WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f2(-1 + A,B,C) [A >= 31] (?,1) 1. f2(A,B,C) -> f300(A,-1 + B,C) [30 >= A] (?,1) 2. f300(A,B,C) -> f2(A,B,C) [B >= 21] (?,1) 3. f300(A,B,C) -> f1(A,B,D) [20 >= B] (?,1) 4. f3(A,B,C) -> f300(A,B,C) True (1,1) Signature: {(f1,3);(f2,3);(f3,3);(f300,3)} Flow Graph: [0->{0,1},1->{2,3},2->{0,1},3->{},4->{2,3}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [C] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,B) [A >= 31] (?,1) 1. f2(A,B) -> f300(A,-1 + B) [30 >= A] (?,1) 2. f300(A,B) -> f2(A,B) [B >= 21] (?,1) 3. f300(A,B) -> f1(A,B) [20 >= B] (?,1) 4. f3(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f3,2);(f300,2)} Flow Graph: [0->{0,1},1->{2,3},2->{0,1},3->{},4->{2,3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 1 + A, .+ 1) (<0,0,B>, B, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, 1 + B, .+ 1) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,B) [A >= 31] (?,1) 1. f2(A,B) -> f300(A,-1 + B) [30 >= A] (?,1) 2. f300(A,B) -> f2(A,B) [B >= 21] (?,1) 3. f300(A,B) -> f1(A,B) [20 >= B] (?,1) 4. f3(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f3,2);(f300,2)} Flow Graph: [0->{0,1},1->{2,3},2->{0,1},3->{},4->{2,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<4,0,A>, ?) (<4,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, 30) (<1,0,B>, ?) (<2,0,A>, 30 + A) (<2,0,B>, ?) (<3,0,A>, 30 + A) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,B) [A >= 31] (?,1) 1. f2(A,B) -> f300(A,-1 + B) [30 >= A] (?,1) 2. f300(A,B) -> f2(A,B) [B >= 21] (?,1) 3. f300(A,B) -> f1(A,B) [20 >= B] (?,1) 4. f3(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f3,2);(f300,2)} Flow Graph: [0->{0,1},1->{2,3},2->{0,1},3->{},4->{2,3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, 30) (<1,0,B>, ?) (<2,0,A>, 30 + A) (<2,0,B>, ?) (<3,0,A>, 30 + A) (<3,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,B) [A >= 31] (?,1) 1. f2(A,B) -> f300(A,-1 + B) [30 >= A] (?,1) 2. f300(A,B) -> f2(A,B) [B >= 21] (?,1) 4. f3(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f3,2);(f300,2)} Flow Graph: [0->{0,1},1->{2},2->{0,1},4->{2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, 30) (<1,0,B>, ?) (<2,0,A>, 30 + A) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -21 + x2 p(f3) = -20 + x2 p(f300) = -20 + x2 The following rules are strictly oriented: [B >= 21] ==> f300(A,B) = -20 + B > -21 + B = f2(A,B) The following rules are weakly oriented: [A >= 31] ==> f2(A,B) = -21 + B >= -21 + B = f2(-1 + A,B) [30 >= A] ==> f2(A,B) = -21 + B >= -21 + B = f300(A,-1 + B) True ==> f3(A,B) = -20 + B >= -20 + B = f300(A,B) * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,B) [A >= 31] (?,1) 1. f2(A,B) -> f300(A,-1 + B) [30 >= A] (?,1) 2. f300(A,B) -> f2(A,B) [B >= 21] (20 + B,1) 4. f3(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f3,2);(f300,2)} Flow Graph: [0->{0,1},1->{2},2->{0,1},4->{2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, 30) (<1,0,B>, ?) (<2,0,A>, 30 + A) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = 1 + x1 p(f3) = 1 + x1 p(f300) = 1 + x1 The following rules are strictly oriented: [A >= 31] ==> f2(A,B) = 1 + A > A = f2(-1 + A,B) The following rules are weakly oriented: [30 >= A] ==> f2(A,B) = 1 + A >= 1 + A = f300(A,-1 + B) [B >= 21] ==> f300(A,B) = 1 + A >= 1 + A = f2(A,B) True ==> f3(A,B) = 1 + A >= 1 + A = f300(A,B) * Step 7: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,B) [A >= 31] (1 + A,1) 1. f2(A,B) -> f300(A,-1 + B) [30 >= A] (?,1) 2. f300(A,B) -> f2(A,B) [B >= 21] (20 + B,1) 4. f3(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f3,2);(f300,2)} Flow Graph: [0->{0,1},1->{2},2->{0,1},4->{2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, 30) (<1,0,B>, ?) (<2,0,A>, 30 + A) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 8: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,B) [A >= 31] (1 + A,1) 1. f2(A,B) -> f300(A,-1 + B) [30 >= A] (21 + A + B,1) 2. f300(A,B) -> f2(A,B) [B >= 21] (20 + B,1) 4. f3(A,B) -> f300(A,B) True (1,1) Signature: {(f1,2);(f2,2);(f3,2);(f300,2)} Flow Graph: [0->{0,1},1->{2},2->{0,1},4->{2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, 30) (<1,0,B>, ?) (<2,0,A>, 30 + A) (<2,0,B>, ?) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))