WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E,F,G)  -> f12(2,H,I,0,E,F,G)     True                (1,1)
          1.  f12(A,B,C,D,E,F,G) -> f15(A,B,C,D,0,F,G)     [A >= 1 + D]        (?,1)
          2.  f15(A,B,C,D,E,F,G) -> f15(A,B,C,D,1 + E,F,G) [A >= 1 + E]        (?,1)
          3.  f23(A,B,C,D,E,F,G) -> f26(A,B,C,D,0,F,G)     [A >= 1 + D]        (?,1)
          4.  f26(A,B,C,D,E,F,G) -> f30(A,B,C,D,E,0,G)     [A >= 1 + E]        (?,1)
          5.  f30(A,B,C,D,E,F,G) -> f30(A,B,C,D,E,1 + F,G) [A >= 1 + F]        (?,1)
          6.  f30(A,B,C,D,E,F,G) -> f26(A,B,C,D,1 + E,F,G) [F >= A]            (?,1)
          7.  f26(A,B,C,D,E,F,G) -> f23(A,B,C,1 + D,E,F,G) [E >= A]            (?,1)
          8.  f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,0)     [D >= A]            (?,1)
          9.  f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1)     [D >= A && 49 >= H] (?,1)
          10. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1)     [D >= A]            (?,1)
          11. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1)     [D >= A && 42 >= H] (?,1)
          12. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1)     [D >= A && 21 >= H] (?,1)
          13. f23(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1)     [D >= A && 18 >= H] (?,1)
          14. f15(A,B,C,D,E,F,G) -> f12(A,B,C,1 + D,E,F,G) [E >= A]            (?,1)
          15. f12(A,B,C,D,E,F,G) -> f23(A,B,C,0,E,F,G)     [D >= A]            (?,1)
        Signature:
          {(f0,7);(f12,7);(f15,7);(f23,7);(f26,7);(f30,7);(f52,7)}
        Flow Graph:
          [0->{1,15},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{}
          ,10->{},11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B,C,G] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True                (1,1)
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D]        (?,1)
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E]        (?,1)
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D]        (?,1)
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E]        (?,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F]        (?,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]            (?,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]            (?,1)
          8.  f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A]            (?,1)
          9.  f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 49 >= H] (?,1)
          10. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A]            (?,1)
          11. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 42 >= H] (?,1)
          12. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 21 >= H] (?,1)
          13. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 18 >= H] (?,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]            (?,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]            (?,1)
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1,15},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{}
          ,10->{},11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, 2, .= 2) (< 0,0,D>,     0, .= 0) (< 0,0,E>,     E, .= 0) (< 0,0,F>,     F, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,D>,     D, .= 0) (< 1,0,E>,     0, .= 0) (< 1,0,F>,     F, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,D>,     D, .= 0) (< 2,0,E>, 1 + E, .+ 1) (< 2,0,F>,     F, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,D>,     D, .= 0) (< 3,0,E>,     0, .= 0) (< 3,0,F>,     F, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,D>,     D, .= 0) (< 4,0,E>,     E, .= 0) (< 4,0,F>,     0, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>,     E, .= 0) (< 5,0,F>, 1 + F, .+ 1) 
          (< 6,0,A>, A, .= 0) (< 6,0,D>,     D, .= 0) (< 6,0,E>, 1 + E, .+ 1) (< 6,0,F>,     F, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,D>, 1 + D, .+ 1) (< 7,0,E>,     E, .= 0) (< 7,0,F>,     F, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,D>,     D, .= 0) (< 8,0,E>,     E, .= 0) (< 8,0,F>,     F, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>,     E, .= 0) (< 9,0,F>,     F, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>,     E, .= 0) (<10,0,F>,     F, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,D>,     D, .= 0) (<11,0,E>,     E, .= 0) (<11,0,F>,     F, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,D>,     D, .= 0) (<12,0,E>,     E, .= 0) (<12,0,F>,     F, .= 0) 
          (<13,0,A>, A, .= 0) (<13,0,D>,     D, .= 0) (<13,0,E>,     E, .= 0) (<13,0,F>,     F, .= 0) 
          (<14,0,A>, A, .= 0) (<14,0,D>, 1 + D, .+ 1) (<14,0,E>,     E, .= 0) (<14,0,F>,     F, .= 0) 
          (<15,0,A>, A, .= 0) (<15,0,D>,     0, .= 0) (<15,0,E>,     E, .= 0) (<15,0,F>,     F, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True                (1,1)
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D]        (?,1)
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E]        (?,1)
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D]        (?,1)
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E]        (?,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F]        (?,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]            (?,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]            (?,1)
          8.  f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A]            (?,1)
          9.  f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 49 >= H] (?,1)
          10. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A]            (?,1)
          11. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 42 >= H] (?,1)
          12. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 21 >= H] (?,1)
          13. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 18 >= H] (?,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]            (?,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]            (?,1)
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1,15},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{}
          ,10->{},11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) 
          (< 1,0,A>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) 
          (< 2,0,A>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) 
          (< 3,0,A>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) 
          (< 4,0,A>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) 
          (< 5,0,A>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) 
          (< 6,0,A>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) 
          (< 7,0,A>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) 
          (< 8,0,A>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) 
          (< 9,0,A>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) 
          (<10,0,A>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) 
          (<11,0,A>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) 
          (<12,0,A>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) 
          (<13,0,A>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) 
          (<14,0,A>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) 
          (<15,0,A>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,F>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (< 8,0,A>, 2) (< 8,0,D>, ?) (< 8,0,E>, 2 + E) (< 8,0,F>, ?) 
          (< 9,0,A>, 2) (< 9,0,D>, ?) (< 9,0,E>, 2 + E) (< 9,0,F>, ?) 
          (<10,0,A>, 2) (<10,0,D>, ?) (<10,0,E>, 2 + E) (<10,0,F>, ?) 
          (<11,0,A>, 2) (<11,0,D>, ?) (<11,0,E>, 2 + E) (<11,0,F>, ?) 
          (<12,0,A>, 2) (<12,0,D>, ?) (<12,0,E>, 2 + E) (<12,0,F>, ?) 
          (<13,0,A>, 2) (<13,0,D>, ?) (<13,0,E>, 2 + E) (<13,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True                (1,1)
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D]        (?,1)
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E]        (?,1)
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D]        (?,1)
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E]        (?,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F]        (?,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]            (?,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]            (?,1)
          8.  f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A]            (?,1)
          9.  f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 49 >= H] (?,1)
          10. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A]            (?,1)
          11. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 42 >= H] (?,1)
          12. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 21 >= H] (?,1)
          13. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 18 >= H] (?,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]            (?,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]            (?,1)
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1,15},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{}
          ,10->{},11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (< 8,0,A>, 2) (< 8,0,D>, ?) (< 8,0,E>, 2 + E) (< 8,0,F>, ?) 
          (< 9,0,A>, 2) (< 9,0,D>, ?) (< 9,0,E>, 2 + E) (< 9,0,F>, ?) 
          (<10,0,A>, 2) (<10,0,D>, ?) (<10,0,E>, 2 + E) (<10,0,F>, ?) 
          (<11,0,A>, 2) (<11,0,D>, ?) (<11,0,E>, 2 + E) (<11,0,F>, ?) 
          (<12,0,A>, 2) (<12,0,D>, ?) (<12,0,E>, 2 + E) (<12,0,F>, ?) 
          (<13,0,A>, 2) (<13,0,D>, ?) (<13,0,E>, 2 + E) (<13,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,15)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True                (1,1)
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D]        (?,1)
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E]        (?,1)
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D]        (?,1)
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E]        (?,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F]        (?,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]            (?,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]            (?,1)
          8.  f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A]            (?,1)
          9.  f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 49 >= H] (?,1)
          10. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A]            (?,1)
          11. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 42 >= H] (?,1)
          12. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 21 >= H] (?,1)
          13. f23(A,D,E,F) -> f52(A,D,E,F)     [D >= A && 18 >= H] (?,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]            (?,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]            (?,1)
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3,8,9,10,11,12,13},8->{},9->{},10->{}
          ,11->{},12->{},13->{},14->{1,15},15->{3,8,9,10,11,12,13}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (< 8,0,A>, 2) (< 8,0,D>, ?) (< 8,0,E>, 2 + E) (< 8,0,F>, ?) 
          (< 9,0,A>, 2) (< 9,0,D>, ?) (< 9,0,E>, 2 + E) (< 9,0,F>, ?) 
          (<10,0,A>, 2) (<10,0,D>, ?) (<10,0,E>, 2 + E) (<10,0,F>, ?) 
          (<11,0,A>, 2) (<11,0,D>, ?) (<11,0,E>, 2 + E) (<11,0,F>, ?) 
          (<12,0,A>, 2) (<12,0,D>, ?) (<12,0,E>, 2 + E) (<12,0,F>, ?) 
          (<13,0,A>, 2) (<13,0,D>, ?) (<13,0,E>, 2 + E) (<13,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [8,9,10,11,12,13]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1)
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (?,1)
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1)
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (?,1)
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (?,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (?,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (?,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (?,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (?,1)
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f12) = 1
          p(f15) = 1
          p(f23) = 0
          p(f26) = 0
          p(f30) = 0
        
        The following rules are strictly oriented:
              [D >= A] ==>             
          f12(A,D,E,F)   = 1           
                         > 0           
                         = f23(A,0,E,F)
        
        
        The following rules are weakly oriented:
                  True ==>                 
           f0(A,D,E,F)   = 1               
                        >= 1               
                         = f12(2,0,E,F)    
        
          [A >= 1 + D] ==>                 
          f12(A,D,E,F)   = 1               
                        >= 1               
                         = f15(A,D,0,F)    
        
          [A >= 1 + E] ==>                 
          f15(A,D,E,F)   = 1               
                        >= 1               
                         = f15(A,D,1 + E,F)
        
          [A >= 1 + D] ==>                 
          f23(A,D,E,F)   = 0               
                        >= 0               
                         = f26(A,D,0,F)    
        
          [A >= 1 + E] ==>                 
          f26(A,D,E,F)   = 0               
                        >= 0               
                         = f30(A,D,E,0)    
        
          [A >= 1 + F] ==>                 
          f30(A,D,E,F)   = 0               
                        >= 0               
                         = f30(A,D,E,1 + F)
        
              [F >= A] ==>                 
          f30(A,D,E,F)   = 0               
                        >= 0               
                         = f26(A,D,1 + E,F)
        
              [E >= A] ==>                 
          f26(A,D,E,F)   = 0               
                        >= 0               
                         = f23(A,1 + D,E,F)
        
              [E >= A] ==>                 
          f15(A,D,E,F)   = 1               
                        >= 1               
                         = f12(A,1 + D,E,F)
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1)
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (?,1)
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1)
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (?,1)
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (?,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (?,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (?,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (?,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (1,1)
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 4             
          p(f12) = 2 + x1        
          p(f15) = 2 + x1        
          p(f23) = 2 + x1 + -1*x2
          p(f26) = 1 + x1 + -1*x2
          p(f30) = 1 + x1 + -1*x2
        
        The following rules are strictly oriented:
          [A >= 1 + D] ==>             
          f23(A,D,E,F)   = 2 + A + -1*D
                         > 1 + A + -1*D
                         = f26(A,D,0,F)
        
        
        The following rules are weakly oriented:
                  True ==>                 
           f0(A,D,E,F)   = 4               
                        >= 4               
                         = f12(2,0,E,F)    
        
          [A >= 1 + D] ==>                 
          f12(A,D,E,F)   = 2 + A           
                        >= 2 + A           
                         = f15(A,D,0,F)    
        
          [A >= 1 + E] ==>                 
          f15(A,D,E,F)   = 2 + A           
                        >= 2 + A           
                         = f15(A,D,1 + E,F)
        
          [A >= 1 + E] ==>                 
          f26(A,D,E,F)   = 1 + A + -1*D    
                        >= 1 + A + -1*D    
                         = f30(A,D,E,0)    
        
          [A >= 1 + F] ==>                 
          f30(A,D,E,F)   = 1 + A + -1*D    
                        >= 1 + A + -1*D    
                         = f30(A,D,E,1 + F)
        
              [F >= A] ==>                 
          f30(A,D,E,F)   = 1 + A + -1*D    
                        >= 1 + A + -1*D    
                         = f26(A,D,1 + E,F)
        
              [E >= A] ==>                 
          f26(A,D,E,F)   = 1 + A + -1*D    
                        >= 1 + A + -1*D    
                         = f23(A,1 + D,E,F)
        
              [E >= A] ==>                 
          f15(A,D,E,F)   = 2 + A           
                        >= 2 + A           
                         = f12(A,1 + D,E,F)
        
              [D >= A] ==>                 
          f12(A,D,E,F)   = 2 + A           
                        >= 2 + A           
                         = f23(A,0,E,F)    
        
        
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1)
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (?,1)
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1)
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (4,1)
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (?,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (?,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (?,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (?,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (1,1)
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,14,2], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f12) = 2 + x1 + -1*x2
          p(f15) = 1 + x1 + -1*x2
        
        The following rules are strictly oriented:
          [A >= 1 + D] ==>             
          f12(A,D,E,F)   = 2 + A + -1*D
                         > 1 + A + -1*D
                         = f15(A,D,0,F)
        
        
        The following rules are weakly oriented:
          [A >= 1 + E] ==>                 
          f15(A,D,E,F)   = 1 + A + -1*D    
                        >= 1 + A + -1*D    
                         = f15(A,D,1 + E,F)
        
              [E >= A] ==>                 
          f15(A,D,E,F)   = 1 + A + -1*D    
                        >= 1 + A + -1*D    
                         = f12(A,1 + D,E,F)
        
        We use the following global sizebounds:
        (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
        (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
        (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
        (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
        (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
        (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
        (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
        (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
        (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
        (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1)
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (4,1)
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (?,1)
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (4,1)
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (?,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (?,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (?,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (?,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (1,1)
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f15) = x1 + -1*x3
        
        The following rules are strictly oriented:
          [A >= 1 + E] ==>                 
          f15(A,D,E,F)   = A + -1*E        
                         > -1 + A + -1*E   
                         = f15(A,D,1 + E,F)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
        (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
        (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
        (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
        (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
        (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
        (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
        (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
        (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
        (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
* Step 10: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1)
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (4,1)
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1)
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (4,1)
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (?,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (?,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (?,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (?,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (1,1)
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1) 
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (4,1) 
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (4,1) 
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (?,1) 
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (?,1) 
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (?,1) 
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (12,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (1,1) 
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [6,4,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f26) = 2 + x1 + -1*x3
          p(f30) = 1 + x1 + -1*x3
        
        The following rules are strictly oriented:
          [A >= 1 + E] ==>             
          f26(A,D,E,F)   = 2 + A + -1*E
                         > 1 + A + -1*E
                         = f30(A,D,E,0)
        
        
        The following rules are weakly oriented:
          [A >= 1 + F] ==>                 
          f30(A,D,E,F)   = 1 + A + -1*E    
                        >= 1 + A + -1*E    
                         = f30(A,D,E,1 + F)
        
              [F >= A] ==>                 
          f30(A,D,E,F)   = 1 + A + -1*E    
                        >= 1 + A + -1*E    
                         = f26(A,D,1 + E,F)
        
        We use the following global sizebounds:
        (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
        (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
        (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
        (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
        (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
        (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
        (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
        (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
        (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
        (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
* Step 12: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1) 
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (4,1) 
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (4,1) 
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (16,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (?,1) 
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (?,1) 
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (12,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (1,1) 
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3,7,6,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f23) = 1
          p(f26) = 1
          p(f30) = 2
        
        The following rules are strictly oriented:
              [F >= A] ==>                 
          f30(A,D,E,F)   = 2               
                         > 1               
                         = f26(A,D,1 + E,F)
        
        
        The following rules are weakly oriented:
          [A >= 1 + D] ==>                 
          f23(A,D,E,F)   = 1               
                        >= 1               
                         = f26(A,D,0,F)    
        
          [A >= 1 + F] ==>                 
          f30(A,D,E,F)   = 2               
                        >= 2               
                         = f30(A,D,E,1 + F)
        
              [E >= A] ==>                 
          f26(A,D,E,F)   = 1               
                        >= 1               
                         = f23(A,1 + D,E,F)
        
        We use the following global sizebounds:
        (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
        (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
        (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
        (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
        (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
        (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
        (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
        (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
        (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
        (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
* Step 13: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1) 
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (4,1) 
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (4,1) 
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (16,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (33,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (?,1) 
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (12,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (1,1) 
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 14: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1) 
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (4,1) 
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (4,1) 
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (16,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (?,1) 
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (33,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (37,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (12,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (1,1) 
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,4,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f23) = x1        
          p(f26) = x1        
          p(f30) = x1 + -1*x4
        
        The following rules are strictly oriented:
          [A >= 1 + F] ==>                 
          f30(A,D,E,F)   = A + -1*F        
                         > -1 + A + -1*F   
                         = f30(A,D,E,1 + F)
        
        
        The following rules are weakly oriented:
          [A >= 1 + E] ==>                 
          f26(A,D,E,F)   = A               
                        >= A               
                         = f30(A,D,E,0)    
        
              [E >= A] ==>                 
          f26(A,D,E,F)   = A               
                        >= A               
                         = f23(A,1 + D,E,F)
        
        We use the following global sizebounds:
        (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
        (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
        (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
        (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
        (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
        (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
        (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
        (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
        (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
        (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
* Step 15: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F)  -> f12(2,0,E,F)     True         (1,1) 
          1.  f12(A,D,E,F) -> f15(A,D,0,F)     [A >= 1 + D] (4,1) 
          2.  f15(A,D,E,F) -> f15(A,D,1 + E,F) [A >= 1 + E] (8,1) 
          3.  f23(A,D,E,F) -> f26(A,D,0,F)     [A >= 1 + D] (4,1) 
          4.  f26(A,D,E,F) -> f30(A,D,E,0)     [A >= 1 + E] (16,1)
          5.  f30(A,D,E,F) -> f30(A,D,E,1 + F) [A >= 1 + F] (74,1)
          6.  f30(A,D,E,F) -> f26(A,D,1 + E,F) [F >= A]     (33,1)
          7.  f26(A,D,E,F) -> f23(A,1 + D,E,F) [E >= A]     (37,1)
          14. f15(A,D,E,F) -> f12(A,1 + D,E,F) [E >= A]     (12,1)
          15. f12(A,D,E,F) -> f23(A,0,E,F)     [D >= A]     (1,1) 
        Signature:
          {(f0,4);(f12,4);(f15,4);(f23,4);(f26,4);(f30,4);(f52,4)}
        Flow Graph:
          [0->{1},1->{2,14},2->{2,14},3->{4,7},4->{5,6},5->{5,6},6->{4,7},7->{3},14->{1,15},15->{3}]
        Sizebounds:
          (< 0,0,A>, 2) (< 0,0,D>, 0) (< 0,0,E>,     E) (< 0,0,F>, F) 
          (< 1,0,A>, 2) (< 1,0,D>, 2) (< 1,0,E>,     0) (< 1,0,F>, F) 
          (< 2,0,A>, 2) (< 2,0,D>, 2) (< 2,0,E>,     2) (< 2,0,F>, F) 
          (< 3,0,A>, 2) (< 3,0,D>, 2) (< 3,0,E>,     0) (< 3,0,F>, ?) 
          (< 4,0,A>, 2) (< 4,0,D>, ?) (< 4,0,E>,     2) (< 4,0,F>, 0) 
          (< 5,0,A>, 2) (< 5,0,D>, ?) (< 5,0,E>,     2) (< 5,0,F>, 2) 
          (< 6,0,A>, 2) (< 6,0,D>, ?) (< 6,0,E>,     2) (< 6,0,F>, 2) 
          (< 7,0,A>, 2) (< 7,0,D>, ?) (< 7,0,E>,     2) (< 7,0,F>, ?) 
          (<14,0,A>, 2) (<14,0,D>, 2) (<14,0,E>,     2) (<14,0,F>, F) 
          (<15,0,A>, 2) (<15,0,D>, 0) (<15,0,E>, 2 + E) (<15,0,F>, F) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))