WORST_CASE(?,O(n^1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G,H,I,J) -> f19(A,0,C,D,E,F,G,H,I,J)     [19 >= A] (?,1)
          1.  f33(A,B,C,D,E,F,G,H,I,J) -> f36(A,B,C,0,E,F,G,H,I,J)     [19 >= C] (?,1)
          2.  f52(A,B,C,D,E,F,G,H,I,J) -> f55(A,B,C,D,E,0,G,H,I,J)     [19 >= E] (?,1)
          3.  f55(A,B,C,D,E,F,G,H,I,J) -> f59(A,B,C,D,E,F,0,H,I,J)     [19 >= F] (?,1)
          4.  f59(A,B,C,D,E,F,G,H,I,J) -> f59(A,B,C,D,E,F,1 + G,H,I,J) [19 >= G] (?,1)
          5.  f59(A,B,C,D,E,F,G,H,I,J) -> f55(A,B,C,D,E,1 + F,G,H,I,J) [G >= 20] (?,1)
          6.  f55(A,B,C,D,E,F,G,H,I,J) -> f52(A,B,C,D,1 + E,F,G,H,I,J) [F >= 20] (?,1)
          7.  f52(A,B,C,D,E,F,G,H,I,J) -> f73(A,B,C,D,E,F,G,H,I,J)     [E >= 20] (?,1)
          8.  f36(A,B,C,D,E,F,G,H,I,J) -> f36(A,B,C,1 + D,E,F,G,K,K,J) [19 >= D] (?,1)
          9.  f36(A,B,C,D,E,F,G,H,I,J) -> f33(A,B,1 + C,D,E,F,G,H,I,J) [D >= 20] (?,1)
          10. f33(A,B,C,D,E,F,G,H,I,J) -> f52(A,B,C,D,0,F,G,H,I,J)     [C >= 20] (?,1)
          11. f19(A,B,C,D,E,F,G,H,I,J) -> f19(A,1 + B,C,D,E,F,G,K,I,K) [19 >= B] (?,1)
          12. f19(A,B,C,D,E,F,G,H,I,J) -> f16(1 + A,B,C,D,E,F,G,H,I,J) [B >= 20] (?,1)
          13. f16(A,B,C,D,E,F,G,H,I,J) -> f33(A,B,0,D,E,F,G,H,I,J)     [A >= 20] (?,1)
          14. f0(A,B,C,D,E,F,G,H,I,J)  -> f16(0,B,C,D,E,F,G,0,I,J)     True      (1,1)
        Signature:
          {(f0,10);(f16,10);(f19,10);(f33,10);(f36,10);(f52,10);(f55,10);(f59,10);(f73,10)}
        Flow Graph:
          [0->{11,12},1->{8,9},2->{3,6},3->{4,5},4->{4,5},5->{3,6},6->{2,7},7->{},8->{8,9},9->{1,10},10->{2,7}
          ,11->{11,12},12->{0,13},13->{1,10},14->{0,13}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [H,I,J] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (?,1)
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (?,1)
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (?,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)
          7.  f52(A,B,C,D,E,F,G) -> f73(A,B,C,D,E,F,G)     [E >= 20] (?,1)
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (?,1)
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (?,1)
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11,12},1->{8,9},2->{3,6},3->{4,5},4->{4,5},5->{3,6},6->{2,7},7->{},8->{8,9},9->{1,10},10->{2,7}
          ,11->{11,12},12->{0,13},13->{1,10},14->{0,13}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     A, .= 0) (< 0,0,B>,     0, .= 0) (< 0,0,C>,     C, .= 0) (< 0,0,D>,     D, .= 0) (< 0,0,E>,     E, .= 0) (< 0,0,F>,     F, .= 0) (< 0,0,G>,     G, .= 0) 
          (< 1,0,A>,     A, .= 0) (< 1,0,B>,     B, .= 0) (< 1,0,C>,     C, .= 0) (< 1,0,D>,     0, .= 0) (< 1,0,E>,     E, .= 0) (< 1,0,F>,     F, .= 0) (< 1,0,G>,     G, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,B>,     B, .= 0) (< 2,0,C>,     C, .= 0) (< 2,0,D>,     D, .= 0) (< 2,0,E>,     E, .= 0) (< 2,0,F>,     0, .= 0) (< 2,0,G>,     G, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,B>,     B, .= 0) (< 3,0,C>,     C, .= 0) (< 3,0,D>,     D, .= 0) (< 3,0,E>,     E, .= 0) (< 3,0,F>,     F, .= 0) (< 3,0,G>,     0, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,B>,     B, .= 0) (< 4,0,C>,     C, .= 0) (< 4,0,D>,     D, .= 0) (< 4,0,E>,     E, .= 0) (< 4,0,F>,     F, .= 0) (< 4,0,G>, 1 + G, .+ 1) 
          (< 5,0,A>,     A, .= 0) (< 5,0,B>,     B, .= 0) (< 5,0,C>,     C, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>,     E, .= 0) (< 5,0,F>, 1 + F, .+ 1) (< 5,0,G>,     G, .= 0) 
          (< 6,0,A>,     A, .= 0) (< 6,0,B>,     B, .= 0) (< 6,0,C>,     C, .= 0) (< 6,0,D>,     D, .= 0) (< 6,0,E>, 1 + E, .+ 1) (< 6,0,F>,     F, .= 0) (< 6,0,G>,     G, .= 0) 
          (< 7,0,A>,     A, .= 0) (< 7,0,B>,     B, .= 0) (< 7,0,C>,     C, .= 0) (< 7,0,D>,     D, .= 0) (< 7,0,E>,     E, .= 0) (< 7,0,F>,     F, .= 0) (< 7,0,G>,     G, .= 0) 
          (< 8,0,A>,     A, .= 0) (< 8,0,B>,     B, .= 0) (< 8,0,C>,     C, .= 0) (< 8,0,D>, 1 + D, .+ 1) (< 8,0,E>,     E, .= 0) (< 8,0,F>,     F, .= 0) (< 8,0,G>,     G, .= 0) 
          (< 9,0,A>,     A, .= 0) (< 9,0,B>,     B, .= 0) (< 9,0,C>, 1 + C, .+ 1) (< 9,0,D>,     D, .= 0) (< 9,0,E>,     E, .= 0) (< 9,0,F>,     F, .= 0) (< 9,0,G>,     G, .= 0) 
          (<10,0,A>,     A, .= 0) (<10,0,B>,     B, .= 0) (<10,0,C>,     C, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>,     0, .= 0) (<10,0,F>,     F, .= 0) (<10,0,G>,     G, .= 0) 
          (<11,0,A>,     A, .= 0) (<11,0,B>, 1 + B, .+ 1) (<11,0,C>,     C, .= 0) (<11,0,D>,     D, .= 0) (<11,0,E>,     E, .= 0) (<11,0,F>,     F, .= 0) (<11,0,G>,     G, .= 0) 
          (<12,0,A>, 1 + A, .+ 1) (<12,0,B>,     B, .= 0) (<12,0,C>,     C, .= 0) (<12,0,D>,     D, .= 0) (<12,0,E>,     E, .= 0) (<12,0,F>,     F, .= 0) (<12,0,G>,     G, .= 0) 
          (<13,0,A>,     A, .= 0) (<13,0,B>,     B, .= 0) (<13,0,C>,     0, .= 0) (<13,0,D>,     D, .= 0) (<13,0,E>,     E, .= 0) (<13,0,F>,     F, .= 0) (<13,0,G>,     G, .= 0) 
          (<14,0,A>,     0, .= 0) (<14,0,B>,     B, .= 0) (<14,0,C>,     C, .= 0) (<14,0,D>,     D, .= 0) (<14,0,E>,     E, .= 0) (<14,0,F>,     F, .= 0) (<14,0,G>,     G, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (?,1)
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (?,1)
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (?,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)
          7.  f52(A,B,C,D,E,F,G) -> f73(A,B,C,D,E,F,G)     [E >= 20] (?,1)
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (?,1)
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (?,1)
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11,12},1->{8,9},2->{3,6},3->{4,5},4->{4,5},5->{3,6},6->{2,7},7->{},8->{8,9},9->{1,10},10->{2,7}
          ,11->{11,12},12->{0,13},13->{1,10},14->{0,13}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,      F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,      F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,      0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>,     19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>,     19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>,     19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>,     19) (< 6,0,G>,  ?) 
          (< 7,0,A>,  ?) (< 7,0,B>,      ?) (< 7,0,C>,  ?) (< 7,0,D>,      ?) (< 7,0,E>,  ?) (< 7,0,F>, 19 + F) (< 7,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,      F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,      F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,      F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,      F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,      F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,      F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,      F) (<14,0,G>,  G) 
* Step 4: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (?,1)
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (?,1)
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (?,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)
          7.  f52(A,B,C,D,E,F,G) -> f73(A,B,C,D,E,F,G)     [E >= 20] (?,1)
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (?,1)
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (?,1)
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11,12},1->{8,9},2->{3,6},3->{4,5},4->{4,5},5->{3,6},6->{2,7},7->{},8->{8,9},9->{1,10},10->{2,7}
          ,11->{11,12},12->{0,13},13->{1,10},14->{0,13}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,      F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,      F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,      0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>,     19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>,     19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>,     19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>,     19) (< 6,0,G>,  ?) 
          (< 7,0,A>,  ?) (< 7,0,B>,      ?) (< 7,0,C>,  ?) (< 7,0,D>,      ?) (< 7,0,E>,  ?) (< 7,0,F>, 19 + F) (< 7,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,      F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,      F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,      F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,      F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,      F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,      F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,      F) (<14,0,G>,  G) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,12),(1,9),(2,6),(3,5),(10,7),(13,10),(14,13)]
* Step 5: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (?,1)
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (?,1)
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (?,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)
          7.  f52(A,B,C,D,E,F,G) -> f73(A,B,C,D,E,F,G)     [E >= 20] (?,1)
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (?,1)
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (?,1)
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2,7},7->{},8->{8,9},9->{1,10},10->{2},11->{11,12}
          ,12->{0,13},13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,      F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,      F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,      0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>,     19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>,     19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>,     19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>,     19) (< 6,0,G>,  ?) 
          (< 7,0,A>,  ?) (< 7,0,B>,      ?) (< 7,0,C>,  ?) (< 7,0,D>,      ?) (< 7,0,E>,  ?) (< 7,0,F>, 19 + F) (< 7,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,      F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,      F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,      F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,      F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,      F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,      F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,      F) (<14,0,G>,  G) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [7]
* Step 6: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (?,1)
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (?,1)
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (?,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (?,1)
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (?,1)
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f16) = 1
          p(f19) = 1
          p(f33) = 0
          p(f36) = 0
          p(f52) = 0
          p(f55) = 0
          p(f59) = 0
        
        The following rules are strictly oriented:
                   [A >= 20] ==>                   
          f16(A,B,C,D,E,F,G)   = 1                 
                               > 0                 
                               = f33(A,B,0,D,E,F,G)
        
        
        The following rules are weakly oriented:
                   [19 >= A] ==>                       
          f16(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f19(A,0,C,D,E,F,G)    
        
                   [19 >= C] ==>                       
          f33(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f36(A,B,C,0,E,F,G)    
        
                   [19 >= E] ==>                       
          f52(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f55(A,B,C,D,E,0,G)    
        
                   [19 >= F] ==>                       
          f55(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f59(A,B,C,D,E,F,0)    
        
                   [19 >= G] ==>                       
          f59(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f59(A,B,C,D,E,F,1 + G)
        
                   [G >= 20] ==>                       
          f59(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f55(A,B,C,D,E,1 + F,G)
        
                   [F >= 20] ==>                       
          f55(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f52(A,B,C,D,1 + E,F,G)
        
                   [19 >= D] ==>                       
          f36(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f36(A,B,C,1 + D,E,F,G)
        
                   [D >= 20] ==>                       
          f36(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f33(A,B,1 + C,D,E,F,G)
        
                   [C >= 20] ==>                       
          f33(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f52(A,B,C,D,0,F,G)    
        
                   [19 >= B] ==>                       
          f19(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f19(A,1 + B,C,D,E,F,G)
        
                   [B >= 20] ==>                       
          f19(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f16(1 + A,B,C,D,E,F,G)
        
                        True ==>                       
           f0(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f16(0,B,C,D,E,F,G)    
        
        
* Step 7: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (?,1)
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (?,1)
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (?,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (?,1)
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f16) = 1
          p(f19) = 1
          p(f33) = 1
          p(f36) = 1
          p(f52) = 0
          p(f55) = 0
          p(f59) = 0
        
        The following rules are strictly oriented:
                   [C >= 20] ==>                   
          f33(A,B,C,D,E,F,G)   = 1                 
                               > 0                 
                               = f52(A,B,C,D,0,F,G)
        
        
        The following rules are weakly oriented:
                   [19 >= A] ==>                       
          f16(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f19(A,0,C,D,E,F,G)    
        
                   [19 >= C] ==>                       
          f33(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f36(A,B,C,0,E,F,G)    
        
                   [19 >= E] ==>                       
          f52(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f55(A,B,C,D,E,0,G)    
        
                   [19 >= F] ==>                       
          f55(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f59(A,B,C,D,E,F,0)    
        
                   [19 >= G] ==>                       
          f59(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f59(A,B,C,D,E,F,1 + G)
        
                   [G >= 20] ==>                       
          f59(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f55(A,B,C,D,E,1 + F,G)
        
                   [F >= 20] ==>                       
          f55(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f52(A,B,C,D,1 + E,F,G)
        
                   [19 >= D] ==>                       
          f36(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f36(A,B,C,1 + D,E,F,G)
        
                   [D >= 20] ==>                       
          f36(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f33(A,B,1 + C,D,E,F,G)
        
                   [19 >= B] ==>                       
          f19(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f19(A,1 + B,C,D,E,F,G)
        
                   [B >= 20] ==>                       
          f19(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f16(1 + A,B,C,D,E,F,G)
        
                   [A >= 20] ==>                       
          f16(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f33(A,B,0,D,E,F,G)    
        
                        True ==>                       
           f0(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f16(0,B,C,D,E,F,G)    
        
        
* Step 8: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (?,1)
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (?,1)
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (?,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1)
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 20        
          p(f16) = 20        
          p(f19) = 20        
          p(f33) = 20        
          p(f36) = 20        
          p(f52) = 20 + -1*x5
          p(f55) = 19 + -1*x5
          p(f59) = 19 + -1*x5
        
        The following rules are strictly oriented:
                   [19 >= E] ==>                   
          f52(A,B,C,D,E,F,G)   = 20 + -1*E         
                               > 19 + -1*E         
                               = f55(A,B,C,D,E,0,G)
        
        
        The following rules are weakly oriented:
                   [19 >= A] ==>                       
          f16(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f19(A,0,C,D,E,F,G)    
        
                   [19 >= C] ==>                       
          f33(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f36(A,B,C,0,E,F,G)    
        
                   [19 >= F] ==>                       
          f55(A,B,C,D,E,F,G)   = 19 + -1*E             
                              >= 19 + -1*E             
                               = f59(A,B,C,D,E,F,0)    
        
                   [19 >= G] ==>                       
          f59(A,B,C,D,E,F,G)   = 19 + -1*E             
                              >= 19 + -1*E             
                               = f59(A,B,C,D,E,F,1 + G)
        
                   [G >= 20] ==>                       
          f59(A,B,C,D,E,F,G)   = 19 + -1*E             
                              >= 19 + -1*E             
                               = f55(A,B,C,D,E,1 + F,G)
        
                   [F >= 20] ==>                       
          f55(A,B,C,D,E,F,G)   = 19 + -1*E             
                              >= 19 + -1*E             
                               = f52(A,B,C,D,1 + E,F,G)
        
                   [19 >= D] ==>                       
          f36(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f36(A,B,C,1 + D,E,F,G)
        
                   [D >= 20] ==>                       
          f36(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f33(A,B,1 + C,D,E,F,G)
        
                   [C >= 20] ==>                       
          f33(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f52(A,B,C,D,0,F,G)    
        
                   [19 >= B] ==>                       
          f19(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f19(A,1 + B,C,D,E,F,G)
        
                   [B >= 20] ==>                       
          f19(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f16(1 + A,B,C,D,E,F,G)
        
                   [A >= 20] ==>                       
          f16(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f33(A,B,0,D,E,F,G)    
        
                        True ==>                       
           f0(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f16(0,B,C,D,E,F,G)    
        
        
* Step 9: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (?,1) 
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (?,1) 
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1) 
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1) 
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1) 
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1) 
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1) 
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1) 
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1) 
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1) 
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1) 
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1) 
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1) 
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 20        
          p(f16) = 20 + -1*x1
          p(f19) = 19 + -1*x1
          p(f33) = 1 + -1*x1 
          p(f36) = 1 + -1*x1 
          p(f52) = 1 + -1*x1 
          p(f55) = 1 + -1*x1 
          p(f59) = 1 + -1*x1 
        
        The following rules are strictly oriented:
                   [19 >= A] ==>                   
          f16(A,B,C,D,E,F,G)   = 20 + -1*A         
                               > 19 + -1*A         
                               = f19(A,0,C,D,E,F,G)
        
        
        The following rules are weakly oriented:
                   [19 >= C] ==>                       
          f33(A,B,C,D,E,F,G)   = 1 + -1*A              
                              >= 1 + -1*A              
                               = f36(A,B,C,0,E,F,G)    
        
                   [19 >= E] ==>                       
          f52(A,B,C,D,E,F,G)   = 1 + -1*A              
                              >= 1 + -1*A              
                               = f55(A,B,C,D,E,0,G)    
        
                   [19 >= F] ==>                       
          f55(A,B,C,D,E,F,G)   = 1 + -1*A              
                              >= 1 + -1*A              
                               = f59(A,B,C,D,E,F,0)    
        
                   [19 >= G] ==>                       
          f59(A,B,C,D,E,F,G)   = 1 + -1*A              
                              >= 1 + -1*A              
                               = f59(A,B,C,D,E,F,1 + G)
        
                   [G >= 20] ==>                       
          f59(A,B,C,D,E,F,G)   = 1 + -1*A              
                              >= 1 + -1*A              
                               = f55(A,B,C,D,E,1 + F,G)
        
                   [F >= 20] ==>                       
          f55(A,B,C,D,E,F,G)   = 1 + -1*A              
                              >= 1 + -1*A              
                               = f52(A,B,C,D,1 + E,F,G)
        
                   [19 >= D] ==>                       
          f36(A,B,C,D,E,F,G)   = 1 + -1*A              
                              >= 1 + -1*A              
                               = f36(A,B,C,1 + D,E,F,G)
        
                   [D >= 20] ==>                       
          f36(A,B,C,D,E,F,G)   = 1 + -1*A              
                              >= 1 + -1*A              
                               = f33(A,B,1 + C,D,E,F,G)
        
                   [C >= 20] ==>                       
          f33(A,B,C,D,E,F,G)   = 1 + -1*A              
                              >= 1 + -1*A              
                               = f52(A,B,C,D,0,F,G)    
        
                   [19 >= B] ==>                       
          f19(A,B,C,D,E,F,G)   = 19 + -1*A             
                              >= 19 + -1*A             
                               = f19(A,1 + B,C,D,E,F,G)
        
                   [B >= 20] ==>                       
          f19(A,B,C,D,E,F,G)   = 19 + -1*A             
                              >= 19 + -1*A             
                               = f16(1 + A,B,C,D,E,F,G)
        
                   [A >= 20] ==>                       
          f16(A,B,C,D,E,F,G)   = 20 + -1*A             
                              >= 1 + -1*A              
                               = f33(A,B,0,D,E,F,G)    
        
                        True ==>                       
           f0(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f16(0,B,C,D,E,F,G)    
        
        
* Step 10: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1)
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (?,1) 
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1) 
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1) 
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1) 
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1) 
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1) 
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1) 
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1) 
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1) 
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1) 
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1) 
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1) 
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 20        
          p(f16) = 20        
          p(f19) = 20        
          p(f33) = 20 + -1*x3
          p(f36) = 19 + -1*x3
          p(f52) = 20 + -1*x3
          p(f55) = 20 + -1*x3
          p(f59) = 20 + -1*x3
        
        The following rules are strictly oriented:
                   [19 >= C] ==>                   
          f33(A,B,C,D,E,F,G)   = 20 + -1*C         
                               > 19 + -1*C         
                               = f36(A,B,C,0,E,F,G)
        
        
        The following rules are weakly oriented:
                   [19 >= A] ==>                       
          f16(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f19(A,0,C,D,E,F,G)    
        
                   [19 >= E] ==>                       
          f52(A,B,C,D,E,F,G)   = 20 + -1*C             
                              >= 20 + -1*C             
                               = f55(A,B,C,D,E,0,G)    
        
                   [19 >= F] ==>                       
          f55(A,B,C,D,E,F,G)   = 20 + -1*C             
                              >= 20 + -1*C             
                               = f59(A,B,C,D,E,F,0)    
        
                   [19 >= G] ==>                       
          f59(A,B,C,D,E,F,G)   = 20 + -1*C             
                              >= 20 + -1*C             
                               = f59(A,B,C,D,E,F,1 + G)
        
                   [G >= 20] ==>                       
          f59(A,B,C,D,E,F,G)   = 20 + -1*C             
                              >= 20 + -1*C             
                               = f55(A,B,C,D,E,1 + F,G)
        
                   [F >= 20] ==>                       
          f55(A,B,C,D,E,F,G)   = 20 + -1*C             
                              >= 20 + -1*C             
                               = f52(A,B,C,D,1 + E,F,G)
        
                   [19 >= D] ==>                       
          f36(A,B,C,D,E,F,G)   = 19 + -1*C             
                              >= 19 + -1*C             
                               = f36(A,B,C,1 + D,E,F,G)
        
                   [D >= 20] ==>                       
          f36(A,B,C,D,E,F,G)   = 19 + -1*C             
                              >= 19 + -1*C             
                               = f33(A,B,1 + C,D,E,F,G)
        
                   [C >= 20] ==>                       
          f33(A,B,C,D,E,F,G)   = 20 + -1*C             
                              >= 20 + -1*C             
                               = f52(A,B,C,D,0,F,G)    
        
                   [19 >= B] ==>                       
          f19(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f19(A,1 + B,C,D,E,F,G)
        
                   [B >= 20] ==>                       
          f19(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f16(1 + A,B,C,D,E,F,G)
        
                   [A >= 20] ==>                       
          f16(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f33(A,B,0,D,E,F,G)    
        
                        True ==>                       
           f0(A,B,C,D,E,F,G)   = 20                    
                              >= 20                    
                               = f16(0,B,C,D,E,F,G)    
        
        
* Step 11: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1)
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (20,1)
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1)
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1) 
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1) 
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1) 
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1) 
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1) 
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1) 
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1) 
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (?,1) 
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1) 
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1) 
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1) 
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f19) = 20 + -1*x2
        
        The following rules are strictly oriented:
                   [19 >= B] ==>                       
          f19(A,B,C,D,E,F,G)   = 20 + -1*B             
                               > 19 + -1*B             
                               = f19(A,1 + B,C,D,E,F,G)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
        (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
        (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
        (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
        (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
        (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
        (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
        (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
        (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
        (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
        (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
        (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
        (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
        (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
* Step 12: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1) 
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (20,1) 
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1) 
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)  
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)  
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)  
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)  
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1)  
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)  
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1)  
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (400,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (?,1)  
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)  
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)  
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 13: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1) 
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (20,1) 
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1) 
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)  
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)  
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)  
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)  
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (?,1)  
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)  
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1)  
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (400,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (400,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)  
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)  
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f36) = 20 + -1*x4
        
        The following rules are strictly oriented:
                   [19 >= D] ==>                       
          f36(A,B,C,D,E,F,G)   = 20 + -1*D             
                               > 19 + -1*D             
                               = f36(A,B,C,1 + D,E,F,G)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
        (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
        (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
        (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
        (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
        (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
        (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
        (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
        (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
        (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
        (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
        (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
        (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
        (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
* Step 14: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1) 
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (20,1) 
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1) 
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)  
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)  
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)  
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)  
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (400,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (?,1)  
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1)  
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (400,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (400,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)  
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)  
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 15: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1) 
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (20,1) 
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1) 
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (?,1)  
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)  
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)  
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)  
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (400,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (400,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1)  
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (400,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (400,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)  
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)  
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,4,3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f55) = 20 + -1*x6
          p(f59) = 19 + -1*x6
        
        The following rules are strictly oriented:
                   [19 >= F] ==>                   
          f55(A,B,C,D,E,F,G)   = 20 + -1*F         
                               > 19 + -1*F         
                               = f59(A,B,C,D,E,F,0)
        
        
        The following rules are weakly oriented:
                   [19 >= G] ==>                       
          f59(A,B,C,D,E,F,G)   = 19 + -1*F             
                              >= 19 + -1*F             
                               = f59(A,B,C,D,E,F,1 + G)
        
                   [G >= 20] ==>                       
          f59(A,B,C,D,E,F,G)   = 19 + -1*F             
                              >= 19 + -1*F             
                               = f55(A,B,C,D,E,1 + F,G)
        
        We use the following global sizebounds:
        (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
        (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
        (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
        (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
        (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
        (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
        (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
        (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
        (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
        (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
        (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
        (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
        (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
        (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
* Step 16: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1) 
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (20,1) 
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1) 
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (400,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)  
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)  
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (?,1)  
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (400,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (400,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1)  
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (400,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (400,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)  
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)  
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [6,5,4,3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f52) = 0
          p(f55) = 1
          p(f59) = 1
        
        The following rules are strictly oriented:
                   [F >= 20] ==>                       
          f55(A,B,C,D,E,F,G)   = 1                     
                               > 0                     
                               = f52(A,B,C,D,1 + E,F,G)
        
        
        The following rules are weakly oriented:
                   [19 >= F] ==>                       
          f55(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f59(A,B,C,D,E,F,0)    
        
                   [19 >= G] ==>                       
          f59(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f59(A,B,C,D,E,F,1 + G)
        
                   [G >= 20] ==>                       
          f59(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f55(A,B,C,D,E,1 + F,G)
        
        We use the following global sizebounds:
        (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
        (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
        (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
        (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
        (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
        (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
        (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
        (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
        (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
        (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
        (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
        (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
        (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
        (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
* Step 17: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1) 
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (20,1) 
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1) 
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (400,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)  
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (?,1)  
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (20,1) 
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (400,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (400,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1)  
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (400,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (400,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)  
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)  
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,6,5,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f52) = 0
          p(f55) = 0
          p(f59) = 1
        
        The following rules are strictly oriented:
                   [G >= 20] ==>                       
          f59(A,B,C,D,E,F,G)   = 1                     
                               > 0                     
                               = f55(A,B,C,D,E,1 + F,G)
        
        
        The following rules are weakly oriented:
                   [19 >= E] ==>                       
          f52(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f55(A,B,C,D,E,0,G)    
        
                   [19 >= G] ==>                       
          f59(A,B,C,D,E,F,G)   = 1                     
                              >= 1                     
                               = f59(A,B,C,D,E,F,1 + G)
        
                   [F >= 20] ==>                       
          f55(A,B,C,D,E,F,G)   = 0                     
                              >= 0                     
                               = f52(A,B,C,D,1 + E,F,G)
        
        We use the following global sizebounds:
        (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
        (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
        (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
        (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
        (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
        (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
        (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
        (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
        (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
        (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
        (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
        (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
        (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
        (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
* Step 18: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1) 
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (20,1) 
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1) 
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (400,1)
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (?,1)  
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (400,1)
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (20,1) 
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (400,1)
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (400,1)
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1)  
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (400,1)
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (400,1)
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)  
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)  
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,6,5,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f52) = -1*x7     
          p(f55) = -1*x7     
          p(f59) = 20 + -1*x7
        
        The following rules are strictly oriented:
                   [19 >= G] ==>                       
          f59(A,B,C,D,E,F,G)   = 20 + -1*G             
                               > 19 + -1*G             
                               = f59(A,B,C,D,E,F,1 + G)
        
        
        The following rules are weakly oriented:
                   [19 >= E] ==>                       
          f52(A,B,C,D,E,F,G)   = -1*G                  
                              >= -1*G                  
                               = f55(A,B,C,D,E,0,G)    
        
                   [G >= 20] ==>                       
          f59(A,B,C,D,E,F,G)   = 20 + -1*G             
                              >= -1*G                  
                               = f55(A,B,C,D,E,1 + F,G)
        
                   [F >= 20] ==>                       
          f55(A,B,C,D,E,F,G)   = -1*G                  
                              >= -1*G                  
                               = f52(A,B,C,D,1 + E,F,G)
        
        We use the following global sizebounds:
        (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
        (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
        (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
        (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
        (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
        (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
        (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
        (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
        (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
        (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
        (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
        (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
        (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
        (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
* Step 19: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  f16(A,B,C,D,E,F,G) -> f19(A,0,C,D,E,F,G)     [19 >= A] (20,1)      
          1.  f33(A,B,C,D,E,F,G) -> f36(A,B,C,0,E,F,G)     [19 >= C] (20,1)      
          2.  f52(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,0,G)     [19 >= E] (20,1)      
          3.  f55(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,0)     [19 >= F] (400,1)     
          4.  f59(A,B,C,D,E,F,G) -> f59(A,B,C,D,E,F,1 + G) [19 >= G] (8000 + G,1)
          5.  f59(A,B,C,D,E,F,G) -> f55(A,B,C,D,E,1 + F,G) [G >= 20] (400,1)     
          6.  f55(A,B,C,D,E,F,G) -> f52(A,B,C,D,1 + E,F,G) [F >= 20] (20,1)      
          8.  f36(A,B,C,D,E,F,G) -> f36(A,B,C,1 + D,E,F,G) [19 >= D] (400,1)     
          9.  f36(A,B,C,D,E,F,G) -> f33(A,B,1 + C,D,E,F,G) [D >= 20] (400,1)     
          10. f33(A,B,C,D,E,F,G) -> f52(A,B,C,D,0,F,G)     [C >= 20] (1,1)       
          11. f19(A,B,C,D,E,F,G) -> f19(A,1 + B,C,D,E,F,G) [19 >= B] (400,1)     
          12. f19(A,B,C,D,E,F,G) -> f16(1 + A,B,C,D,E,F,G) [B >= 20] (400,1)     
          13. f16(A,B,C,D,E,F,G) -> f33(A,B,0,D,E,F,G)     [A >= 20] (1,1)       
          14. f0(A,B,C,D,E,F,G)  -> f16(0,B,C,D,E,F,G)     True      (1,1)       
        Signature:
          {(f0,7);(f16,7);(f19,7);(f33,7);(f36,7);(f52,7);(f55,7);(f59,7);(f73,7)}
        Flow Graph:
          [0->{11},1->{8},2->{3},3->{4},4->{4,5},5->{3,6},6->{2},8->{8,9},9->{1,10},10->{2},11->{11,12},12->{0,13}
          ,13->{1},14->{0}]
        Sizebounds:
          (< 0,0,A>, 19) (< 0,0,B>,      0) (< 0,0,C>,  C) (< 0,0,D>,      D) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  ?) (< 1,0,B>,      ?) (< 1,0,C>, 19) (< 1,0,D>,      0) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  ?) (< 2,0,B>,      ?) (< 2,0,C>,  ?) (< 2,0,D>,      ?) (< 2,0,E>, 19) (< 2,0,F>,  0) (< 2,0,G>,  ?) 
          (< 3,0,A>,  ?) (< 3,0,B>,      ?) (< 3,0,C>,  ?) (< 3,0,D>,      ?) (< 3,0,E>,  ?) (< 3,0,F>, 19) (< 3,0,G>,  0) 
          (< 4,0,A>,  ?) (< 4,0,B>,      ?) (< 4,0,C>,  ?) (< 4,0,D>,      ?) (< 4,0,E>,  ?) (< 4,0,F>, 19) (< 4,0,G>, 20) 
          (< 5,0,A>,  ?) (< 5,0,B>,      ?) (< 5,0,C>,  ?) (< 5,0,D>,      ?) (< 5,0,E>,  ?) (< 5,0,F>, 19) (< 5,0,G>, 20) 
          (< 6,0,A>,  ?) (< 6,0,B>,      ?) (< 6,0,C>,  ?) (< 6,0,D>,      ?) (< 6,0,E>,  ?) (< 6,0,F>, 19) (< 6,0,G>,  ?) 
          (< 8,0,A>,  ?) (< 8,0,B>,      ?) (< 8,0,C>, 19) (< 8,0,D>,     20) (< 8,0,E>,  E) (< 8,0,F>,  F) (< 8,0,G>,  G) 
          (< 9,0,A>,  ?) (< 9,0,B>,      ?) (< 9,0,C>, 19) (< 9,0,D>,     20) (< 9,0,E>,  E) (< 9,0,F>,  F) (< 9,0,G>,  G) 
          (<10,0,A>,  ?) (<10,0,B>,      ?) (<10,0,C>, 19) (<10,0,D>, 20 + D) (<10,0,E>,  0) (<10,0,F>,  F) (<10,0,G>,  G) 
          (<11,0,A>, 19) (<11,0,B>,     20) (<11,0,C>,  C) (<11,0,D>,      D) (<11,0,E>,  E) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>, 19) (<12,0,B>,     20) (<12,0,C>,  C) (<12,0,D>,      D) (<12,0,E>,  E) (<12,0,F>,  F) (<12,0,G>,  G) 
          (<13,0,A>, 19) (<13,0,B>, 20 + B) (<13,0,C>,  0) (<13,0,D>,      D) (<13,0,E>,  E) (<13,0,F>,  F) (<13,0,G>,  G) 
          (<14,0,A>,  0) (<14,0,B>,      B) (<14,0,C>,  C) (<14,0,D>,      D) (<14,0,E>,  E) (<14,0,F>,  F) (<14,0,G>,  G) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))