WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G) -> f12(2,H,I,0,E,F,G) True (1,1) 1. f12(A,B,C,D,E,F,G) -> f15(A,B,C,D,0,F,G) [A >= 1 + D] (?,1) 2. f15(A,B,C,D,E,F,G) -> f15(A,B,C,D,1 + E,F,G) [A >= 1 + E] (?,1) 3. f23(A,B,C,D,E,F,G) -> f26(A,B,C,D,0,F,G) [A >= 1 + D] (?,1) 4. f26(A,B,C,D,E,F,G) -> f30(A,B,C,D,E,0,G) [A >= 1 + E] (?,1) 5. f30(A,B,C,D,E,F,G) -> f30(A,B,C,D,E,1 + F,G) [A >= 1 + F] (?,1) 6. f30(A,B,C,D,E,F,G) -> f26(A,B,C,D,1 + E,F,G) [F >= A] (?,1) 7. f26(A,B,C,D,E,F,G) -> f23(A,B,C,1 + D,E,F,G) [E >= A] (?,1) 8. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,0) [D >= A] (?,1) 9. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1) [D >= A && 49 >= H] (?,1) 10. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1) [D >= A] (?,1) 11. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1) [D >= A && 42 >= H] (?,1) 12. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1) [D >= A && 21 >= H] (?,1) 13. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1) [D >= A && 18 >= H] (?,1) 14. f15(A,B,C,D,E,F,G) -> f12(A,B,C,1 + D,E,F,G) [E >= A] (?,1) 15. f12(A,B,C,D,E,F,G) -> f23(A,B,C,0,E,F,G) [D >= A] (?,1) Signature: {(f0,7);(f12,7);(f15,7);(f23,7);(f26,7);(f30,7);(f52,7)} Flow Graph: [0->{1,15},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{} ,10->{},11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B,C,G] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (?,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (?,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 8. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A] (?,1) 9. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 49 >= H] (?,1) 10. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A] (?,1) 11. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 42 >= H] (?,1) 12. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 21 >= H] (?,1) 13. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 18 >= H] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (?,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (?,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1,15},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{} ,10->{},11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, 2, .= 2) (< 0,0,D>, 0, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>, 0, .= 0) (< 1,0,F>, F, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, 1 + E, .+ 1) (< 2,0,F>, F, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, 0, .= 0) (< 3,0,F>, F, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, 0, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, 1 + F, .+ 1) (< 6,0,A>, A, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, 1 + E, .+ 1) (< 6,0,F>, F, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,D>, 1 + D, .+ 1) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (<10,0,A>, A, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, F, .= 0) (<11,0,A>, A, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>, F, .= 0) (<12,0,A>, A, .= 0) (<12,0,D>, D, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>, F, .= 0) (<13,0,A>, A, .= 0) (<13,0,D>, D, .= 0) (<13,0,E>, E, .= 0) (<13,0,F>, F, .= 0) (<14,0,A>, A, .= 0) (<14,0,D>, 1 + D, .+ 1) (<14,0,E>, E, .= 0) (<14,0,F>, F, .= 0) (<15,0,A>, A, .= 0) (<15,0,D>, 0, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>, F, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (?,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (?,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 8. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A] (?,1) 9. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 49 >= H] (?,1) 10. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A] (?,1) 11. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 42 >= H] (?,1) 12. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 21 >= H] (?,1) 13. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 18 >= H] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (?,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (?,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1,15},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{} ,10->{},11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}] Sizebounds: (< 0,0,A>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 1,0,A>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 2,0,A>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 3,0,A>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 4,0,A>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 5,0,A>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 6,0,A>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 7,0,A>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 8,0,A>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 9,0,A>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (<10,0,A>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<11,0,A>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<12,0,A>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<13,0,A>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<14,0,A>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<15,0,A>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,F>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (< 8,0,A>, 2) (< 8,0,D>, ?) (< 8,0,E>, 2 + E) (< 8,0,F>, ?) (< 9,0,A>, 2) (< 9,0,D>, ?) (< 9,0,E>, 2 + E) (< 9,0,F>, ?) (<10,0,A>, 2) (<10,0,D>, ?) (<10,0,E>, 2 + E) (<10,0,F>, ?) (<11,0,A>, 2) (<11,0,D>, ?) (<11,0,E>, 2 + E) (<11,0,F>, ?) (<12,0,A>, 2) (<12,0,D>, ?) (<12,0,E>, 2 + E) (<12,0,F>, ?) (<13,0,A>, 2) (<13,0,D>, ?) (<13,0,E>, 2 + E) (<13,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (?,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (?,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 8. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A] (?,1) 9. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 49 >= H] (?,1) 10. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A] (?,1) 11. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 42 >= H] (?,1) 12. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 21 >= H] (?,1) 13. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 18 >= H] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (?,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (?,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1,15},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{} ,10->{},11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (< 8,0,A>, 2) (< 8,0,D>, ?) (< 8,0,E>, 2 + E) (< 8,0,F>, ?) (< 9,0,A>, 2) (< 9,0,D>, ?) (< 9,0,E>, 2 + E) (< 9,0,F>, ?) (<10,0,A>, 2) (<10,0,D>, ?) (<10,0,E>, 2 + E) (<10,0,F>, ?) (<11,0,A>, 2) (<11,0,D>, ?) (<11,0,E>, 2 + E) (<11,0,F>, ?) (<12,0,A>, 2) (<12,0,D>, ?) (<12,0,E>, 2 + E) (<12,0,F>, ?) (<13,0,A>, 2) (<13,0,D>, ?) (<13,0,E>, 2 + E) (<13,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,15)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (?,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (?,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 8. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A] (?,1) 9. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 49 >= H] (?,1) 10. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A] (?,1) 11. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 42 >= H] (?,1) 12. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 21 >= H] (?,1) 13. f23(A,D,E,F) -> f52(A,D,E,F) [D >= A && 18 >= H] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (?,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (?,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{},10->{} ,11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (< 8,0,A>, 2) (< 8,0,D>, ?) (< 8,0,E>, 2 + E) (< 8,0,F>, ?) (< 9,0,A>, 2) (< 9,0,D>, ?) (< 9,0,E>, 2 + E) (< 9,0,F>, ?) (<10,0,A>, 2) (<10,0,D>, ?) (<10,0,E>, 2 + E) (<10,0,F>, ?) (<11,0,A>, 2) (<11,0,D>, ?) (<11,0,E>, 2 + E) (<11,0,F>, ?) (<12,0,A>, 2) (<12,0,D>, ?) (<12,0,E>, 2 + E) (<12,0,F>, ?) (<13,0,A>, 2) (<13,0,D>, ?) (<13,0,E>, 2 + E) (<13,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [8,9,10,11,12,13] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (?,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (?,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (?,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (?,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f12) = 1 p(f15) = 1 p(f23) = 0 p(f26) = 0 p(f30) = 0 The following rules are strictly oriented: [D >= A] ==> f12(A,D,E,F) = 1 > 0 = f23(A,0,E,F) The following rules are weakly oriented: True ==> f0(A,D,E,F) = 1 >= 1 = f12(2,0,E,F) [A >= 1 + D] ==> f12(A,D,E,F) = 1 >= 1 = f15(A,D,0,F) [A >= 1 + E] ==> f15(A,D,E,F) = 1 >= 1 = f15(A,D,1 + E,F) [A >= 1 + D] ==> f23(A,D,E,F) = 0 >= 0 = f26(A,D,0,F) [A >= 1 + E] ==> f26(A,D,E,F) = 0 >= 0 = f30(A,D,E,0) [A >= 1 + F] ==> f30(A,D,E,F) = 0 >= 0 = f30(A,D,E,1 + F) [F >= A] ==> f30(A,D,E,F) = 0 >= 0 = f26(A,D,1 + E,F) [E >= A] ==> f26(A,D,E,F) = 0 >= 0 = f23(A,1 + D,E,F) [E >= A] ==> f15(A,D,E,F) = 1 >= 1 = f12(A,1 + D,E,F) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (?,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (?,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (?,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (1,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 4 p(f12) = 2 + x1 p(f15) = 2 + x1 p(f23) = 2 + x1 + -1*x2 p(f26) = 1 + x1 + -1*x2 p(f30) = 1 + x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + D] ==> f23(A,D,E,F) = 2 + A + -1*D > 1 + A + -1*D = f26(A,D,0,F) The following rules are weakly oriented: True ==> f0(A,D,E,F) = 4 >= 4 = f12(2,0,E,F) [A >= 1 + D] ==> f12(A,D,E,F) = 2 + A >= 2 + A = f15(A,D,0,F) [A >= 1 + E] ==> f15(A,D,E,F) = 2 + A >= 2 + A = f15(A,D,1 + E,F) [A >= 1 + E] ==> f26(A,D,E,F) = 1 + A + -1*D >= 1 + A + -1*D = f30(A,D,E,0) [A >= 1 + F] ==> f30(A,D,E,F) = 1 + A + -1*D >= 1 + A + -1*D = f30(A,D,E,1 + F) [F >= A] ==> f30(A,D,E,F) = 1 + A + -1*D >= 1 + A + -1*D = f26(A,D,1 + E,F) [E >= A] ==> f26(A,D,E,F) = 1 + A + -1*D >= 1 + A + -1*D = f23(A,1 + D,E,F) [E >= A] ==> f15(A,D,E,F) = 2 + A >= 2 + A = f12(A,1 + D,E,F) [D >= A] ==> f12(A,D,E,F) = 2 + A >= 2 + A = f23(A,0,E,F) * Step 8: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (?,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (4,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (?,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (1,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [1,14,2], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f12) = 2 + x1 + -1*x2 p(f15) = 1 + x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + D] ==> f12(A,D,E,F) = 2 + A + -1*D > 1 + A + -1*D = f15(A,D,0,F) The following rules are weakly oriented: [A >= 1 + E] ==> f15(A,D,E,F) = 1 + A + -1*D >= 1 + A + -1*D = f15(A,D,1 + E,F) [E >= A] ==> f15(A,D,E,F) = 1 + A + -1*D >= 1 + A + -1*D = f12(A,1 + D,E,F) We use the following global sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (4,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (4,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (?,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (1,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f15) = x1 + -1*x3 The following rules are strictly oriented: [A >= 1 + E] ==> f15(A,D,E,F) = A + -1*E > -1 + A + -1*E = f15(A,D,1 + E,F) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) * Step 10: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (4,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (4,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (?,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (1,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 11: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (4,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (4,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (?,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (12,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (1,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [6,4,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f26) = 2 + x1 + -1*x3 p(f30) = 1 + x1 + -1*x3 The following rules are strictly oriented: [A >= 1 + E] ==> f26(A,D,E,F) = 2 + A + -1*E > 1 + A + -1*E = f30(A,D,E,0) The following rules are weakly oriented: [A >= 1 + F] ==> f30(A,D,E,F) = 1 + A + -1*E >= 1 + A + -1*E = f30(A,D,E,1 + F) [F >= A] ==> f30(A,D,E,F) = 1 + A + -1*E >= 1 + A + -1*E = f26(A,D,1 + E,F) We use the following global sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) * Step 12: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (4,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (4,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (16,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (?,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (12,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (1,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3,7,6,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f23) = 1 p(f26) = 1 p(f30) = 2 The following rules are strictly oriented: [F >= A] ==> f30(A,D,E,F) = 2 > 1 = f26(A,D,1 + E,F) The following rules are weakly oriented: [A >= 1 + D] ==> f23(A,D,E,F) = 1 >= 1 = f26(A,D,0,F) [A >= 1 + F] ==> f30(A,D,E,F) = 2 >= 2 = f30(A,D,E,1 + F) [E >= A] ==> f26(A,D,E,F) = 1 >= 1 = f23(A,1 + D,E,F) We use the following global sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) * Step 13: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (4,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (4,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (16,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (33,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (?,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (12,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (1,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 14: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (4,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (4,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (16,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (33,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (37,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (12,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (1,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [7,4,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f23) = x1 p(f26) = x1 p(f30) = x1 + -1*x4 The following rules are strictly oriented: [A >= 1 + F] ==> f30(A,D,E,F) = A + -1*F > -1 + A + -1*F = f30(A,D,E,1 + F) The following rules are weakly oriented: [A >= 1 + E] ==> f26(A,D,E,F) = A >= A = f30(A,D,E,0) [E >= A] ==> f26(A,D,E,F) = A >= A = f23(A,1 + D,E,F) We use the following global sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) * Step 15: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F) -> f12(2,0,E,F) True (1,1) 1. f12(A,D,E,F) -> f15(A,D,0,F) [A >= 1 + D] (4,1) 2. f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 3. f23(A,D,E,F) -> f26(A,D,0,F) [A >= 1 + D] (4,1) 4. f26(A,D,E,F) -> f30(A,D,E,0) [A >= 1 + E] (16,1) 5. f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (74,1) 6. f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A] (33,1) 7. f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A] (37,1) 14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A] (12,1) 15. f12(A,D,E,F) -> f23(A,0,E,F) [D >= A] (1,1) Signature: {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)} Flow Graph: [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}] Sizebounds: (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>, 0) (< 1,0,F>, F) (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>, 0) (< 3,0,F>, ?) (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>, 2) (< 4,0,F>, 0) (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>, 2) (< 5,0,F>, 2) (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>, 2) (< 6,0,F>, 2) (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>, 2) (< 7,0,F>, ?) (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>, 2) (<14,0,F>, F) (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))