WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f2(A + -1*B,1 + B,C) [A >= 1] (?,1) 1. f3(A,B,C) -> f2(A,B,C) [B >= 1] (1,1) 2. f2(A,B,C) -> f4(A,B,D) [0 >= A] (?,1) 3. f3(A,B,C) -> f4(A,B,D) [0 >= B] (1,1) Signature: {(f2,3);(f3,3);(f4,3)} Flow Graph: [0->{0,2},1->{0,2},2->{},3->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [C] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(A + -1*B,1 + B) [A >= 1] (?,1) 1. f3(A,B) -> f2(A,B) [B >= 1] (1,1) 2. f2(A,B) -> f4(A,B) [0 >= A] (?,1) 3. f3(A,B) -> f4(A,B) [0 >= B] (1,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0,2},1->{0,2},2->{},3->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A + B, .* 0) (<0,0,B>, 1 + B, .+ 1) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(A + -1*B,1 + B) [A >= 1] (?,1) 1. f3(A,B) -> f2(A,B) [B >= 1] (1,1) 2. f2(A,B) -> f4(A,B) [0 >= A] (?,1) 3. f3(A,B) -> f4(A,B) [0 >= B] (1,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0,2},1->{0,2},2->{},3->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(A + -1*B,1 + B) [A >= 1] (?,1) 1. f3(A,B) -> f2(A,B) [B >= 1] (1,1) 2. f2(A,B) -> f4(A,B) [0 >= A] (?,1) 3. f3(A,B) -> f4(A,B) [0 >= B] (1,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0,2},1->{0,2},2->{},3->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2] * Step 5: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(A + -1*B,1 + B) [A >= 1] (?,1) 1. f3(A,B) -> f2(A,B) [B >= 1] (1,1) 3. f3(A,B) -> f4(A,B) [0 >= B] (1,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0},1->{0},3->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 0 : [B >= 1 && B >= 1] 1 : True 3 : True . * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(A + -1*B,1 + B) [A >= 1] (?,1) 1. f3(A,B) -> f2(A,B) [B >= 1] (1,1) 3. f3(A,B) -> f4(A,B) [0 >= B] (1,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0},1->{0},3->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = x1 p(f3) = x1 p(f4) = x1 The following rules are strictly oriented: [A >= 1] ==> f2(A,B) = A > A + -1*B = f2(A + -1*B,1 + B) The following rules are weakly oriented: [B >= 1] ==> f3(A,B) = A >= A = f2(A,B) [0 >= B] ==> f3(A,B) = A >= A = f4(A,B) * Step 7: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(A + -1*B,1 + B) [A >= 1] (A,1) 1. f3(A,B) -> f2(A,B) [B >= 1] (1,1) 3. f3(A,B) -> f4(A,B) [0 >= B] (1,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0},1->{0},3->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) (<3,0,A>, A) (<3,0,B>, B) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))