WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 1. f300(A,B,C) -> f1(A,B,D) [A >= 1 && 0 >= A + B && B >= 1] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 4. f2(A,B,C) -> f300(A,B,C) True (1,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{0,1,2,3},1->{},2->{},3->{},4->{0,1,2,3}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [C] . * Step 2: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B) -> f300(-1 + A,-2 + A) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 1. f300(A,B) -> f1(A,B) [A >= 1 && 0 >= A + B && B >= 1] (?,1) 2. f300(A,B) -> f1(A,B) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B) -> f1(A,B) [0 >= B] (?,1) 4. f2(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f300,2)} Flow Graph: [0->{0,1,2,3},1->{},2->{},3->{},4->{0,1,2,3}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [1] * Step 3: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B) -> f300(-1 + A,-2 + A) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 2. f300(A,B) -> f1(A,B) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B) -> f1(A,B) [0 >= B] (?,1) 4. f2(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f300,2)} Flow Graph: [0->{0,2,3},2->{},3->{},4->{0,2,3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 1 + A, .+ 1) (<0,0,B>, 2 + A, .+ 2) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) * Step 4: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B) -> f300(-1 + A,-2 + A) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 2. f300(A,B) -> f1(A,B) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B) -> f1(A,B) [0 >= B] (?,1) 4. f2(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f300,2)} Flow Graph: [0->{0,2,3},2->{},3->{},4->{0,2,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<0,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) * Step 5: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B) -> f300(-1 + A,-2 + A) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 2. f300(A,B) -> f1(A,B) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B) -> f1(A,B) [0 >= B] (?,1) 4. f2(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f300,2)} Flow Graph: [0->{0,2,3},2->{},3->{},4->{0,2,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2)] * Step 6: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B) -> f300(-1 + A,-2 + A) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 2. f300(A,B) -> f1(A,B) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B) -> f1(A,B) [0 >= B] (?,1) 4. f2(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f300,2)} Flow Graph: [0->{0,3},2->{},3->{},4->{0,2,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2,3] * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B) -> f300(-1 + A,-2 + A) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 4. f2(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f300,2)} Flow Graph: [0->{0},4->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = x1 p(f300) = x1 The following rules are strictly oriented: [A >= 1 && A + B >= 1 && B >= 1] ==> f300(A,B) = A > -1 + A = f300(-1 + A,-2 + A) The following rules are weakly oriented: True ==> f2(A,B) = A >= A = f300(A,B) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B) -> f300(-1 + A,-2 + A) [A >= 1 && A + B >= 1 && B >= 1] (A,1) 4. f2(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f300,2)} Flow Graph: [0->{0},4->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))