WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E,F,G,H,I)  -> f17(0,J,K,0,E,F,G,H,I)     True      (1,1)
          1.  f17(A,B,C,D,E,F,G,H,I) -> f17(A,B,C,1 + D,E,F,G,H,I) [49 >= D] (?,1)
          2.  f27(A,B,C,D,E,F,G,H,I) -> f27(A,B,C,D,1 + E,F,G,H,I) [49 >= E] (?,1)
          3.  f37(A,B,C,D,E,F,G,H,I) -> f37(A,B,C,D,E,1 + F,G,H,I) [49 >= F] (?,1)
          4.  f45(A,B,C,D,E,F,G,H,I) -> f45(1 + A,B,C,D,E,F,G,H,I) [49 >= A] (?,1)
          5.  f55(A,B,C,D,E,F,G,H,I) -> f55(A,B,C,D,E,F,1 + G,H,I) [49 >= G] (?,1)
          6.  f65(A,B,C,D,E,F,G,H,I) -> f65(A,B,C,D,E,F,G,1 + H,I) [49 >= H] (?,1)
          7.  f75(A,B,C,D,E,F,G,H,I) -> f75(A,B,C,D,E,F,G,H,1 + I) [49 >= I] (?,1)
          8.  f83(A,B,C,D,E,F,G,H,I) -> f83(1 + A,B,C,D,E,F,G,H,I) [49 >= A] (?,1)
          9.  f83(A,B,C,D,E,F,G,H,I) -> f93(A,B,C,D,E,F,G,H,I)     [A >= 50] (?,1)
          10. f75(A,B,C,D,E,F,G,H,I) -> f83(0,B,C,D,E,F,G,H,I)     [I >= 50] (?,1)
          11. f65(A,B,C,D,E,F,G,H,I) -> f75(A,B,C,D,E,F,G,H,0)     [H >= 50] (?,1)
          12. f55(A,B,C,D,E,F,G,H,I) -> f65(A,B,C,D,E,F,G,0,I)     [G >= 50] (?,1)
          13. f45(A,B,C,D,E,F,G,H,I) -> f55(A,B,C,D,E,F,0,H,I)     [A >= 50] (?,1)
          14. f37(A,B,C,D,E,F,G,H,I) -> f45(0,B,C,D,E,F,G,H,I)     [F >= 50] (?,1)
          15. f27(A,B,C,D,E,F,G,H,I) -> f37(A,B,C,D,E,0,G,H,I)     [E >= 50] (?,1)
          16. f17(A,B,C,D,E,F,G,H,I) -> f27(A,B,C,D,0,F,G,H,I)     [D >= 50] (?,1)
        Signature:
          {(f0,9);(f17,9);(f27,9);(f37,9);(f45,9);(f55,9);(f65,9);(f75,9);(f83,9);(f93,9)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9}
          ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B,C] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1)
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1)
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          9.  f83(A,D,E,F,G,H,I) -> f93(A,D,E,F,G,H,I)     [A >= 50] (?,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1)
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (?,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1)
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (?,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (?,1)
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9}
          ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     0, .= 0) (< 0,0,D>,     0, .= 0) (< 0,0,E>,     E, .= 0) (< 0,0,F>,     F, .= 0) (< 0,0,G>,     G, .= 0) (< 0,0,H>,     H, .= 0) (< 0,0,I>,     I, .= 0) 
          (< 1,0,A>,     A, .= 0) (< 1,0,D>, 1 + D, .+ 1) (< 1,0,E>,     E, .= 0) (< 1,0,F>,     F, .= 0) (< 1,0,G>,     G, .= 0) (< 1,0,H>,     H, .= 0) (< 1,0,I>,     I, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,D>,     D, .= 0) (< 2,0,E>, 1 + E, .+ 1) (< 2,0,F>,     F, .= 0) (< 2,0,G>,     G, .= 0) (< 2,0,H>,     H, .= 0) (< 2,0,I>,     I, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,D>,     D, .= 0) (< 3,0,E>,     E, .= 0) (< 3,0,F>, 1 + F, .+ 1) (< 3,0,G>,     G, .= 0) (< 3,0,H>,     H, .= 0) (< 3,0,I>,     I, .= 0) 
          (< 4,0,A>, 1 + A, .+ 1) (< 4,0,D>,     D, .= 0) (< 4,0,E>,     E, .= 0) (< 4,0,F>,     F, .= 0) (< 4,0,G>,     G, .= 0) (< 4,0,H>,     H, .= 0) (< 4,0,I>,     I, .= 0) 
          (< 5,0,A>,     A, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>,     E, .= 0) (< 5,0,F>,     F, .= 0) (< 5,0,G>, 1 + G, .+ 1) (< 5,0,H>,     H, .= 0) (< 5,0,I>,     I, .= 0) 
          (< 6,0,A>,     A, .= 0) (< 6,0,D>,     D, .= 0) (< 6,0,E>,     E, .= 0) (< 6,0,F>,     F, .= 0) (< 6,0,G>,     G, .= 0) (< 6,0,H>, 1 + H, .+ 1) (< 6,0,I>,     I, .= 0) 
          (< 7,0,A>,     A, .= 0) (< 7,0,D>,     D, .= 0) (< 7,0,E>,     E, .= 0) (< 7,0,F>,     F, .= 0) (< 7,0,G>,     G, .= 0) (< 7,0,H>,     H, .= 0) (< 7,0,I>, 1 + I, .+ 1) 
          (< 8,0,A>, 1 + A, .+ 1) (< 8,0,D>,     D, .= 0) (< 8,0,E>,     E, .= 0) (< 8,0,F>,     F, .= 0) (< 8,0,G>,     G, .= 0) (< 8,0,H>,     H, .= 0) (< 8,0,I>,     I, .= 0) 
          (< 9,0,A>,     A, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>,     E, .= 0) (< 9,0,F>,     F, .= 0) (< 9,0,G>,     G, .= 0) (< 9,0,H>,     H, .= 0) (< 9,0,I>,     I, .= 0) 
          (<10,0,A>,     0, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>,     E, .= 0) (<10,0,F>,     F, .= 0) (<10,0,G>,     G, .= 0) (<10,0,H>,     H, .= 0) (<10,0,I>,     I, .= 0) 
          (<11,0,A>,     A, .= 0) (<11,0,D>,     D, .= 0) (<11,0,E>,     E, .= 0) (<11,0,F>,     F, .= 0) (<11,0,G>,     G, .= 0) (<11,0,H>,     H, .= 0) (<11,0,I>,     0, .= 0) 
          (<12,0,A>,     A, .= 0) (<12,0,D>,     D, .= 0) (<12,0,E>,     E, .= 0) (<12,0,F>,     F, .= 0) (<12,0,G>,     G, .= 0) (<12,0,H>,     0, .= 0) (<12,0,I>,     I, .= 0) 
          (<13,0,A>,     A, .= 0) (<13,0,D>,     D, .= 0) (<13,0,E>,     E, .= 0) (<13,0,F>,     F, .= 0) (<13,0,G>,     0, .= 0) (<13,0,H>,     H, .= 0) (<13,0,I>,     I, .= 0) 
          (<14,0,A>,     0, .= 0) (<14,0,D>,     D, .= 0) (<14,0,E>,     E, .= 0) (<14,0,F>,     F, .= 0) (<14,0,G>,     G, .= 0) (<14,0,H>,     H, .= 0) (<14,0,I>,     I, .= 0) 
          (<15,0,A>,     A, .= 0) (<15,0,D>,     D, .= 0) (<15,0,E>,     E, .= 0) (<15,0,F>,     0, .= 0) (<15,0,G>,     G, .= 0) (<15,0,H>,     H, .= 0) (<15,0,I>,     I, .= 0) 
          (<16,0,A>,     A, .= 0) (<16,0,D>,     D, .= 0) (<16,0,E>,     0, .= 0) (<16,0,F>,     F, .= 0) (<16,0,G>,     G, .= 0) (<16,0,H>,     H, .= 0) (<16,0,I>,     I, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1)
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1)
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          9.  f83(A,D,E,F,G,H,I) -> f93(A,D,E,F,G,H,I)     [A >= 50] (?,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1)
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (?,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1)
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (?,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (?,1)
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9}
          ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) 
          (< 1,0,A>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) 
          (< 2,0,A>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) 
          (< 3,0,A>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) 
          (< 4,0,A>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) 
          (< 5,0,A>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) 
          (< 6,0,A>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,I>, ?) 
          (< 7,0,A>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) 
          (< 8,0,A>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,I>, ?) 
          (< 9,0,A>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) 
          (<10,0,A>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<10,0,I>, ?) 
          (<11,0,A>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<11,0,I>, ?) 
          (<12,0,A>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<12,0,I>, ?) 
          (<13,0,A>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<13,0,I>, ?) 
          (<14,0,A>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,I>, ?) 
          (<15,0,A>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<15,0,I>, ?) 
          (<16,0,A>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,I>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 50) (< 9,0,H>, 50) (< 9,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1)
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1)
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          9.  f83(A,D,E,F,G,H,I) -> f93(A,D,E,F,G,H,I)     [A >= 50] (?,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1)
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (?,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1)
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (?,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (?,1)
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9}
          ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 50) (< 9,0,H>, 50) (< 9,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,16)
                                                             ,(10,9)
                                                             ,(11,10)
                                                             ,(12,11)
                                                             ,(13,12)
                                                             ,(14,13)
                                                             ,(15,14)
                                                             ,(16,15)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1)
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1)
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          9.  f83(A,D,E,F,G,H,I) -> f93(A,D,E,F,G,H,I)     [A >= 50] (?,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1)
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (?,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1)
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (?,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (?,1)
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8}
          ,11->{7},12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 50) (< 9,0,H>, 50) (< 9,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [9]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1)
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1)
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1)
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (?,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1)
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (?,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (?,1)
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f17) = 1
          p(f27) = 0
          p(f37) = 0
          p(f45) = 0
          p(f55) = 0
          p(f65) = 0
          p(f75) = 0
          p(f83) = 0
        
        The following rules are strictly oriented:
                   [D >= 50] ==>                   
          f17(A,D,E,F,G,H,I)   = 1                 
                               > 0                 
                               = f27(A,D,0,F,G,H,I)
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 1                     
                              >= 1                     
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 1                     
                              >= 1                     
                               = f17(A,1 + D,E,F,G,H,I)
        
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f27(A,D,1 + E,F,G,H,I)
        
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f37(A,D,E,1 + F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f55(A,D,E,F,1 + G,H,I)
        
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f65(A,D,E,F,G,1 + H,I)
        
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f75(A,D,E,F,G,H,1 + I)
        
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f83(0,D,E,F,G,H,I)    
        
                   [H >= 50] ==>                       
          f65(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f75(A,D,E,F,G,H,0)    
        
                   [G >= 50] ==>                       
          f55(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f65(A,D,E,F,G,0,I)    
        
                   [A >= 50] ==>                       
          f45(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f55(A,D,E,F,0,H,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f45(0,D,E,F,G,H,I)    
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = 0                     
                              >= 0                     
                               = f37(A,D,E,0,G,H,I)    
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1)
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1)
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1)
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (?,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1)
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (?,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1)
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f17) = 50        
          p(f27) = 50        
          p(f37) = 50 + -1*x4
          p(f45) = 50 + -1*x4
          p(f55) = 50 + -1*x4
          p(f65) = 50 + -1*x4
          p(f75) = 50 + -1*x4
          p(f83) = 50 + -1*x4
        
        The following rules are strictly oriented:
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = 50 + -1*F             
                               > 49 + -1*F             
                               = f37(A,D,E,1 + F,G,H,I)
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(A,1 + D,E,F,G,H,I)
        
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,1 + E,F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f55(A,D,E,F,1 + G,H,I)
        
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f65(A,D,E,F,G,1 + H,I)
        
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f75(A,D,E,F,G,H,1 + I)
        
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f83(0,D,E,F,G,H,I)    
        
                   [H >= 50] ==>                       
          f65(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f75(A,D,E,F,G,H,0)    
        
                   [G >= 50] ==>                       
          f55(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f65(A,D,E,F,G,0,I)    
        
                   [A >= 50] ==>                       
          f45(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f55(A,D,E,F,0,H,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = 50 + -1*F             
                              >= 50 + -1*F             
                               = f45(0,D,E,F,G,H,I)    
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,0,G,H,I)    
        
                   [D >= 50] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,0,F,G,H,I)    
        
        
* Step 8: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1) 
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1) 
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (?,1) 
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (?,1) 
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1) 
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1) 
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1) 
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (?,1) 
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1) 
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f17) = 50        
          p(f27) = 50        
          p(f37) = 50        
          p(f45) = 50        
          p(f55) = 50 + -1*x5
          p(f65) = 50 + -1*x5
          p(f75) = 50 + -1*x5
          p(f83) = 50 + -1*x5
        
        The following rules are strictly oriented:
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = 50 + -1*G             
                               > 49 + -1*G             
                               = f55(A,D,E,F,1 + G,H,I)
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(A,1 + D,E,F,G,H,I)
        
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,1 + E,F,G,H,I)
        
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,1 + F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = 50 + -1*G             
                              >= 50 + -1*G             
                               = f65(A,D,E,F,G,1 + H,I)
        
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = 50 + -1*G             
                              >= 50 + -1*G             
                               = f75(A,D,E,F,G,H,1 + I)
        
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = 50 + -1*G             
                              >= 50 + -1*G             
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = 50 + -1*G             
                              >= 50 + -1*G             
                               = f83(0,D,E,F,G,H,I)    
        
                   [H >= 50] ==>                       
          f65(A,D,E,F,G,H,I)   = 50 + -1*G             
                              >= 50 + -1*G             
                               = f75(A,D,E,F,G,H,0)    
        
                   [G >= 50] ==>                       
          f55(A,D,E,F,G,H,I)   = 50 + -1*G             
                              >= 50 + -1*G             
                               = f65(A,D,E,F,G,0,I)    
        
                   [A >= 50] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f55(A,D,E,F,0,H,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(0,D,E,F,G,H,I)    
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,0,G,H,I)    
        
                   [D >= 50] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,0,F,G,H,I)    
        
        
* Step 10: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1) 
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1) 
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (?,1) 
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1) 
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1) 
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1) 
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1) 
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f17) = 50        
          p(f27) = 50        
          p(f37) = 50        
          p(f45) = 50        
          p(f55) = 50        
          p(f65) = 50        
          p(f75) = 50 + -1*x7
          p(f83) = 50 + -1*x7
        
        The following rules are strictly oriented:
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = 50 + -1*I             
                               > 49 + -1*I             
                               = f75(A,D,E,F,G,H,1 + I)
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(A,1 + D,E,F,G,H,I)
        
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,1 + E,F,G,H,I)
        
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,1 + F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f55(A,D,E,F,1 + G,H,I)
        
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f65(A,D,E,F,G,1 + H,I)
        
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = 50 + -1*I             
                              >= 50 + -1*I             
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = 50 + -1*I             
                              >= 50 + -1*I             
                               = f83(0,D,E,F,G,H,I)    
        
                   [H >= 50] ==>                       
          f65(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f75(A,D,E,F,G,H,0)    
        
                   [G >= 50] ==>                       
          f55(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f65(A,D,E,F,G,0,I)    
        
                   [A >= 50] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f55(A,D,E,F,0,H,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(0,D,E,F,G,H,I)    
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,0,G,H,I)    
        
                   [D >= 50] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,0,F,G,H,I)    
        
        
* Step 12: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (?,1) 
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1) 
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1) 
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 13: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (50,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1) 
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (?,1) 
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 51        
          p(f17) = 51        
          p(f27) = 51        
          p(f37) = 50        
          p(f45) = 50        
          p(f55) = 50        
          p(f65) = 50        
          p(f75) = 50        
          p(f83) = 50 + -1*x1
        
        The following rules are strictly oriented:
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = 50 + -1*A             
                               > 49 + -1*A             
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = 51                    
                               > 50                    
                               = f37(A,D,E,0,G,H,I)    
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 51                    
                              >= 51                    
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 51                    
                              >= 51                    
                               = f17(A,1 + D,E,F,G,H,I)
        
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = 51                    
                              >= 51                    
                               = f27(A,D,1 + E,F,G,H,I)
        
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,1 + F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f55(A,D,E,F,1 + G,H,I)
        
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f65(A,D,E,F,G,1 + H,I)
        
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f75(A,D,E,F,G,H,1 + I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f83(0,D,E,F,G,H,I)    
        
                   [H >= 50] ==>                       
          f65(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f75(A,D,E,F,G,H,0)    
        
                   [G >= 50] ==>                       
          f55(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f65(A,D,E,F,G,0,I)    
        
                   [A >= 50] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f55(A,D,E,F,0,H,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(0,D,E,F,G,H,I)    
        
                   [D >= 50] ==>                       
          f17(A,D,E,F,G,H,I)   = 51                    
                              >= 51                    
                               = f27(A,D,0,F,G,H,I)    
        
        
* Step 14: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (50,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1) 
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (51,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f17) = 50        
          p(f27) = 50 + -1*x3
          p(f37) = -1*x3     
          p(f45) = -1*x3     
          p(f55) = -1*x3     
          p(f65) = -1*x3     
          p(f75) = -1*x3     
          p(f83) = -1*x3     
        
        The following rules are strictly oriented:
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = 50 + -1*E             
                               > 49 + -1*E             
                               = f27(A,D,1 + E,F,G,H,I)
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(A,1 + D,E,F,G,H,I)
        
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f37(A,D,E,1 + F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f55(A,D,E,F,1 + G,H,I)
        
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f65(A,D,E,F,G,1 + H,I)
        
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f75(A,D,E,F,G,H,1 + I)
        
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f83(0,D,E,F,G,H,I)    
        
                   [H >= 50] ==>                       
          f65(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f75(A,D,E,F,G,H,0)    
        
                   [G >= 50] ==>                       
          f55(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f65(A,D,E,F,G,0,I)    
        
                   [A >= 50] ==>                       
          f45(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f55(A,D,E,F,0,H,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = -1*E                  
                              >= -1*E                  
                               = f45(0,D,E,F,G,H,I)    
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = 50 + -1*E             
                              >= -1*E                  
                               = f37(A,D,E,0,G,H,I)    
        
                   [D >= 50] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,0,F,G,H,I)    
        
        
* Step 15: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (50,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1) 
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (51,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f17) = 50 + -1*x2
          p(f27) = -1*x2     
          p(f37) = -1*x2     
          p(f45) = -1*x2     
          p(f55) = -1*x2     
          p(f65) = -1*x2     
          p(f75) = -1*x2     
          p(f83) = -1*x2     
        
        The following rules are strictly oriented:
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 50 + -1*D             
                               > 49 + -1*D             
                               = f17(A,1 + D,E,F,G,H,I)
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f27(A,D,1 + E,F,G,H,I)
        
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f37(A,D,E,1 + F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f55(A,D,E,F,1 + G,H,I)
        
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f65(A,D,E,F,G,1 + H,I)
        
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f75(A,D,E,F,G,H,1 + I)
        
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f83(0,D,E,F,G,H,I)    
        
                   [H >= 50] ==>                       
          f65(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f75(A,D,E,F,G,H,0)    
        
                   [G >= 50] ==>                       
          f55(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f65(A,D,E,F,G,0,I)    
        
                   [A >= 50] ==>                       
          f45(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f55(A,D,E,F,0,H,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f45(0,D,E,F,G,H,I)    
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = -1*D                  
                              >= -1*D                  
                               = f37(A,D,E,0,G,H,I)    
        
                   [D >= 50] ==>                       
          f17(A,D,E,F,G,H,I)   = 50 + -1*D             
                              >= -1*D                  
                               = f27(A,D,0,F,G,H,I)    
        
        
* Step 16: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (50,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (?,1) 
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (51,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50
          p(f17) = 50
          p(f27) = 50
          p(f37) = 50
          p(f45) = 50
          p(f55) = 50
          p(f65) = 2 
          p(f75) = 1 
          p(f83) = 1 
        
        The following rules are strictly oriented:
                   [H >= 50] ==>                   
          f65(A,D,E,F,G,H,I)   = 2                 
                               > 1                 
                               = f75(A,D,E,F,G,H,0)
        
                   [G >= 50] ==>                   
          f55(A,D,E,F,G,H,I)   = 50                
                               > 2                 
                               = f65(A,D,E,F,G,0,I)
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(A,1 + D,E,F,G,H,I)
        
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,1 + E,F,G,H,I)
        
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,1 + F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f55(A,D,E,F,1 + G,H,I)
        
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = 2                     
                              >= 2                     
                               = f65(A,D,E,F,G,1 + H,I)
        
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = 1                     
                              >= 1                     
                               = f75(A,D,E,F,G,H,1 + I)
        
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = 1                     
                              >= 1                     
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = 1                     
                              >= 1                     
                               = f83(0,D,E,F,G,H,I)    
        
                   [A >= 50] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f55(A,D,E,F,0,H,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(0,D,E,F,G,H,I)    
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,0,G,H,I)    
        
                   [D >= 50] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,0,F,G,H,I)    
        
        
* Step 17: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (50,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (50,1)
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (51,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f17) = 50        
          p(f27) = 50        
          p(f37) = 50        
          p(f45) = 50        
          p(f55) = 50        
          p(f65) = 50 + -1*x6
          p(f75) = 50 + -1*x6
          p(f83) = 50 + -1*x6
        
        The following rules are strictly oriented:
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = 50 + -1*H             
                               > 49 + -1*H             
                               = f65(A,D,E,F,G,1 + H,I)
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(A,1 + D,E,F,G,H,I)
        
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,1 + E,F,G,H,I)
        
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,1 + F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f55(A,D,E,F,1 + G,H,I)
        
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = 50 + -1*H             
                              >= 50 + -1*H             
                               = f75(A,D,E,F,G,H,1 + I)
        
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = 50 + -1*H             
                              >= 50 + -1*H             
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = 50 + -1*H             
                              >= 50 + -1*H             
                               = f83(0,D,E,F,G,H,I)    
        
                   [H >= 50] ==>                       
          f65(A,D,E,F,G,H,I)   = 50 + -1*H             
                              >= 50 + -1*H             
                               = f75(A,D,E,F,G,H,0)    
        
                   [G >= 50] ==>                       
          f55(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f65(A,D,E,F,G,0,I)    
        
                   [A >= 50] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f55(A,D,E,F,0,H,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(0,D,E,F,G,H,I)    
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,0,G,H,I)    
        
                   [D >= 50] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,0,F,G,H,I)    
        
        
* Step 18: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (50,1)
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (50,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (50,1)
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (?,1) 
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (51,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50
          p(f17) = 50
          p(f27) = 50
          p(f37) = 50
          p(f45) = 50
          p(f55) = 49
          p(f65) = 49
          p(f75) = 49
          p(f83) = 49
        
        The following rules are strictly oriented:
                   [A >= 50] ==>                   
          f45(A,D,E,F,G,H,I)   = 50                
                               > 49                
                               = f55(A,D,E,F,0,H,I)
        
        
        The following rules are weakly oriented:
                        True ==>                       
           f0(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(0,0,E,F,G,H,I)    
        
                   [49 >= D] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f17(A,1 + D,E,F,G,H,I)
        
                   [49 >= E] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,1 + E,F,G,H,I)
        
                   [49 >= F] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,1 + F,G,H,I)
        
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(1 + A,D,E,F,G,H,I)
        
                   [49 >= G] ==>                       
          f55(A,D,E,F,G,H,I)   = 49                    
                              >= 49                    
                               = f55(A,D,E,F,1 + G,H,I)
        
                   [49 >= H] ==>                       
          f65(A,D,E,F,G,H,I)   = 49                    
                              >= 49                    
                               = f65(A,D,E,F,G,1 + H,I)
        
                   [49 >= I] ==>                       
          f75(A,D,E,F,G,H,I)   = 49                    
                              >= 49                    
                               = f75(A,D,E,F,G,H,1 + I)
        
                   [49 >= A] ==>                       
          f83(A,D,E,F,G,H,I)   = 49                    
                              >= 49                    
                               = f83(1 + A,D,E,F,G,H,I)
        
                   [I >= 50] ==>                       
          f75(A,D,E,F,G,H,I)   = 49                    
                              >= 49                    
                               = f83(0,D,E,F,G,H,I)    
        
                   [H >= 50] ==>                       
          f65(A,D,E,F,G,H,I)   = 49                    
                              >= 49                    
                               = f75(A,D,E,F,G,H,0)    
        
                   [G >= 50] ==>                       
          f55(A,D,E,F,G,H,I)   = 49                    
                              >= 49                    
                               = f65(A,D,E,F,G,0,I)    
        
                   [F >= 50] ==>                       
          f37(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f45(0,D,E,F,G,H,I)    
        
                   [E >= 50] ==>                       
          f27(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f37(A,D,E,0,G,H,I)    
        
                   [D >= 50] ==>                       
          f17(A,D,E,F,G,H,I)   = 50                    
                              >= 50                    
                               = f27(A,D,0,F,G,H,I)    
        
        
* Step 19: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1) 
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1)
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1)
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (50,1)
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1)
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1)
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (50,1)
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (50,1)
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (50,1)
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (51,1)
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1) 
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f45) = 50 + -1*x1
        
        The following rules are strictly oriented:
                   [49 >= A] ==>                       
          f45(A,D,E,F,G,H,I)   = 50 + -1*A             
                               > 49 + -1*A             
                               = f45(1 + A,D,E,F,G,H,I)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
        (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
        (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
        (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
        (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
        (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
        (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
        (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
        (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
        (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
        (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
        (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
        (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
        (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
        (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
        (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
* Step 20: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G,H,I)  -> f17(0,0,E,F,G,H,I)     True      (1,1)   
          1.  f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1)  
          2.  f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1)  
          3.  f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1)  
          4.  f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (2500,1)
          5.  f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1)  
          6.  f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (50,1)  
          7.  f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1)  
          8.  f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1)  
          10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I)     [I >= 50] (50,1)  
          11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0)     [H >= 50] (50,1)  
          12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I)     [G >= 50] (50,1)  
          13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I)     [A >= 50] (50,1)  
          14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I)     [F >= 50] (50,1)  
          15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I)     [E >= 50] (51,1)  
          16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I)     [D >= 50] (1,1)   
        Signature:
          {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)}
        Flow Graph:
          [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7}
          ,12->{6},13->{5},14->{4},15->{3},16->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) (< 0,0,H>,  H) (< 0,0,I>,  I) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) (< 1,0,H>,  H) (< 1,0,I>,  I) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) (< 2,0,H>,  H) (< 2,0,I>,  I) 
          (< 3,0,A>,  0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>,  G) (< 3,0,H>,  H) (< 3,0,I>,  I) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) (< 4,0,H>,  H) (< 4,0,I>,  I) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>,  H) (< 5,0,I>,  I) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>,  I) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) 
          (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) 
          (<10,0,A>,  0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) 
          (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>,  0) 
          (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>,  0) (<12,0,I>,  I) 
          (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>,  0) (<13,0,H>,  H) (<13,0,I>,  I) 
          (<14,0,A>,  0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>,  G) (<14,0,H>,  H) (<14,0,I>,  I) 
          (<15,0,A>,  0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>,  0) (<15,0,G>,  G) (<15,0,H>,  H) (<15,0,I>,  I) 
          (<16,0,A>,  0) (<16,0,D>, 50) (<16,0,E>,  0) (<16,0,F>,  F) (<16,0,G>,  G) (<16,0,H>,  H) (<16,0,I>,  I) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))