WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G,H,I) -> f17(0,J,K,0,E,F,G,H,I) True (1,1) 1. f17(A,B,C,D,E,F,G,H,I) -> f17(A,B,C,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,B,C,D,E,F,G,H,I) -> f27(A,B,C,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,B,C,D,E,F,G,H,I) -> f37(A,B,C,D,E,1 + F,G,H,I) [49 >= F] (?,1) 4. f45(A,B,C,D,E,F,G,H,I) -> f45(1 + A,B,C,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,B,C,D,E,F,G,H,I) -> f55(A,B,C,D,E,F,1 + G,H,I) [49 >= G] (?,1) 6. f65(A,B,C,D,E,F,G,H,I) -> f65(A,B,C,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,B,C,D,E,F,G,H,I) -> f75(A,B,C,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,B,C,D,E,F,G,H,I) -> f83(1 + A,B,C,D,E,F,G,H,I) [49 >= A] (?,1) 9. f83(A,B,C,D,E,F,G,H,I) -> f93(A,B,C,D,E,F,G,H,I) [A >= 50] (?,1) 10. f75(A,B,C,D,E,F,G,H,I) -> f83(0,B,C,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,B,C,D,E,F,G,H,I) -> f75(A,B,C,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,B,C,D,E,F,G,H,I) -> f65(A,B,C,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,B,C,D,E,F,G,H,I) -> f55(A,B,C,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,B,C,D,E,F,G,H,I) -> f45(0,B,C,D,E,F,G,H,I) [F >= 50] (?,1) 15. f27(A,B,C,D,E,F,G,H,I) -> f37(A,B,C,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,B,C,D,E,F,G,H,I) -> f27(A,B,C,D,0,F,G,H,I) [D >= 50] (?,1) Signature: {(f0,9);(f17,9);(f27,9);(f37,9);(f45,9);(f55,9);(f65,9);(f75,9);(f83,9);(f93,9)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9} ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B,C] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 9. f83(A,D,E,F,G,H,I) -> f93(A,D,E,F,G,H,I) [A >= 50] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (?,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (?,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9} ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, 0, .= 0) (< 0,0,D>, 0, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>, G, .= 0) (< 0,0,H>, H, .= 0) (< 0,0,I>, I, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,D>, 1 + D, .+ 1) (< 1,0,E>, E, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, G, .= 0) (< 1,0,H>, H, .= 0) (< 1,0,I>, I, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, 1 + E, .+ 1) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 2,0,H>, H, .= 0) (< 2,0,I>, I, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, 1 + F, .+ 1) (< 3,0,G>, G, .= 0) (< 3,0,H>, H, .= 0) (< 3,0,I>, I, .= 0) (< 4,0,A>, 1 + A, .+ 1) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, H, .= 0) (< 4,0,I>, I, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>, 1 + G, .+ 1) (< 5,0,H>, H, .= 0) (< 5,0,I>, I, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>, G, .= 0) (< 6,0,H>, 1 + H, .+ 1) (< 6,0,I>, I, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,I>, 1 + I, .+ 1) (< 8,0,A>, 1 + A, .+ 1) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, G, .= 0) (< 8,0,H>, H, .= 0) (< 8,0,I>, I, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, G, .= 0) (< 9,0,H>, H, .= 0) (< 9,0,I>, I, .= 0) (<10,0,A>, 0, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, F, .= 0) (<10,0,G>, G, .= 0) (<10,0,H>, H, .= 0) (<10,0,I>, I, .= 0) (<11,0,A>, A, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>, F, .= 0) (<11,0,G>, G, .= 0) (<11,0,H>, H, .= 0) (<11,0,I>, 0, .= 0) (<12,0,A>, A, .= 0) (<12,0,D>, D, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>, G, .= 0) (<12,0,H>, 0, .= 0) (<12,0,I>, I, .= 0) (<13,0,A>, A, .= 0) (<13,0,D>, D, .= 0) (<13,0,E>, E, .= 0) (<13,0,F>, F, .= 0) (<13,0,G>, 0, .= 0) (<13,0,H>, H, .= 0) (<13,0,I>, I, .= 0) (<14,0,A>, 0, .= 0) (<14,0,D>, D, .= 0) (<14,0,E>, E, .= 0) (<14,0,F>, F, .= 0) (<14,0,G>, G, .= 0) (<14,0,H>, H, .= 0) (<14,0,I>, I, .= 0) (<15,0,A>, A, .= 0) (<15,0,D>, D, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>, 0, .= 0) (<15,0,G>, G, .= 0) (<15,0,H>, H, .= 0) (<15,0,I>, I, .= 0) (<16,0,A>, A, .= 0) (<16,0,D>, D, .= 0) (<16,0,E>, 0, .= 0) (<16,0,F>, F, .= 0) (<16,0,G>, G, .= 0) (<16,0,H>, H, .= 0) (<16,0,I>, I, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 9. f83(A,D,E,F,G,H,I) -> f93(A,D,E,F,G,H,I) [A >= 50] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (?,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (?,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9} ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) (< 1,0,A>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) (< 2,0,A>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) (< 3,0,A>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) (< 4,0,A>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) (< 5,0,A>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) (< 6,0,A>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,I>, ?) (< 7,0,A>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) (< 8,0,A>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,I>, ?) (< 9,0,A>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (<10,0,A>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<11,0,A>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<12,0,A>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<13,0,A>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) (<13,0,I>, ?) (<14,0,A>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,I>, ?) (<15,0,A>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<15,0,I>, ?) (<16,0,A>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,I>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 50) (< 9,0,H>, 50) (< 9,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 9. f83(A,D,E,F,G,H,I) -> f93(A,D,E,F,G,H,I) [A >= 50] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (?,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (?,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1,16},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8,9} ,11->{7,10},12->{6,11},13->{5,12},14->{4,13},15->{3,14},16->{2,15}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 50) (< 9,0,H>, 50) (< 9,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,16) ,(10,9) ,(11,10) ,(12,11) ,(13,12) ,(14,13) ,(15,14) ,(16,15)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 9. f83(A,D,E,F,G,H,I) -> f93(A,D,E,F,G,H,I) [A >= 50] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (?,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (?,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8,9},9->{},10->{8} ,11->{7},12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 50) (< 9,0,H>, 50) (< 9,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [9] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (?,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (?,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f17) = 1 p(f27) = 0 p(f37) = 0 p(f45) = 0 p(f55) = 0 p(f65) = 0 p(f75) = 0 p(f83) = 0 The following rules are strictly oriented: [D >= 50] ==> f17(A,D,E,F,G,H,I) = 1 > 0 = f27(A,D,0,F,G,H,I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 1 >= 1 = f17(0,0,E,F,G,H,I) [49 >= D] ==> f17(A,D,E,F,G,H,I) = 1 >= 1 = f17(A,1 + D,E,F,G,H,I) [49 >= E] ==> f27(A,D,E,F,G,H,I) = 0 >= 0 = f27(A,D,1 + E,F,G,H,I) [49 >= F] ==> f37(A,D,E,F,G,H,I) = 0 >= 0 = f37(A,D,E,1 + F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = 0 >= 0 = f45(1 + A,D,E,F,G,H,I) [49 >= G] ==> f55(A,D,E,F,G,H,I) = 0 >= 0 = f55(A,D,E,F,1 + G,H,I) [49 >= H] ==> f65(A,D,E,F,G,H,I) = 0 >= 0 = f65(A,D,E,F,G,1 + H,I) [49 >= I] ==> f75(A,D,E,F,G,H,I) = 0 >= 0 = f75(A,D,E,F,G,H,1 + I) [49 >= A] ==> f83(A,D,E,F,G,H,I) = 0 >= 0 = f83(1 + A,D,E,F,G,H,I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = 0 >= 0 = f83(0,D,E,F,G,H,I) [H >= 50] ==> f65(A,D,E,F,G,H,I) = 0 >= 0 = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = 0 >= 0 = f65(A,D,E,F,G,0,I) [A >= 50] ==> f45(A,D,E,F,G,H,I) = 0 >= 0 = f55(A,D,E,F,0,H,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = 0 >= 0 = f45(0,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = 0 >= 0 = f37(A,D,E,0,G,H,I) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (?,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (?,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = 50 p(f27) = 50 p(f37) = 50 + -1*x4 p(f45) = 50 + -1*x4 p(f55) = 50 + -1*x4 p(f65) = 50 + -1*x4 p(f75) = 50 + -1*x4 p(f83) = 50 + -1*x4 The following rules are strictly oriented: [49 >= F] ==> f37(A,D,E,F,G,H,I) = 50 + -1*F > 49 + -1*F = f37(A,D,E,1 + F,G,H,I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 50 >= 50 = f17(0,0,E,F,G,H,I) [49 >= D] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f17(A,1 + D,E,F,G,H,I) [49 >= E] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,1 + E,F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f45(1 + A,D,E,F,G,H,I) [49 >= G] ==> f55(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f55(A,D,E,F,1 + G,H,I) [49 >= H] ==> f65(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f65(A,D,E,F,G,1 + H,I) [49 >= I] ==> f75(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f75(A,D,E,F,G,H,1 + I) [49 >= A] ==> f83(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f83(1 + A,D,E,F,G,H,I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f83(0,D,E,F,G,H,I) [H >= 50] ==> f65(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f65(A,D,E,F,G,0,I) [A >= 50] ==> f45(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f55(A,D,E,F,0,H,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = 50 + -1*F >= 50 + -1*F = f45(0,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,0,G,H,I) [D >= 50] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,0,F,G,H,I) * Step 8: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (?,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (?,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = 50 p(f27) = 50 p(f37) = 50 p(f45) = 50 p(f55) = 50 + -1*x5 p(f65) = 50 + -1*x5 p(f75) = 50 + -1*x5 p(f83) = 50 + -1*x5 The following rules are strictly oriented: [49 >= G] ==> f55(A,D,E,F,G,H,I) = 50 + -1*G > 49 + -1*G = f55(A,D,E,F,1 + G,H,I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 50 >= 50 = f17(0,0,E,F,G,H,I) [49 >= D] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f17(A,1 + D,E,F,G,H,I) [49 >= E] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,1 + E,F,G,H,I) [49 >= F] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,1 + F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f45(1 + A,D,E,F,G,H,I) [49 >= H] ==> f65(A,D,E,F,G,H,I) = 50 + -1*G >= 50 + -1*G = f65(A,D,E,F,G,1 + H,I) [49 >= I] ==> f75(A,D,E,F,G,H,I) = 50 + -1*G >= 50 + -1*G = f75(A,D,E,F,G,H,1 + I) [49 >= A] ==> f83(A,D,E,F,G,H,I) = 50 + -1*G >= 50 + -1*G = f83(1 + A,D,E,F,G,H,I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = 50 + -1*G >= 50 + -1*G = f83(0,D,E,F,G,H,I) [H >= 50] ==> f65(A,D,E,F,G,H,I) = 50 + -1*G >= 50 + -1*G = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = 50 + -1*G >= 50 + -1*G = f65(A,D,E,F,G,0,I) [A >= 50] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f55(A,D,E,F,0,H,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f45(0,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,0,G,H,I) [D >= 50] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,0,F,G,H,I) * Step 10: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (?,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 11: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (?,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = 50 p(f27) = 50 p(f37) = 50 p(f45) = 50 p(f55) = 50 p(f65) = 50 p(f75) = 50 + -1*x7 p(f83) = 50 + -1*x7 The following rules are strictly oriented: [49 >= I] ==> f75(A,D,E,F,G,H,I) = 50 + -1*I > 49 + -1*I = f75(A,D,E,F,G,H,1 + I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 50 >= 50 = f17(0,0,E,F,G,H,I) [49 >= D] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f17(A,1 + D,E,F,G,H,I) [49 >= E] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,1 + E,F,G,H,I) [49 >= F] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,1 + F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f45(1 + A,D,E,F,G,H,I) [49 >= G] ==> f55(A,D,E,F,G,H,I) = 50 >= 50 = f55(A,D,E,F,1 + G,H,I) [49 >= H] ==> f65(A,D,E,F,G,H,I) = 50 >= 50 = f65(A,D,E,F,G,1 + H,I) [49 >= A] ==> f83(A,D,E,F,G,H,I) = 50 + -1*I >= 50 + -1*I = f83(1 + A,D,E,F,G,H,I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = 50 + -1*I >= 50 + -1*I = f83(0,D,E,F,G,H,I) [H >= 50] ==> f65(A,D,E,F,G,H,I) = 50 >= 50 = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = 50 >= 50 = f65(A,D,E,F,G,0,I) [A >= 50] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f55(A,D,E,F,0,H,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f45(0,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,0,G,H,I) [D >= 50] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,0,F,G,H,I) * Step 12: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (?,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 13: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (50,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (?,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 51 p(f17) = 51 p(f27) = 51 p(f37) = 50 p(f45) = 50 p(f55) = 50 p(f65) = 50 p(f75) = 50 p(f83) = 50 + -1*x1 The following rules are strictly oriented: [49 >= A] ==> f83(A,D,E,F,G,H,I) = 50 + -1*A > 49 + -1*A = f83(1 + A,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = 51 > 50 = f37(A,D,E,0,G,H,I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 51 >= 51 = f17(0,0,E,F,G,H,I) [49 >= D] ==> f17(A,D,E,F,G,H,I) = 51 >= 51 = f17(A,1 + D,E,F,G,H,I) [49 >= E] ==> f27(A,D,E,F,G,H,I) = 51 >= 51 = f27(A,D,1 + E,F,G,H,I) [49 >= F] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,1 + F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f45(1 + A,D,E,F,G,H,I) [49 >= G] ==> f55(A,D,E,F,G,H,I) = 50 >= 50 = f55(A,D,E,F,1 + G,H,I) [49 >= H] ==> f65(A,D,E,F,G,H,I) = 50 >= 50 = f65(A,D,E,F,G,1 + H,I) [49 >= I] ==> f75(A,D,E,F,G,H,I) = 50 >= 50 = f75(A,D,E,F,G,H,1 + I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = 50 >= 50 = f83(0,D,E,F,G,H,I) [H >= 50] ==> f65(A,D,E,F,G,H,I) = 50 >= 50 = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = 50 >= 50 = f65(A,D,E,F,G,0,I) [A >= 50] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f55(A,D,E,F,0,H,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f45(0,D,E,F,G,H,I) [D >= 50] ==> f17(A,D,E,F,G,H,I) = 51 >= 51 = f27(A,D,0,F,G,H,I) * Step 14: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (?,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (50,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (51,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = 50 p(f27) = 50 + -1*x3 p(f37) = -1*x3 p(f45) = -1*x3 p(f55) = -1*x3 p(f65) = -1*x3 p(f75) = -1*x3 p(f83) = -1*x3 The following rules are strictly oriented: [49 >= E] ==> f27(A,D,E,F,G,H,I) = 50 + -1*E > 49 + -1*E = f27(A,D,1 + E,F,G,H,I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 50 >= 50 = f17(0,0,E,F,G,H,I) [49 >= D] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f17(A,1 + D,E,F,G,H,I) [49 >= F] ==> f37(A,D,E,F,G,H,I) = -1*E >= -1*E = f37(A,D,E,1 + F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = -1*E >= -1*E = f45(1 + A,D,E,F,G,H,I) [49 >= G] ==> f55(A,D,E,F,G,H,I) = -1*E >= -1*E = f55(A,D,E,F,1 + G,H,I) [49 >= H] ==> f65(A,D,E,F,G,H,I) = -1*E >= -1*E = f65(A,D,E,F,G,1 + H,I) [49 >= I] ==> f75(A,D,E,F,G,H,I) = -1*E >= -1*E = f75(A,D,E,F,G,H,1 + I) [49 >= A] ==> f83(A,D,E,F,G,H,I) = -1*E >= -1*E = f83(1 + A,D,E,F,G,H,I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = -1*E >= -1*E = f83(0,D,E,F,G,H,I) [H >= 50] ==> f65(A,D,E,F,G,H,I) = -1*E >= -1*E = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = -1*E >= -1*E = f65(A,D,E,F,G,0,I) [A >= 50] ==> f45(A,D,E,F,G,H,I) = -1*E >= -1*E = f55(A,D,E,F,0,H,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = -1*E >= -1*E = f45(0,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = 50 + -1*E >= -1*E = f37(A,D,E,0,G,H,I) [D >= 50] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,0,F,G,H,I) * Step 15: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (?,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (50,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (51,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = 50 + -1*x2 p(f27) = -1*x2 p(f37) = -1*x2 p(f45) = -1*x2 p(f55) = -1*x2 p(f65) = -1*x2 p(f75) = -1*x2 p(f83) = -1*x2 The following rules are strictly oriented: [49 >= D] ==> f17(A,D,E,F,G,H,I) = 50 + -1*D > 49 + -1*D = f17(A,1 + D,E,F,G,H,I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 50 >= 50 = f17(0,0,E,F,G,H,I) [49 >= E] ==> f27(A,D,E,F,G,H,I) = -1*D >= -1*D = f27(A,D,1 + E,F,G,H,I) [49 >= F] ==> f37(A,D,E,F,G,H,I) = -1*D >= -1*D = f37(A,D,E,1 + F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = -1*D >= -1*D = f45(1 + A,D,E,F,G,H,I) [49 >= G] ==> f55(A,D,E,F,G,H,I) = -1*D >= -1*D = f55(A,D,E,F,1 + G,H,I) [49 >= H] ==> f65(A,D,E,F,G,H,I) = -1*D >= -1*D = f65(A,D,E,F,G,1 + H,I) [49 >= I] ==> f75(A,D,E,F,G,H,I) = -1*D >= -1*D = f75(A,D,E,F,G,H,1 + I) [49 >= A] ==> f83(A,D,E,F,G,H,I) = -1*D >= -1*D = f83(1 + A,D,E,F,G,H,I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = -1*D >= -1*D = f83(0,D,E,F,G,H,I) [H >= 50] ==> f65(A,D,E,F,G,H,I) = -1*D >= -1*D = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = -1*D >= -1*D = f65(A,D,E,F,G,0,I) [A >= 50] ==> f45(A,D,E,F,G,H,I) = -1*D >= -1*D = f55(A,D,E,F,0,H,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = -1*D >= -1*D = f45(0,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = -1*D >= -1*D = f37(A,D,E,0,G,H,I) [D >= 50] ==> f17(A,D,E,F,G,H,I) = 50 + -1*D >= -1*D = f27(A,D,0,F,G,H,I) * Step 16: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (50,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (?,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (51,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = 50 p(f27) = 50 p(f37) = 50 p(f45) = 50 p(f55) = 50 p(f65) = 2 p(f75) = 1 p(f83) = 1 The following rules are strictly oriented: [H >= 50] ==> f65(A,D,E,F,G,H,I) = 2 > 1 = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = 50 > 2 = f65(A,D,E,F,G,0,I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 50 >= 50 = f17(0,0,E,F,G,H,I) [49 >= D] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f17(A,1 + D,E,F,G,H,I) [49 >= E] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,1 + E,F,G,H,I) [49 >= F] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,1 + F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f45(1 + A,D,E,F,G,H,I) [49 >= G] ==> f55(A,D,E,F,G,H,I) = 50 >= 50 = f55(A,D,E,F,1 + G,H,I) [49 >= H] ==> f65(A,D,E,F,G,H,I) = 2 >= 2 = f65(A,D,E,F,G,1 + H,I) [49 >= I] ==> f75(A,D,E,F,G,H,I) = 1 >= 1 = f75(A,D,E,F,G,H,1 + I) [49 >= A] ==> f83(A,D,E,F,G,H,I) = 1 >= 1 = f83(1 + A,D,E,F,G,H,I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = 1 >= 1 = f83(0,D,E,F,G,H,I) [A >= 50] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f55(A,D,E,F,0,H,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f45(0,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,0,G,H,I) [D >= 50] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,0,F,G,H,I) * Step 17: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (?,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (50,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (50,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (51,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = 50 p(f27) = 50 p(f37) = 50 p(f45) = 50 p(f55) = 50 p(f65) = 50 + -1*x6 p(f75) = 50 + -1*x6 p(f83) = 50 + -1*x6 The following rules are strictly oriented: [49 >= H] ==> f65(A,D,E,F,G,H,I) = 50 + -1*H > 49 + -1*H = f65(A,D,E,F,G,1 + H,I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 50 >= 50 = f17(0,0,E,F,G,H,I) [49 >= D] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f17(A,1 + D,E,F,G,H,I) [49 >= E] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,1 + E,F,G,H,I) [49 >= F] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,1 + F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f45(1 + A,D,E,F,G,H,I) [49 >= G] ==> f55(A,D,E,F,G,H,I) = 50 >= 50 = f55(A,D,E,F,1 + G,H,I) [49 >= I] ==> f75(A,D,E,F,G,H,I) = 50 + -1*H >= 50 + -1*H = f75(A,D,E,F,G,H,1 + I) [49 >= A] ==> f83(A,D,E,F,G,H,I) = 50 + -1*H >= 50 + -1*H = f83(1 + A,D,E,F,G,H,I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = 50 + -1*H >= 50 + -1*H = f83(0,D,E,F,G,H,I) [H >= 50] ==> f65(A,D,E,F,G,H,I) = 50 + -1*H >= 50 + -1*H = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = 50 >= 50 = f65(A,D,E,F,G,0,I) [A >= 50] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f55(A,D,E,F,0,H,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f45(0,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,0,G,H,I) [D >= 50] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,0,F,G,H,I) * Step 18: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (50,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (50,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (50,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (?,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (51,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = 50 p(f27) = 50 p(f37) = 50 p(f45) = 50 p(f55) = 49 p(f65) = 49 p(f75) = 49 p(f83) = 49 The following rules are strictly oriented: [A >= 50] ==> f45(A,D,E,F,G,H,I) = 50 > 49 = f55(A,D,E,F,0,H,I) The following rules are weakly oriented: True ==> f0(A,D,E,F,G,H,I) = 50 >= 50 = f17(0,0,E,F,G,H,I) [49 >= D] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f17(A,1 + D,E,F,G,H,I) [49 >= E] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,1 + E,F,G,H,I) [49 >= F] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,1 + F,G,H,I) [49 >= A] ==> f45(A,D,E,F,G,H,I) = 50 >= 50 = f45(1 + A,D,E,F,G,H,I) [49 >= G] ==> f55(A,D,E,F,G,H,I) = 49 >= 49 = f55(A,D,E,F,1 + G,H,I) [49 >= H] ==> f65(A,D,E,F,G,H,I) = 49 >= 49 = f65(A,D,E,F,G,1 + H,I) [49 >= I] ==> f75(A,D,E,F,G,H,I) = 49 >= 49 = f75(A,D,E,F,G,H,1 + I) [49 >= A] ==> f83(A,D,E,F,G,H,I) = 49 >= 49 = f83(1 + A,D,E,F,G,H,I) [I >= 50] ==> f75(A,D,E,F,G,H,I) = 49 >= 49 = f83(0,D,E,F,G,H,I) [H >= 50] ==> f65(A,D,E,F,G,H,I) = 49 >= 49 = f75(A,D,E,F,G,H,0) [G >= 50] ==> f55(A,D,E,F,G,H,I) = 49 >= 49 = f65(A,D,E,F,G,0,I) [F >= 50] ==> f37(A,D,E,F,G,H,I) = 50 >= 50 = f45(0,D,E,F,G,H,I) [E >= 50] ==> f27(A,D,E,F,G,H,I) = 50 >= 50 = f37(A,D,E,0,G,H,I) [D >= 50] ==> f17(A,D,E,F,G,H,I) = 50 >= 50 = f27(A,D,0,F,G,H,I) * Step 19: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (?,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (50,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (50,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (50,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (50,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (51,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f45) = 50 + -1*x1 The following rules are strictly oriented: [49 >= A] ==> f45(A,D,E,F,G,H,I) = 50 + -1*A > 49 + -1*A = f45(1 + A,D,E,F,G,H,I) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) * Step 20: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G,H,I) -> f17(0,0,E,F,G,H,I) True (1,1) 1. f17(A,D,E,F,G,H,I) -> f17(A,1 + D,E,F,G,H,I) [49 >= D] (50,1) 2. f27(A,D,E,F,G,H,I) -> f27(A,D,1 + E,F,G,H,I) [49 >= E] (50,1) 3. f37(A,D,E,F,G,H,I) -> f37(A,D,E,1 + F,G,H,I) [49 >= F] (50,1) 4. f45(A,D,E,F,G,H,I) -> f45(1 + A,D,E,F,G,H,I) [49 >= A] (2500,1) 5. f55(A,D,E,F,G,H,I) -> f55(A,D,E,F,1 + G,H,I) [49 >= G] (50,1) 6. f65(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,1 + H,I) [49 >= H] (50,1) 7. f75(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,1 + I) [49 >= I] (50,1) 8. f83(A,D,E,F,G,H,I) -> f83(1 + A,D,E,F,G,H,I) [49 >= A] (51,1) 10. f75(A,D,E,F,G,H,I) -> f83(0,D,E,F,G,H,I) [I >= 50] (50,1) 11. f65(A,D,E,F,G,H,I) -> f75(A,D,E,F,G,H,0) [H >= 50] (50,1) 12. f55(A,D,E,F,G,H,I) -> f65(A,D,E,F,G,0,I) [G >= 50] (50,1) 13. f45(A,D,E,F,G,H,I) -> f55(A,D,E,F,0,H,I) [A >= 50] (50,1) 14. f37(A,D,E,F,G,H,I) -> f45(0,D,E,F,G,H,I) [F >= 50] (50,1) 15. f27(A,D,E,F,G,H,I) -> f37(A,D,E,0,G,H,I) [E >= 50] (51,1) 16. f17(A,D,E,F,G,H,I) -> f27(A,D,0,F,G,H,I) [D >= 50] (1,1) Signature: {(f0,7);(f17,7);(f27,7);(f37,7);(f45,7);(f55,7);(f65,7);(f75,7);(f83,7);(f93,7)} Flow Graph: [0->{1},1->{1,16},2->{2,15},3->{3,14},4->{4,13},5->{5,12},6->{6,11},7->{7,10},8->{8},10->{8},11->{7} ,12->{6},13->{5},14->{4},15->{3},16->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 0,0,H>, H) (< 0,0,I>, I) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 1,0,H>, H) (< 1,0,I>, I) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 2,0,H>, H) (< 2,0,I>, I) (< 3,0,A>, 0) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, 50) (< 3,0,G>, G) (< 3,0,H>, H) (< 3,0,I>, I) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 4,0,H>, H) (< 4,0,I>, I) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 5,0,H>, H) (< 5,0,I>, I) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 6,0,H>, 50) (< 6,0,I>, I) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 7,0,H>, 50) (< 7,0,I>, 50) (< 8,0,A>, 50) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 8,0,H>, 50) (< 8,0,I>, 50) (<10,0,A>, 0) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 50) (<10,0,G>, 50) (<10,0,H>, 50) (<10,0,I>, 50) (<11,0,A>, 50) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, 50) (<11,0,G>, 50) (<11,0,H>, 50) (<11,0,I>, 0) (<12,0,A>, 50) (<12,0,D>, 50) (<12,0,E>, 50) (<12,0,F>, 50) (<12,0,G>, 50) (<12,0,H>, 0) (<12,0,I>, I) (<13,0,A>, 50) (<13,0,D>, 50) (<13,0,E>, 50) (<13,0,F>, 50) (<13,0,G>, 0) (<13,0,H>, H) (<13,0,I>, I) (<14,0,A>, 0) (<14,0,D>, 50) (<14,0,E>, 50) (<14,0,F>, 50) (<14,0,G>, G) (<14,0,H>, H) (<14,0,I>, I) (<15,0,A>, 0) (<15,0,D>, 50) (<15,0,E>, 50) (<15,0,F>, 0) (<15,0,G>, G) (<15,0,H>, H) (<15,0,I>, I) (<16,0,A>, 0) (<16,0,D>, 50) (<16,0,E>, 0) (<16,0,F>, F) (<16,0,G>, G) (<16,0,H>, H) (<16,0,I>, I) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))