{2,3},14->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, B) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,14]
* Step 4: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (?,1)
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (?,1)
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (?,1)
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (?,1)
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (?,1)
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (?,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(evalfbb10in) = 2 + x2
            p(evalfbb3in) = 1 + x2
            p(evalfbb4in) = 1 + x2
            p(evalfbb5in) = 1 + x2
            p(evalfbb6in) = 1 + x2
            p(evalfbb7in) = 1 + x2
            p(evalfbb8in) = 1 + x2
            p(evalfbb9in) = 1 + x2
          p(evalfentryin) = 2 + x1
            p(evalfstart) = 2 + x1
        
        The following rules are strictly oriented:
                        [B >= 1] ==>                      
          evalfbb10in(A,B,C,D,E)   = 2 + B                
                                   > 1 + B                
                                   = evalfbb8in(A,B,1,D,E)
        
        
        The following rules are weakly oriented:
                             True ==>                            
            evalfstart(A,B,C,D,E)   = 2 + A                      
                                   >= 2 + A                      
                                    = evalfentryin(A,B,C,D,E)    
        
                             True ==>                            
          evalfentryin(A,B,C,D,E)   = 2 + A                      
                                   >= 2 + A                      
                                    = evalfbb10in(B,A,C,D,E)     
        
                         [A >= C] ==>                            
            evalfbb8in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb6in(A,B,C,B,E)      
        
                     [C >= 1 + A] ==>                            
            evalfbb8in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb9in(A,B,C,D,E)      
        
                     [B + C >= D] ==>                            
            evalfbb6in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb4in(A,B,C,D,1)      
        
                 [D >= 1 + B + C] ==>                            
            evalfbb6in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb7in(A,B,C,D,E)      
        
                         [D >= E] ==>                            
            evalfbb4in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb3in(A,B,C,D,E)      
        
                     [E >= 1 + D] ==>                            
            evalfbb4in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb5in(A,B,C,D,E)      
        
                             True ==>                            
            evalfbb3in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb4in(A,B,C,D,1 + E)  
        
                             True ==>                            
            evalfbb5in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb6in(A,B,C,1 + D,E)  
        
                             True ==>                            
            evalfbb7in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb8in(A,B,1 + C,D,E)  
        
                             True ==>                            
            evalfbb9in(A,B,C,D,E)   = 1 + B                      
                                   >= 1 + B                      
                                    = evalfbb10in(A,-1 + B,C,D,E)
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)    
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (?,1)    
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (?,1)    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (?,1)    
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)    
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)    
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)    
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)    
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)    
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (?,1)    
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (?,1)    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)    
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)    
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (?,1)    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (?,1)    
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)    
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)    
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)    
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)    
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)    
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (?,1)    
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (?,1)    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [13,5,12,7,4,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 0
           p(evalfbb3in) = 1
           p(evalfbb4in) = 1
           p(evalfbb5in) = 1
           p(evalfbb6in) = 1
           p(evalfbb7in) = 1
           p(evalfbb8in) = 1
           p(evalfbb9in) = 1
        
        The following rules are strictly oriented:
                           True ==>                            
          evalfbb9in(A,B,C,D,E)   = 1                          
                                  > 0                          
                                  = evalfbb10in(A,-1 + B,C,D,E)
        
        
        The following rules are weakly oriented:
                       [A >= C] ==>                          
          evalfbb8in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb6in(A,B,C,B,E)    
        
                   [C >= 1 + A] ==>                          
          evalfbb8in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb9in(A,B,C,D,E)    
        
                   [B + C >= D] ==>                          
          evalfbb6in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb4in(A,B,C,D,1)    
        
               [D >= 1 + B + C] ==>                          
          evalfbb6in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb7in(A,B,C,D,E)    
        
                       [D >= E] ==>                          
          evalfbb4in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb3in(A,B,C,D,E)    
        
                   [E >= 1 + D] ==>                          
          evalfbb4in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb5in(A,B,C,D,E)    
        
                           True ==>                          
          evalfbb3in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb4in(A,B,C,D,1 + E)
        
                           True ==>                          
          evalfbb5in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb6in(A,B,C,1 + D,E)
        
                           True ==>                          
          evalfbb7in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb8in(A,B,1 + C,D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
        (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
* Step 7: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)    
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)    
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (?,1)    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (?,1)    
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)    
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)    
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)    
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)    
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)    
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (?,1)    
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [13,5,12,7,4,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 0
           p(evalfbb3in) = 1
           p(evalfbb4in) = 1
           p(evalfbb5in) = 1
           p(evalfbb6in) = 1
           p(evalfbb7in) = 1
           p(evalfbb8in) = 1
           p(evalfbb9in) = 0
        
        The following rules are strictly oriented:
                   [C >= 1 + A] ==>                      
          evalfbb8in(A,B,C,D,E)   = 1                    
                                  > 0                    
                                  = evalfbb9in(A,B,C,D,E)
        
        
        The following rules are weakly oriented:
                       [A >= C] ==>                            
          evalfbb8in(A,B,C,D,E)   = 1                          
                                 >= 1                          
                                  = evalfbb6in(A,B,C,B,E)      
        
                   [B + C >= D] ==>                            
          evalfbb6in(A,B,C,D,E)   = 1                          
                                 >= 1                          
                                  = evalfbb4in(A,B,C,D,1)      
        
               [D >= 1 + B + C] ==>                            
          evalfbb6in(A,B,C,D,E)   = 1                          
                                 >= 1                          
                                  = evalfbb7in(A,B,C,D,E)      
        
                       [D >= E] ==>                            
          evalfbb4in(A,B,C,D,E)   = 1                          
                                 >= 1                          
                                  = evalfbb3in(A,B,C,D,E)      
        
                   [E >= 1 + D] ==>                            
          evalfbb4in(A,B,C,D,E)   = 1                          
                                 >= 1                          
                                  = evalfbb5in(A,B,C,D,E)      
        
                           True ==>                            
          evalfbb3in(A,B,C,D,E)   = 1                          
                                 >= 1                          
                                  = evalfbb4in(A,B,C,D,1 + E)  
        
                           True ==>                            
          evalfbb5in(A,B,C,D,E)   = 1                          
                                 >= 1                          
                                  = evalfbb6in(A,B,C,1 + D,E)  
        
                           True ==>                            
          evalfbb7in(A,B,C,D,E)   = 1                          
                                 >= 1                          
                                  = evalfbb8in(A,B,1 + C,D,E)  
        
                           True ==>                            
          evalfbb9in(A,B,C,D,E)   = 0                          
                                 >= 0                          
                                  = evalfbb10in(A,-1 + B,C,D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
        (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
* Step 8: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)    
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)    
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (?,1)    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (2 + A,1)
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)    
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)    
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)    
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)    
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)    
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (?,1)    
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,13,12,7,4,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = x1            
           p(evalfbb3in) = x1 + -1*x3    
           p(evalfbb4in) = x1 + -1*x3    
           p(evalfbb5in) = x1 + -1*x3    
           p(evalfbb6in) = x1 + -1*x3    
           p(evalfbb7in) = x1 + -1*x3    
           p(evalfbb8in) = 1 + x1 + -1*x3
           p(evalfbb9in) = x1            
        
        The following rules are strictly oriented:
                       [A >= C] ==>                      
          evalfbb8in(A,B,C,D,E)   = 1 + A + -1*C         
                                  > A + -1*C             
                                  = evalfbb6in(A,B,C,B,E)
        
        
        The following rules are weakly oriented:
                        [B >= 1] ==>                            
          evalfbb10in(A,B,C,D,E)   = A                          
                                  >= A                          
                                   = evalfbb8in(A,B,1,D,E)      
        
                    [B + C >= D] ==>                            
           evalfbb6in(A,B,C,D,E)   = A + -1*C                   
                                  >= A + -1*C                   
                                   = evalfbb4in(A,B,C,D,1)      
        
                [D >= 1 + B + C] ==>                            
           evalfbb6in(A,B,C,D,E)   = A + -1*C                   
                                  >= A + -1*C                   
                                   = evalfbb7in(A,B,C,D,E)      
        
                        [D >= E] ==>                            
           evalfbb4in(A,B,C,D,E)   = A + -1*C                   
                                  >= A + -1*C                   
                                   = evalfbb3in(A,B,C,D,E)      
        
                    [E >= 1 + D] ==>                            
           evalfbb4in(A,B,C,D,E)   = A + -1*C                   
                                  >= A + -1*C                   
                                   = evalfbb5in(A,B,C,D,E)      
        
                            True ==>                            
           evalfbb3in(A,B,C,D,E)   = A + -1*C                   
                                  >= A + -1*C                   
                                   = evalfbb4in(A,B,C,D,1 + E)  
        
                            True ==>                            
           evalfbb5in(A,B,C,D,E)   = A + -1*C                   
                                  >= A + -1*C                   
                                   = evalfbb6in(A,B,C,1 + D,E)  
        
                            True ==>                            
           evalfbb7in(A,B,C,D,E)   = A + -1*C                   
                                  >= A + -1*C                   
                                   = evalfbb8in(A,B,1 + C,D,E)  
        
                            True ==>                            
           evalfbb9in(A,B,C,D,E)   = A                          
                                  >= A                          
                                   = evalfbb10in(A,-1 + B,C,D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
        (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
* Step 9: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)        
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)        
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)    
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (A*B + 3*B,1)
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (2 + A,1)    
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)        
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)        
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)        
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)        
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)        
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)        
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (?,1)        
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,13,5,12,7,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 0
           p(evalfbb3in) = 1
           p(evalfbb4in) = 1
           p(evalfbb5in) = 1
           p(evalfbb6in) = 1
           p(evalfbb7in) = 1
           p(evalfbb8in) = 0
           p(evalfbb9in) = 0
        
        The following rules are strictly oriented:
                           True ==>                          
          evalfbb7in(A,B,C,D,E)   = 1                        
                                  > 0                        
                                  = evalfbb8in(A,B,1 + C,D,E)
        
        
        The following rules are weakly oriented:
                        [B >= 1] ==>                            
          evalfbb10in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb8in(A,B,1,D,E)      
        
                    [C >= 1 + A] ==>                            
           evalfbb8in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb9in(A,B,C,D,E)      
        
                    [B + C >= D] ==>                            
           evalfbb6in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb4in(A,B,C,D,1)      
        
                [D >= 1 + B + C] ==>                            
           evalfbb6in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb7in(A,B,C,D,E)      
        
                        [D >= E] ==>                            
           evalfbb4in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb3in(A,B,C,D,E)      
        
                    [E >= 1 + D] ==>                            
           evalfbb4in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb5in(A,B,C,D,E)      
        
                            True ==>                            
           evalfbb3in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb4in(A,B,C,D,1 + E)  
        
                            True ==>                            
           evalfbb5in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb6in(A,B,C,1 + D,E)  
        
                            True ==>                            
           evalfbb9in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb10in(A,-1 + B,C,D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
        (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
* Step 10: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)        
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)        
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)    
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (A*B + 3*B,1)
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (2 + A,1)    
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)        
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (?,1)        
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)        
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)        
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)        
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)        
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (A*B + 3*B,1)
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,13,5,12,7,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 0
           p(evalfbb3in) = 1
           p(evalfbb4in) = 1
           p(evalfbb5in) = 1
           p(evalfbb6in) = 1
           p(evalfbb7in) = 0
           p(evalfbb8in) = 0
           p(evalfbb9in) = 0
        
        The following rules are strictly oriented:
               [D >= 1 + B + C] ==>                      
          evalfbb6in(A,B,C,D,E)   = 1                    
                                  > 0                    
                                  = evalfbb7in(A,B,C,D,E)
        
        
        The following rules are weakly oriented:
                        [B >= 1] ==>                            
          evalfbb10in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb8in(A,B,1,D,E)      
        
                    [C >= 1 + A] ==>                            
           evalfbb8in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb9in(A,B,C,D,E)      
        
                    [B + C >= D] ==>                            
           evalfbb6in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb4in(A,B,C,D,1)      
        
                        [D >= E] ==>                            
           evalfbb4in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb3in(A,B,C,D,E)      
        
                    [E >= 1 + D] ==>                            
           evalfbb4in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb5in(A,B,C,D,E)      
        
                            True ==>                            
           evalfbb3in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb4in(A,B,C,D,1 + E)  
        
                            True ==>                            
           evalfbb5in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb6in(A,B,C,1 + D,E)  
        
                            True ==>                            
           evalfbb7in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb8in(A,B,1 + C,D,E)  
        
                            True ==>                            
           evalfbb9in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb10in(A,-1 + B,C,D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
        (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
* Step 11: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)        
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)        
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)    
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (A*B + 3*B,1)
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (2 + A,1)    
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (?,1)        
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (A*B + 3*B,1)
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)        
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)        
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)        
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)        
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (A*B + 3*B,1)
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,13,5,7,4,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 1 + x1             
           p(evalfbb3in) = x2 + x3 + -1*x4    
           p(evalfbb4in) = x2 + x3 + -1*x4    
           p(evalfbb5in) = x2 + x3 + -1*x4    
           p(evalfbb6in) = 1 + x2 + x3 + -1*x4
           p(evalfbb7in) = 1 + x2 + x3 + -1*x4
           p(evalfbb8in) = 1 + x1             
           p(evalfbb9in) = 1 + x1             
        
        The following rules are strictly oriented:
                   [B + C >= D] ==>                      
          evalfbb6in(A,B,C,D,E)   = 1 + B + C + -1*D     
                                  > B + C + -1*D         
                                  = evalfbb4in(A,B,C,D,1)
        
        
        The following rules are weakly oriented:
                        [B >= 1] ==>                            
          evalfbb10in(A,B,C,D,E)   = 1 + A                      
                                  >= 1 + A                      
                                   = evalfbb8in(A,B,1,D,E)      
        
                        [A >= C] ==>                            
           evalfbb8in(A,B,C,D,E)   = 1 + A                      
                                  >= 1 + C                      
                                   = evalfbb6in(A,B,C,B,E)      
        
                    [C >= 1 + A] ==>                            
           evalfbb8in(A,B,C,D,E)   = 1 + A                      
                                  >= 1 + A                      
                                   = evalfbb9in(A,B,C,D,E)      
        
                [D >= 1 + B + C] ==>                            
           evalfbb6in(A,B,C,D,E)   = 1 + B + C + -1*D           
                                  >= 1 + B + C + -1*D           
                                   = evalfbb7in(A,B,C,D,E)      
        
                        [D >= E] ==>                            
           evalfbb4in(A,B,C,D,E)   = B + C + -1*D               
                                  >= B + C + -1*D               
                                   = evalfbb3in(A,B,C,D,E)      
        
                    [E >= 1 + D] ==>                            
           evalfbb4in(A,B,C,D,E)   = B + C + -1*D               
                                  >= B + C + -1*D               
                                   = evalfbb5in(A,B,C,D,E)      
        
                            True ==>                            
           evalfbb3in(A,B,C,D,E)   = B + C + -1*D               
                                  >= B + C + -1*D               
                                   = evalfbb4in(A,B,C,D,1 + E)  
        
                            True ==>                            
           evalfbb5in(A,B,C,D,E)   = B + C + -1*D               
                                  >= B + C + -1*D               
                                   = evalfbb6in(A,B,C,1 + D,E)  
        
                            True ==>                            
           evalfbb9in(A,B,C,D,E)   = 1 + A                      
                                  >= 1 + A                      
                                   = evalfbb10in(A,-1 + B,C,D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
        (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
* Step 12: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)                            
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)                            
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)                        
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (A*B + 3*B,1)                    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (2 + A,1)                        
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (A*B + 3*B,1)                    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)                            
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)                            
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (?,1)                            
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)                        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,13,5,12,7,4,11,9,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 0
           p(evalfbb3in) = 1
           p(evalfbb4in) = 1
           p(evalfbb5in) = 1
           p(evalfbb6in) = 0
           p(evalfbb7in) = 0
           p(evalfbb8in) = 0
           p(evalfbb9in) = 0
        
        The following rules are strictly oriented:
                           True ==>                          
          evalfbb5in(A,B,C,D,E)   = 1                        
                                  > 0                        
                                  = evalfbb6in(A,B,C,1 + D,E)
        
        
        The following rules are weakly oriented:
                        [B >= 1] ==>                            
          evalfbb10in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb8in(A,B,1,D,E)      
        
                        [A >= C] ==>                            
           evalfbb8in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb6in(A,B,C,B,E)      
        
                    [C >= 1 + A] ==>                            
           evalfbb8in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb9in(A,B,C,D,E)      
        
                [D >= 1 + B + C] ==>                            
           evalfbb6in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb7in(A,B,C,D,E)      
        
                        [D >= E] ==>                            
           evalfbb4in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb3in(A,B,C,D,E)      
        
                    [E >= 1 + D] ==>                            
           evalfbb4in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb5in(A,B,C,D,E)      
        
                            True ==>                            
           evalfbb3in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb4in(A,B,C,D,1 + E)  
        
                            True ==>                            
           evalfbb7in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb8in(A,B,1 + C,D,E)  
        
                            True ==>                            
           evalfbb9in(A,B,C,D,E)   = 0                          
                                  >= 0                          
                                   = evalfbb10in(A,-1 + B,C,D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
        (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
* Step 13: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)                            
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)                            
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)                        
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (A*B + 3*B,1)                    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (2 + A,1)                        
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (A*B + 3*B,1)                    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (?,1)                            
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)                            
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)                        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,13,5,12,7,4,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 1
           p(evalfbb3in) = 1
           p(evalfbb4in) = 1
           p(evalfbb5in) = 0
           p(evalfbb6in) = 1
           p(evalfbb7in) = 1
           p(evalfbb8in) = 1
           p(evalfbb9in) = 1
        
        The following rules are strictly oriented:
                   [E >= 1 + D] ==>                      
          evalfbb4in(A,B,C,D,E)   = 1                    
                                  > 0                    
                                  = evalfbb5in(A,B,C,D,E)
        
        
        The following rules are weakly oriented:
                        [B >= 1] ==>                            
          evalfbb10in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb8in(A,B,1,D,E)      
        
                        [A >= C] ==>                            
           evalfbb8in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb6in(A,B,C,B,E)      
        
                    [C >= 1 + A] ==>                            
           evalfbb8in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb9in(A,B,C,D,E)      
        
                    [B + C >= D] ==>                            
           evalfbb6in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb4in(A,B,C,D,1)      
        
                [D >= 1 + B + C] ==>                            
           evalfbb6in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb7in(A,B,C,D,E)      
        
                        [D >= E] ==>                            
           evalfbb4in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb3in(A,B,C,D,E)      
        
                            True ==>                            
           evalfbb3in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb4in(A,B,C,D,1 + E)  
        
                            True ==>                            
           evalfbb7in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb8in(A,B,1 + C,D,E)  
        
                            True ==>                            
           evalfbb9in(A,B,C,D,E)   = 1                          
                                  >= 1                          
                                   = evalfbb10in(A,-1 + B,C,D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
        (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
* Step 14: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)     True             (1,1)                            
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)                            
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)                        
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (A*B + 3*B,1)                    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (2 + A,1)                        
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (A*B + 3*B,1)                    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (2 + A*B + A*B^2 + 4*B + 3*B^2,1)
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)                            
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)                        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}
          ,13->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [0,1,2,4,5,6,7,8,9,10,11,12,13]
    + Details:
        We chained rule 0 to obtain the rules [14] .
* Step 15: UnreachableRules WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(B,A,C,D,E)      True             (1,1)                            
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)                        
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,B,E)       [A >= C]         (A*B + 3*B,1)                    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (2 + A,1)                        
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (A*B + 3*B,1)                    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (2 + A*B + A*B^2 + 4*B + 3*B^2,1)
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)                            
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)   True             (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)   True             (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)   -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)   -> evalfbb10in(B,A,C,D,E)      True             (1,2)                            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [1->{2},2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{2}
          ,14->{2}]
        Sizebounds:
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 16: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          2.  evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E)       [B >= 1]         (2 + A,1)                        
          4.  evalfbb8in(A,B,C,D,E)  -> evalfbb6in(A,B,C,B,E)       [A >= C]         (A*B + 3*B,1)                    
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]     (2 + A,1)                        
          6.  evalfbb6in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1)       [B + C >= D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          7.  evalfbb6in(A,B,C,D,E)  -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C] (A*B + 3*B,1)                    
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)       [D >= E]         (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]     (2 + A*B + A*B^2 + 4*B + 3*B^2,1)
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   True             (?,1)                            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)   True             (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   True             (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) True             (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True             (1,2)                            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [2->{4,5},4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{2},14->{2}]
        Sizebounds:
          (< 2,0,A>, B) (< 2,0,B>, ?) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [2,4,5,6,7,8,9,10,11,12,13,14]
    + Details:
        We chained rule 2 to obtain the rules [15,16] .
* Step 17: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          4.  evalfbb8in(A,B,C,D,E)  -> evalfbb6in(A,B,C,B,E)       [A >= C]               (A*B + 3*B,1)                    
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]           (2 + A,1)                        
          6.  evalfbb6in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1)       [B + C >= D]           (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          7.  evalfbb6in(A,B,C,D,E)  -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C]       (A*B + 3*B,1)                    
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)       [D >= E]               (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]           (2 + A*B + A*B^2 + 4*B + 3*B^2,1)
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   True                   (?,1)                            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)   True                   (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   True                   (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) True                   (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True                   (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)       [B >= 1 && A >= 1]     (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)       [B >= 1 && 1 >= 1 + A] (2 + A,2)                        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [4->{6,7},5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{15,16},14->{15,16}
          ,15->{6,7},16->{13}]
        Sizebounds:
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, B) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [4,5,6,7,8,9,10,11,12,13,14,15,16]
    + Details:
        We chained rule 4 to obtain the rules [17,18] .
* Step 18: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb9in(A,B,C,D,E)       [C >= 1 + A]               (2 + A,1)                        
          6.  evalfbb6in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1)       [B + C >= D]               (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          7.  evalfbb6in(A,B,C,D,E)  -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C]           (A*B + 3*B,1)                    
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)       [D >= E]                   (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]               (2 + A*B + A*B^2 + 4*B + 3*B^2,1)
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   True                       (?,1)                            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)   True                       (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   True                       (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) True                       (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True                       (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)       [B >= 1 && A >= 1]         (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)       [B >= 1 && 1 >= 1 + A]     (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)       [A >= C && B + C >= B]     (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)       [A >= C && B >= 1 + B + C] (A*B + 3*B,2)                    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{13},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{5,17,18},13->{15,16},14->{15,16},15->{6
          ,7},16->{13},17->{8,9},18->{12}]
        Sizebounds:
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) 
          (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [5,6,7,8,9,10,11,12,13,14,15,16,17,18]
    + Details:
        We chained rule 5 to obtain the rules [19] .
* Step 19: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          6.  evalfbb6in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1)       [B + C >= D]               (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          7.  evalfbb6in(A,B,C,D,E)  -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C]           (A*B + 3*B,1)                    
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)       [D >= E]                   (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]               (2 + A*B + A*B^2 + 4*B + 3*B^2,1)
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   True                       (?,1)                            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)   True                       (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   True                       (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) True                       (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True                       (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)       [B >= 1 && A >= 1]         (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)       [B >= 1 && 1 >= 1 + A]     (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)       [A >= C && B + C >= B]     (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)       [A >= C && B >= 1 + B + C] (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A]               (2 + A,2)                        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{17,18,19},13->{15,16},14->{15,16},15->{6,7}
          ,16->{13},17->{8,9},18->{12},19->{15,16}]
        Sizebounds:
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 1) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) 
          (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [6,7,8,9,10,11,12,13,14,15,16,17,18,19]
    + Details:
        We chained rule 6 to obtain the rules [20,21] .
* Step 20: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          7.  evalfbb6in(A,B,C,D,E)  -> evalfbb7in(A,B,C,D,E)       [D >= 1 + B + C]           (A*B + 3*B,1)                    
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)       [D >= E]                   (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]               (2 + A*B + A*B^2 + 4*B + 3*B^2,1)
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   True                       (?,1)                            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)   True                       (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   True                       (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) True                       (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True                       (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)       [B >= 1 && A >= 1]         (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)       [B >= 1 && 1 >= 1 + A]     (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)       [A >= C && B + C >= B]     (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)       [A >= C && B >= 1 + B + C] (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A]               (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)       [B + C >= D && D >= 1]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)       [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [7->{12},8->{10},9->{11},10->{8,9},11->{7,20,21},12->{17,18,19},13->{15,16},14->{15,16},15->{7,20,21}
          ,16->{13},17->{8,9},18->{12},19->{15,16},20->{10},21->{11}]
        Sizebounds:
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) 
          (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]
    + Details:
        We chained rule 7 to obtain the rules [22] .
* Step 21: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)       [D >= E]                   (?,1)                            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]               (2 + A*B + A*B^2 + 4*B + 3*B^2,1)
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   True                       (?,1)                            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)   True                       (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   True                       (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) True                       (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True                       (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)       [B >= 1 && A >= 1]         (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)       [B >= 1 && 1 >= 1 + A]     (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)       [A >= C && B + C >= B]     (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)       [A >= C && B >= 1 + B + C] (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A]               (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)       [B + C >= D && D >= 1]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)       [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   [D >= 1 + B + C]           (A*B + 3*B,2)                    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [8->{10},9->{11},10->{8,9},11->{20,21,22},12->{17,18,19},13->{15,16},14->{15,16},15->{20,21,22},16->{13}
          ,17->{8,9},18->{12},19->{15,16},20->{10},21->{11},22->{17,18,19}]
        Sizebounds:
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) 
          (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]
    + Details:
        We chained rule 8 to obtain the rules [23] .
* Step 22: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)       [E >= 1 + D]               (2 + A*B + A*B^2 + 4*B + 3*B^2,1)
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   True                       (?,1)                            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)   True                       (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   True                       (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) True                       (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True                       (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)       [B >= 1 && A >= 1]         (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)       [B >= 1 && 1 >= 1 + A]     (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)       [A >= C && B + C >= B]     (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)       [A >= C && B >= 1 + B + C] (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A]               (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)       [B + C >= D && D >= 1]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)       [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   [D >= 1 + B + C]           (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   [D >= E]                   (?,2)                            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [9->{11},10->{9,23},11->{20,21,22},12->{17,18,19},13->{15,16},14->{15,16},15->{20,21,22},16->{13},17->{9
          ,23},18->{12},19->{15,16},20->{10},21->{11},22->{17,18,19},23->{9,23}]
        Sizebounds:
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) 
          (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]
    + Details:
        We chained rule 9 to obtain the rules [24] .
* Step 23: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   True                       (?,1)                            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)   True                       (1 + A*B + A*B^2 + 4*B + 3*B^2,1)
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   True                       (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) True                       (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)      True                       (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)       [B >= 1 && A >= 1]         (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)       [B >= 1 && 1 >= 1 + A]     (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)       [A >= C && B + C >= B]     (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)       [A >= C && B >= 1 + B + C] (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E) [C >= 1 + A]               (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)       [B + C >= D && D >= 1]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)       [B + C >= D && 1 >= 1 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)   [D >= 1 + B + C]           (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)   [D >= E]                   (?,2)                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)   [E >= 1 + D]               (2 + A*B + A*B^2 + 4*B + 3*B^2,2)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},11->{20,21,22},12->{17,18,19},13->{15,16},14->{15,16},15->{20,21,22},16->{13},17->{23,24}
          ,18->{12},19->{15,16},20->{10},21->{11},22->{17,18,19},23->{23,24},24->{20,21,22}]
        Sizebounds:
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) 
          (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, B) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]
    + Details:
        We chained rule 11 to obtain the rules [25,26,27] .
* Step 24: ChainProcessor WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)     True                           (?,1)                            
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)     True                           (A*B + 3*B,1)                    
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)   True                           (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)        True                           (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)         [B >= 1 && A >= 1]             (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)         [B >= 1 && 1 >= 1 + A]         (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)         [A >= C && B + C >= B]         (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)         [A >= C && B >= 1 + B + C]     (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)   [C >= 1 + A]                   (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)         [B + C >= D && D >= 1]         (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)         [B + C >= D && 1 >= 1 + D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)     [D >= 1 + B + C]               (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)     [D >= E]                       (?,2)                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)     [E >= 1 + D]                   (2 + A*B + A*B^2 + 4*B + 3*B^2,2)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)     [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          26. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)     [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          27. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B + C]           (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},12->{17,18,19},13->{15,16},14->{15,16},15->{20,21,22},16->{13},17->{23,24},18->{12},19->{15
          ,16},20->{10},21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18
          ,19}]
        Sizebounds:
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<12,0,A>, B) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) 
          (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, B) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, B) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, B) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<27,0,A>, B) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]
    + Details:
        We chained rule 12 to obtain the rules [28,29,30] .
* Step 25: UnsatPaths WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       True                           (?,1)                            
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     True                           (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)          True                           (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)           [B >= 1 && A >= 1]             (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)           [B >= 1 && 1 >= 1 + A]         (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)           [A >= C && B + C >= B]         (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)           [A >= C && B >= 1 + B + C]     (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     [C >= 1 + A]                   (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)           [B + C >= D && D >= 1]         (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)           [B + C >= D && 1 >= 1 + D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)       [D >= 1 + B + C]               (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       [D >= E]                       (?,2)                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)       [E >= 1 + D]                   (2 + A*B + A*B^2 + 4*B + 3*B^2,2)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          26. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          27. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)   [1 + D >= 1 + B + C]           (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,B,1)       [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3)                    
          29. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,B,E)       [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3)                    
          30. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A]               (A*B + 3*B,3)                    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},13->{15,16},14->{15,16},15->{20,21,22},16->{13},17->{23,24},18->{28,29,30},19->{15,16}
          ,20->{10},21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19}
          ,28->{23,24},29->{28,29,30},30->{15,16}]
        Sizebounds:
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) 
          (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, B) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, B) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, B) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<27,0,A>, B) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) 
          (<28,0,A>, B) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, 1) 
          (<29,0,A>, B) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, B) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(15,21),(15,22)]
* Step 26: LocalSizeboundsProc WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       True                           (?,1)                            
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     True                           (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)          True                           (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)           [B >= 1 && A >= 1]             (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)           [B >= 1 && 1 >= 1 + A]         (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)           [A >= C && B + C >= B]         (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)           [A >= C && B >= 1 + B + C]     (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     [C >= 1 + A]                   (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)           [B + C >= D && D >= 1]         (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)           [B + C >= D && 1 >= 1 + D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)       [D >= 1 + B + C]               (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       [D >= E]                       (?,2)                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)       [E >= 1 + D]                   (2 + A*B + A*B^2 + 4*B + 3*B^2,2)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          26. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          27. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)   [1 + D >= 1 + B + C]           (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,B,1)       [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3)                    
          29. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,B,E)       [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3)                    
          30. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A]               (A*B + 3*B,3)                    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10}
          ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24}
          ,29->{28,29,30},30->{15,16}]
        Sizebounds:
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<13,0,A>, B) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, B) (<14,0,B>, A) (<14,0,C>, C) (<14,0,D>, D) (<14,0,E>, E) 
          (<15,0,A>, B) (<15,0,B>, ?) (<15,0,C>, B) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, B) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, B) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, 1) 
          (<18,0,A>, B) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, B) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, B) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, B) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, B) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, B) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, B) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, B) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, B) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<27,0,A>, B) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) 
          (<28,0,A>, B) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, 1) 
          (<29,0,A>, B) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, B) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<10,0,A>, A, .= 0) (<10,0,B>,     B, .= 0) (<10,0,C>,         C, .= 0) (<10,0,D>,             D, .= 0) (<10,0,E>, 1 + E, .+ 1) 
          (<13,0,A>, A, .= 0) (<13,0,B>, 1 + B, .+ 1) (<13,0,C>,         C, .= 0) (<13,0,D>,             D, .= 0) (<13,0,E>,     E, .= 0) 
          (<14,0,A>, B, .= 0) (<14,0,B>,     A, .= 0) (<14,0,C>,         C, .= 0) (<14,0,D>,             D, .= 0) (<14,0,E>,     E, .= 0) 
          (<15,0,A>, A, .= 0) (<15,0,B>,     B, .= 0) (<15,0,C>,         1, .= 1) (<15,0,D>,             B, .= 0) (<15,0,E>,     E, .= 0) 
          (<16,0,A>, A, .= 0) (<16,0,B>,     B, .= 0) (<16,0,C>,         1, .= 1) (<16,0,D>,             D, .= 0) (<16,0,E>,     E, .= 0) 
          (<17,0,A>, A, .= 0) (<17,0,B>,     B, .= 0) (<17,0,C>,         C, .= 0) (<17,0,D>,             B, .= 0) (<17,0,E>,     1, .= 1) 
          (<18,0,A>, A, .= 0) (<18,0,B>,     B, .= 0) (<18,0,C>,         C, .= 0) (<18,0,D>,             B, .= 0) (<18,0,E>,     E, .= 0) 
          (<19,0,A>, A, .= 0) (<19,0,B>, 1 + B, .+ 1) (<19,0,C>,         C, .= 0) (<19,0,D>,             D, .= 0) (<19,0,E>,     E, .= 0) 
          (<20,0,A>, A, .= 0) (<20,0,B>,     B, .= 0) (<20,0,C>,         C, .= 0) (<20,0,D>,             D, .= 0) (<20,0,E>,     1, .= 1) 
          (<21,0,A>, A, .= 0) (<21,0,B>,     B, .= 0) (<21,0,C>,         C, .= 0) (<21,0,D>,             D, .= 0) (<21,0,E>,     1, .= 1) 
          (<22,0,A>, A, .= 0) (<22,0,B>,     B, .= 0) (<22,0,C>,     1 + C, .+ 1) (<22,0,D>,             D, .= 0) (<22,0,E>,     E, .= 0) 
          (<23,0,A>, A, .= 0) (<23,0,B>,     B, .= 0) (<23,0,C>,         C, .= 0) (<23,0,D>,             D, .= 0) (<23,0,E>, 1 + E, .+ 1) 
          (<24,0,A>, A, .= 0) (<24,0,B>,     B, .= 0) (<24,0,C>,         C, .= 0) (<24,0,D>,         1 + D, .+ 1) (<24,0,E>,     E, .= 0) 
          (<25,0,A>, A, .= 0) (<25,0,B>,     B, .= 0) (<25,0,C>,         C, .= 0) (<25,0,D>, 1 + B + C + D, .* 1) (<25,0,E>,     1, .= 1) 
          (<26,0,A>, A, .= 0) (<26,0,B>,     B, .= 0) (<26,0,C>,         C, .= 0) (<26,0,D>, 1 + B + C + D, .* 1) (<26,0,E>,     1, .= 1) 
          (<27,0,A>, A, .= 0) (<27,0,B>,     B, .= 0) (<27,0,C>,     1 + C, .+ 1) (<27,0,D>,         1 + D, .+ 1) (<27,0,E>,     E, .= 0) 
          (<28,0,A>, A, .= 0) (<28,0,B>,     B, .= 0) (<28,0,C>, 1 + A + C, .* 1) (<28,0,D>,             B, .= 0) (<28,0,E>,     1, .= 1) 
          (<29,0,A>, A, .= 0) (<29,0,B>,     B, .= 0) (<29,0,C>, 1 + A + C, .* 1) (<29,0,D>,             B, .= 0) (<29,0,E>,     E, .= 0) 
          (<30,0,A>, A, .= 0) (<30,0,B>, 1 + B, .+ 1) (<30,0,C>,     1 + C, .+ 1) (<30,0,D>,             D, .= 0) (<30,0,E>,     E, .= 0) 
* Step 27: SizeboundsProc WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       True                           (?,1)                            
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     True                           (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)          True                           (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)           [B >= 1 && A >= 1]             (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)           [B >= 1 && 1 >= 1 + A]         (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)           [A >= C && B + C >= B]         (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)           [A >= C && B >= 1 + B + C]     (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     [C >= 1 + A]                   (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)           [B + C >= D && D >= 1]         (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)           [B + C >= D && 1 >= 1 + D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)       [D >= 1 + B + C]               (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       [D >= E]                       (?,2)                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)       [E >= 1 + D]                   (2 + A*B + A*B^2 + 4*B + 3*B^2,2)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          26. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          27. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)   [1 + D >= 1 + B + C]           (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,B,1)       [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3)                    
          29. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,B,E)       [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3)                    
          30. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A]               (A*B + 3*B,3)                    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10}
          ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24}
          ,29->{28,29,30},30->{15,16}]
        Sizebounds:
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, ?) (<27,0,C>, ?) (<27,0,D>, ?) (<27,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, ?) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>,                                                                                                                                         2) 
          (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>,                                  1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>,                                                                                                                                         ?) 
          (<14,0,A>, B) (<14,0,B>,                   A) (<14,0,C>,                                  C) (<14,0,D>,                                                                                                                                             D) (<14,0,E>,                                                                                                                                         E) 
          (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>,                                  1) (<15,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<15,0,E>,                                                                                                                                         ?) 
          (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>,                                  1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>,                                                                                                                                         ?) 
          (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<17,0,E>,                                                                                                                                         1) 
          (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>,                                                                                                                                         1) 
          (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>,                                                                                                                                         1) 
          (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>,                                                                                                                                         1) 
          (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>,                                                                                                                                         1) 
          (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>,                                                                                                                                         1) 
          (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<28,0,E>,                                                                                                                                         1) 
          (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
* Step 28: LocationConstraintsProc WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       True                           (?,1)                            
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     True                           (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)          True                           (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)           [B >= 1 && A >= 1]             (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)           [B >= 1 && 1 >= 1 + A]         (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)           [A >= C && B + C >= B]         (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)           [A >= C && B >= 1 + B + C]     (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     [C >= 1 + A]                   (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)           [B + C >= D && D >= 1]         (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)           [B + C >= D && 1 >= 1 + D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)       [D >= 1 + B + C]               (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       [D >= E]                       (?,2)                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)       [E >= 1 + D]                   (2 + A*B + A*B^2 + 4*B + 3*B^2,2)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          26. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          27. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)   [1 + D >= 1 + B + C]           (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,B,1)       [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3)                    
          29. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,B,E)       [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3)                    
          30. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A]               (A*B + 3*B,3)                    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10}
          ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24}
          ,29->{28,29,30},30->{15,16}]
        Sizebounds:
          (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>,                                                                                                                                         2) 
          (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>,                                  1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>,                                                                                                                                         ?) 
          (<14,0,A>, B) (<14,0,B>,                   A) (<14,0,C>,                                  C) (<14,0,D>,                                                                                                                                             D) (<14,0,E>,                                                                                                                                         E) 
          (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>,                                  1) (<15,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<15,0,E>,                                                                                                                                         ?) 
          (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>,                                  1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>,                                                                                                                                         ?) 
          (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<17,0,E>,                                                                                                                                         1) 
          (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>,                                                                                                                                         1) 
          (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>,                                                                                                                                         1) 
          (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>,                                                                                                                                         1) 
          (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>,                                                                                                                                         1) 
          (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>,                                                                                                                                         1) 
          (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<28,0,E>,                                                                                                                                         1) 
          (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  10 :  [B + C >= D] 13 :  [B >= 1] 14 :  True 15 :  True 16 :  True 17 :  True 18 :  True 19 :  True 20 :  True 21 :  [False] 22 :  [False] 23 :  True 24 :  True 25 :  [B + C >= D] 26 :  [B + C >= D] 27 :  [B + C >= D] 28 :  [A >= C] 29 :  [A >= C] 30 :  [A >= C] .
* Step 29: SizeboundsProc WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       True                           (?,1)                            
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     True                           (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)          True                           (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)           [B >= 1 && A >= 1]             (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)           [B >= 1 && 1 >= 1 + A]         (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)           [A >= C && B + C >= B]         (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)           [A >= C && B >= 1 + B + C]     (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     [C >= 1 + A]                   (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)           [B + C >= D && D >= 1]         (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)           [B + C >= D && 1 >= 1 + D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)       [D >= 1 + B + C]               (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       [D >= E]                       (?,2)                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)       [E >= 1 + D]                   (2 + A*B + A*B^2 + 4*B + 3*B^2,2)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          26. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          27. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)   [1 + D >= 1 + B + C]           (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,B,1)       [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3)                    
          29. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,B,E)       [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3)                    
          30. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A]               (A*B + 3*B,3)                    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10}
          ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24}
          ,29->{28,29,30},30->{15,16}]
        Sizebounds:
          (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>,                                                                                                                                         2) 
          (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>,                                  1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>,                                                                                                                                         ?) 
          (<14,0,A>, B) (<14,0,B>,                   A) (<14,0,C>,                                  C) (<14,0,D>,                                                                                                                                             D) (<14,0,E>,                                                                                                                                         E) 
          (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>,                                  1) (<15,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<15,0,E>,                                                                                                                                         ?) 
          (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>,                                  1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>,                                                                                                                                         ?) 
          (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<17,0,E>,                                                                                                                                         1) 
          (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<18,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>,                                                                                                                                         1) 
          (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>,                                                                                                                                         1) 
          (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>,                                                                                                                                         1) 
          (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>,                                                                                                                                         1) 
          (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>,                                                                                                                                         1) 
          (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<28,0,E>,                                                                                                                                         1) 
          (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<29,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<30,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>,                                                                                                                                             2) 
          (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>,                                  1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<14,0,A>, B) (<14,0,B>,                   A) (<14,0,C>,                                  C) (<14,0,D>,                                                                                                                                             D) (<14,0,E>,                                                                                                                                             E) 
          (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>,                                  1) (<15,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>,                                  1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<17,0,E>,                                                                                                                                             1) 
          (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<18,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>,                                                                                                                                             1) 
          (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>,                                                                                                                                             1) 
          (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>,                                                                                                                                             1) 
          (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>,                                                                                                                                             1) 
          (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>,                                                                                                                                             1) 
          (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<28,0,E>,                                                                                                                                             1) 
          (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<29,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<30,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
* Step 30: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       True                           (?,1)                            
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     True                           (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)          True                           (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)           [B >= 1 && A >= 1]             (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)           [B >= 1 && 1 >= 1 + A]         (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)           [A >= C && B + C >= B]         (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)           [A >= C && B >= 1 + B + C]     (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     [C >= 1 + A]                   (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)           [B + C >= D && D >= 1]         (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)           [B + C >= D && 1 >= 1 + D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)       [D >= 1 + B + C]               (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       [D >= E]                       (?,2)                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)       [E >= 1 + D]                   (2 + A*B + A*B^2 + 4*B + 3*B^2,2)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          26. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          27. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)   [1 + D >= 1 + B + C]           (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,B,1)       [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3)                    
          29. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,B,E)       [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3)                    
          30. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A]               (A*B + 3*B,3)                    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10}
          ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24}
          ,29->{28,29,30},30->{15,16}]
        Sizebounds:
          (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>,                                                                                                                                             2) 
          (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>,                                  1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<14,0,A>, B) (<14,0,B>,                   A) (<14,0,C>,                                  C) (<14,0,D>,                                                                                                                                             D) (<14,0,E>,                                                                                                                                             E) 
          (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>,                                  1) (<15,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>,                                  1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<17,0,E>,                                                                                                                                             1) 
          (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<18,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>,                                                                                                                                             1) 
          (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>,                                                                                                                                             1) 
          (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>,                                                                                                                                             1) 
          (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>,                                                                                                                                             1) 
          (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>,                                                                                                                                             1) 
          (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<28,0,E>,                                                                                                                                             1) 
          (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<29,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<30,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [10,20,15,13,16,19,22,17,27,21,26,23,28,18,29,30,25], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 1
           p(evalfbb3in) = 1
           p(evalfbb4in) = 0
           p(evalfbb5in) = 1
           p(evalfbb6in) = 1
           p(evalfbb7in) = 1
           p(evalfbb8in) = 1
           p(evalfbb9in) = 1
        
        The following rules are strictly oriented:
                                  True ==>                          
                 evalfbb3in(A,B,C,D,E)   = 1                        
                                         > 0                        
                                         = evalfbb4in(A,B,C,D,1 + E)
        
        [A >= 1 + C && 1 + B + C >= B] ==>                          
                 evalfbb7in(A,B,C,D,E)   = 1                        
                                         > 0                        
                                         = evalfbb4in(A,B,1 + C,B,1)
        
        
        The following rules are weakly oriented:
                                  True ==>                                
                 evalfbb9in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb10in(A,-1 + B,C,D,E)    
        
                    [B >= 1 && A >= 1] ==>                                
                evalfbb10in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb6in(A,B,1,B,E)          
        
                [B >= 1 && 1 >= 1 + A] ==>                                
                evalfbb10in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb9in(A,B,1,D,E)          
        
                [A >= C && B + C >= B] ==>                                
                 evalfbb8in(A,B,C,D,E)   = 1                              
                                        >= 0                              
                                         = evalfbb4in(A,B,C,B,1)          
        
            [A >= C && B >= 1 + B + C] ==>                                
                 evalfbb8in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb7in(A,B,C,B,E)          
        
                          [C >= 1 + A] ==>                                
                 evalfbb8in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb10in(A,-1 + B,C,D,E)    
        
                [B + C >= D && D >= 1] ==>                                
                 evalfbb6in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb3in(A,B,C,D,1)          
        
            [B + C >= D && 1 >= 1 + D] ==>                                
                 evalfbb6in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb5in(A,B,C,D,1)          
        
                      [D >= 1 + B + C] ==>                                
                 evalfbb6in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb8in(A,B,1 + C,D,E)      
        
                              [D >= E] ==>                                
                 evalfbb4in(A,B,C,D,E)   = 0                              
                                        >= 0                              
                                         = evalfbb4in(A,B,C,D,1 + E)      
        
        [B + C >= 1 + D && 1 + D >= 1] ==>                                
                 evalfbb5in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb3in(A,B,C,1 + D,1)      
        
        [B + C >= 1 + D && 1 >= 2 + D] ==>                                
                 evalfbb5in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb5in(A,B,C,1 + D,1)      
        
                  [1 + D >= 1 + B + C] ==>                                
                 evalfbb5in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb8in(A,B,1 + C,1 + D,E)  
        
        [A >= 1 + C && B >= 2 + B + C] ==>                                
                 evalfbb7in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb7in(A,B,1 + C,B,E)      
        
                      [1 + C >= 1 + A] ==>                                
                 evalfbb7in(A,B,C,D,E)   = 1                              
                                        >= 1                              
                                         = evalfbb10in(A,-1 + B,1 + C,D,E)
        
        We use the following global sizebounds:
        (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>,                                                                                                                                             2) 
        (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>,                                  1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
        (<14,0,A>, B) (<14,0,B>,                   A) (<14,0,C>,                                  C) (<14,0,D>,                                                                                                                                             D) (<14,0,E>,                                                                                                                                             E) 
        (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>,                                  1) (<15,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
        (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>,                                  1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
        (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<17,0,E>,                                                                                                                                             1) 
        (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<18,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>,                                                                                                                                             1) 
        (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>,                                                                                                                                             1) 
        (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>,                                                                                                                                             1) 
        (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>,                                                                                                                                             1) 
        (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>,                                                                                                                                             1) 
        (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<28,0,E>,                                                                                                                                             1) 
        (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<29,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<30,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
* Step 31: PolyRank WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       True                           (3 + A*B + A*B^2 + 4*B + 3*B^2,1)
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     True                           (2 + A,1)                        
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)          True                           (1,2)                            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)           [B >= 1 && A >= 1]             (2 + A,2)                        
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)           [B >= 1 && 1 >= 1 + A]         (2 + A,2)                        
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)           [A >= C && B + C >= B]         (A*B + 3*B,2)                    
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)           [A >= C && B >= 1 + B + C]     (A*B + 3*B,2)                    
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     [C >= 1 + A]                   (2 + A,2)                        
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)           [B + C >= D && D >= 1]         (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)           [B + C >= D && 1 >= 1 + D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)       [D >= 1 + B + C]               (A*B + 3*B,2)                    
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       [D >= E]                       (?,2)                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)       [E >= 1 + D]                   (2 + A*B + A*B^2 + 4*B + 3*B^2,2)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          26. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          27. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)   [1 + D >= 1 + B + C]           (1 + A*B + A*B^2 + 4*B + 3*B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,B,1)       [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3)                    
          29. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,B,E)       [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3)                    
          30. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A]               (A*B + 3*B,3)                    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10}
          ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24}
          ,29->{28,29,30},30->{15,16}]
        Sizebounds:
          (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>,                                                                                                                                             2) 
          (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>,                                  1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<14,0,A>, B) (<14,0,B>,                   A) (<14,0,C>,                                  C) (<14,0,D>,                                                                                                                                             D) (<14,0,E>,                                                                                                                                             E) 
          (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>,                                  1) (<15,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>,                                  1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<17,0,E>,                                                                                                                                             1) 
          (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<18,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>,                                                                                                                                             1) 
          (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>,                                                                                                                                             1) 
          (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>,                                                                                                                                             1) 
          (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>,                                                                                                                                             1) 
          (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>,                                                                                                                                             1) 
          (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<28,0,E>,                                                                                                                                             1) 
          (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<29,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<30,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [20,15,13,16,19,22,17,27,21,26,23,28,18,29,30,25], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = x2            
           p(evalfbb3in) = x2            
           p(evalfbb4in) = 1 + x4 + -1*x5
           p(evalfbb5in) = x2            
           p(evalfbb6in) = x2            
           p(evalfbb7in) = x2            
           p(evalfbb8in) = x2            
           p(evalfbb9in) = -1 + x2       
        
        The following rules are strictly oriented:
          [B >= 1 && 1 >= 1 + A] ==>                          
          evalfbb10in(A,B,C,D,E)   = B                        
                                   > -1 + B                   
                                   = evalfbb9in(A,B,1,D,E)    
        
                        [D >= E] ==>                          
           evalfbb4in(A,B,C,D,E)   = 1 + D + -1*E             
                                   > D + -1*E                 
                                   = evalfbb4in(A,B,C,D,1 + E)
        
        
        The following rules are weakly oriented:
                                  True ==>                                
                 evalfbb9in(A,B,C,D,E)   = -1 + B                         
                                        >= -1 + B                         
                                         = evalfbb10in(A,-1 + B,C,D,E)    
        
                    [B >= 1 && A >= 1] ==>                                
                evalfbb10in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb6in(A,B,1,B,E)          
        
                [A >= C && B + C >= B] ==>                                
                 evalfbb8in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb4in(A,B,C,B,1)          
        
            [A >= C && B >= 1 + B + C] ==>                                
                 evalfbb8in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb7in(A,B,C,B,E)          
        
                          [C >= 1 + A] ==>                                
                 evalfbb8in(A,B,C,D,E)   = B                              
                                        >= -1 + B                         
                                         = evalfbb10in(A,-1 + B,C,D,E)    
        
                [B + C >= D && D >= 1] ==>                                
                 evalfbb6in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb3in(A,B,C,D,1)          
        
            [B + C >= D && 1 >= 1 + D] ==>                                
                 evalfbb6in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb5in(A,B,C,D,1)          
        
                      [D >= 1 + B + C] ==>                                
                 evalfbb6in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb8in(A,B,1 + C,D,E)      
        
        [B + C >= 1 + D && 1 + D >= 1] ==>                                
                 evalfbb5in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb3in(A,B,C,1 + D,1)      
        
        [B + C >= 1 + D && 1 >= 2 + D] ==>                                
                 evalfbb5in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb5in(A,B,C,1 + D,1)      
        
                  [1 + D >= 1 + B + C] ==>                                
                 evalfbb5in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb8in(A,B,1 + C,1 + D,E)  
        
        [A >= 1 + C && 1 + B + C >= B] ==>                                
                 evalfbb7in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb4in(A,B,1 + C,B,1)      
        
        [A >= 1 + C && B >= 2 + B + C] ==>                                
                 evalfbb7in(A,B,C,D,E)   = B                              
                                        >= B                              
                                         = evalfbb7in(A,B,1 + C,B,E)      
        
                      [1 + C >= 1 + A] ==>                                
                 evalfbb7in(A,B,C,D,E)   = B                              
                                        >= -1 + B                         
                                         = evalfbb10in(A,-1 + B,1 + C,D,E)
        
        We use the following global sizebounds:
        (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>,                                                                                                                                             2) 
        (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>,                                  1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
        (<14,0,A>, B) (<14,0,B>,                   A) (<14,0,C>,                                  C) (<14,0,D>,                                                                                                                                             D) (<14,0,E>,                                                                                                                                             E) 
        (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>,                                  1) (<15,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
        (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>,                                  1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
        (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<17,0,E>,                                                                                                                                             1) 
        (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<18,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>,                                                                                                                                             1) 
        (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>,                                                                                                                                             1) 
        (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>,                                                                                                                                             1) 
        (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>,                                                                                                                                             1) 
        (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>,                                                                                                                                             1) 
        (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<28,0,E>,                                                                                                                                             1) 
        (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<29,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
        (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<30,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
* Step 32: KnowledgePropagation WORST_CASE(?,O(n^9))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       True                           (3 + A*B + A*B^2 + 4*B + 3*B^2,1)                                                                                                                                                                                                                                                             
          13. evalfbb9in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     True                           (2 + A,1)                                                                                                                                                                                                                                                                                     
          14. evalfstart(A,B,C,D,E)  -> evalfbb10in(B,A,C,D,E)          True                           (1,2)                                                                                                                                                                                                                                                                                         
          15. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,B,E)           [B >= 1 && A >= 1]             (2 + A,2)                                                                                                                                                                                                                                                                                     
          16. evalfbb10in(A,B,C,D,E) -> evalfbb9in(A,B,1,D,E)           [B >= 1 && 1 >= 1 + A]         (2 + A,2)                                                                                                                                                                                                                                                                                     
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,B,1)           [A >= C && B + C >= B]         (A*B + 3*B,2)                                                                                                                                                                                                                                                                                 
          18. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,B,E)           [A >= C && B >= 1 + B + C]     (A*B + 3*B,2)                                                                                                                                                                                                                                                                                 
          19. evalfbb8in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,C,D,E)     [C >= 1 + A]                   (2 + A,2)                                                                                                                                                                                                                                                                                     
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)           [B + C >= D && D >= 1]         (1 + A*B + A*B^2 + 4*B + 3*B^2,2)                                                                                                                                                                                                                                                             
          21. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)           [B + C >= D && 1 >= 1 + D]     (1 + A*B + A*B^2 + 4*B + 3*B^2,2)                                                                                                                                                                                                                                                             
          22. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)       [D >= 1 + B + C]               (A*B + 3*B,2)                                                                                                                                                                                                                                                                                 
          23. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)       [D >= E]                       (77 + 34*A + 236*A*B + 738*A*B^2 + 1263*A*B^3 + 1262*A*B^4 + 690*A*B^5 + 162*A*B^6 + 30*A^2*B + 138*A^2*B^2 + 300*A^2*B^3 + 352*A^2*B^4 + 214*A^2*B^5 + 54*A^2*B^6 + 6*A^3*B^2 + 22*A^3*B^3 + 32*A^3*B^4 + 22*A^3*B^5 + 6*A^3*B^6 + 438*B + 1149*B^2 + 1687*B^3 + 1482*B^4 + 738*B^5 + 162*B^6
                                                                                                      ,2)                                                                                                                                                                                                                                                                                            
          24. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)       [E >= 1 + D]                   (2 + A*B + A*B^2 + 4*B + 3*B^2,2)                                                                                                                                                                                                                                                             
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 + D >= 1] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)                                                                                                                                                                                                                                                             
          26. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)       [B + C >= 1 + D && 1 >= 2 + D] (1 + A*B + A*B^2 + 4*B + 3*B^2,3)                                                                                                                                                                                                                                                             
          27. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)   [1 + D >= 1 + B + C]           (1 + A*B + A*B^2 + 4*B + 3*B^2,3)                                                                                                                                                                                                                                                             
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,B,1)       [A >= 1 + C && 1 + B + C >= B] (A*B + 3*B,3)                                                                                                                                                                                                                                                                                 
          29. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,B,E)       [A >= 1 + C && B >= 2 + B + C] (A*B + 3*B,3)                                                                                                                                                                                                                                                                                 
          30. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(A,-1 + B,1 + C,D,E) [1 + C >= 1 + A]               (A*B + 3*B,3)                                                                                                                                                                                                                                                                                 
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfbb9in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [10->{23,24},13->{15,16},14->{15,16},15->{20},16->{13},17->{23,24},18->{28,29,30},19->{15,16},20->{10}
          ,21->{25,26,27},22->{17,18,19},23->{23,24},24->{20,21,22},25->{10},26->{25,26,27},27->{17,18,19},28->{23,24}
          ,29->{28,29,30},30->{15,16}]
        Sizebounds:
          (<10,0,A>, B) (<10,0,B>, 4 + 3*A + A*B + 3*B) (<10,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<10,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<10,0,E>,                                                                                                                                             2) 
          (<13,0,A>, B) (<13,0,B>, 4 + 3*A + A*B + 3*B) (<13,0,C>,                                  1) (<13,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<13,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<14,0,A>, B) (<14,0,B>,                   A) (<14,0,C>,                                  C) (<14,0,D>,                                                                                                                                             D) (<14,0,E>,                                                                                                                                             E) 
          (<15,0,A>, B) (<15,0,B>, 4 + 3*A + A*B + 3*B) (<15,0,C>,                                  1) (<15,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<15,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<16,0,A>, B) (<16,0,B>, 4 + 3*A + A*B + 3*B) (<16,0,C>,                                  1) (<16,0,D>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + D) (<16,0,E>, 21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4 + E) 
          (<17,0,A>, B) (<17,0,B>, 4 + 3*A + A*B + 3*B) (<17,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<17,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<17,0,E>,                                                                                                                                             1) 
          (<18,0,A>, B) (<18,0,B>, 4 + 3*A + A*B + 3*B) (<18,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<18,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<18,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<19,0,A>, B) (<19,0,B>, 4 + 3*A + A*B + 3*B) (<19,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<19,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<19,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<20,0,A>, B) (<20,0,B>, 4 + 3*A + A*B + 3*B) (<20,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<20,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<20,0,E>,                                                                                                                                             1) 
          (<21,0,A>, B) (<21,0,B>, 4 + 3*A + A*B + 3*B) (<21,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<21,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<21,0,E>,                                                                                                                                             1) 
          (<22,0,A>, B) (<22,0,B>, 4 + 3*A + A*B + 3*B) (<22,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<22,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<22,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<23,0,A>, B) (<23,0,B>, 4 + 3*A + A*B + 3*B) (<23,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<23,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<23,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<24,0,A>, B) (<24,0,B>, 4 + 3*A + A*B + 3*B) (<24,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<24,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<24,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<25,0,A>, B) (<25,0,B>, 4 + 3*A + A*B + 3*B) (<25,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<25,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<25,0,E>,                                                                                                                                             1) 
          (<26,0,A>, B) (<26,0,B>, 4 + 3*A + A*B + 3*B) (<26,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<26,0,D>,     20 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<26,0,E>,                                                                                                                                             1) 
          (<27,0,A>, B) (<27,0,B>, 4 + 3*A + A*B + 3*B) (<27,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<27,0,D>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) (<27,0,E>,                                                                                                                                             1) 
          (<28,0,A>, B) (<28,0,B>, 4 + 3*A + A*B + 3*B) (<28,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<28,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<28,0,E>,                                                                                                                                             1) 
          (<29,0,A>, B) (<29,0,B>, 4 + 3*A + A*B + 3*B) (<29,0,C>, 2 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<29,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<29,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
          (<30,0,A>, B) (<30,0,B>, 4 + 3*A + A*B + 3*B) (<30,0,C>, 3 + 4*A*B + 3*A*B^2 + 14*B + 9*B^2) (<30,0,D>,                                                                                                                           4 + 3*A + A*B + 3*B) (<30,0,E>,     21 + 9*A + 53*A*B + 116*A*B^2 + 106*A*B^3 + 36*A*B^4 + 6*A^2*B + 16*A^2*B^2 + 16*A^2*B^3 + 6*A^2*B^4 + 108*B + 208*B^2 + 174*B^3 + 54*B^4) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^9))