WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f5(A,B) -> f5(-1 + A,B) [A >= 1] (?,1) 1. f5(A,B) -> f1(A,C) [0 >= A] (?,1) 2. f300(A,B) -> f5(-1 + A,B) [A >= 1] (1,1) 3. f300(A,B) -> f1(A,C) [0 >= A] (1,1) Signature: {(f1,2);(f300,2);(f5,2)} Flow Graph: [0->{0,1},1->{},2->{0,1},3->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f5(A) -> f5(-1 + A) [A >= 1] (?,1) 1. f5(A) -> f1(A) [0 >= A] (?,1) 2. f300(A) -> f5(-1 + A) [A >= 1] (1,1) 3. f300(A) -> f1(A) [0 >= A] (1,1) Signature: {(f1,1);(f300,1);(f5,1)} Flow Graph: [0->{0,1},1->{},2->{0,1},3->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 1 + A, .+ 1) (<1,0,A>, A, .= 0) (<2,0,A>, 1 + A, .+ 1) (<3,0,A>, A, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f5(A) -> f5(-1 + A) [A >= 1] (?,1) 1. f5(A) -> f1(A) [0 >= A] (?,1) 2. f300(A) -> f5(-1 + A) [A >= 1] (1,1) 3. f300(A) -> f1(A) [0 >= A] (1,1) Signature: {(f1,1);(f300,1);(f5,1)} Flow Graph: [0->{0,1},1->{},2->{0,1},3->{}] Sizebounds: (<0,0,A>, ?) (<1,0,A>, ?) (<2,0,A>, ?) (<3,0,A>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<1,0,A>, ?) (<2,0,A>, 1 + A) (<3,0,A>, A) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f5(A) -> f5(-1 + A) [A >= 1] (?,1) 1. f5(A) -> f1(A) [0 >= A] (?,1) 2. f300(A) -> f5(-1 + A) [A >= 1] (1,1) 3. f300(A) -> f1(A) [0 >= A] (1,1) Signature: {(f1,1);(f300,1);(f5,1)} Flow Graph: [0->{0,1},1->{},2->{0,1},3->{}] Sizebounds: (<0,0,A>, ?) (<1,0,A>, ?) (<2,0,A>, 1 + A) (<3,0,A>, A) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [1] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f5(A) -> f5(-1 + A) [A >= 1] (?,1) 2. f300(A) -> f5(-1 + A) [A >= 1] (1,1) 3. f300(A) -> f1(A) [0 >= A] (1,1) Signature: {(f1,1);(f300,1);(f5,1)} Flow Graph: [0->{0},2->{0},3->{}] Sizebounds: (<0,0,A>, ?) (<2,0,A>, 1 + A) (<3,0,A>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = x1 p(f300) = x1 p(f5) = x1 The following rules are strictly oriented: [A >= 1] ==> f5(A) = A > -1 + A = f5(-1 + A) [A >= 1] ==> f300(A) = A > -1 + A = f5(-1 + A) The following rules are weakly oriented: [0 >= A] ==> f300(A) = A >= A = f1(A) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f5(A) -> f5(-1 + A) [A >= 1] (A,1) 2. f300(A) -> f5(-1 + A) [A >= 1] (1,1) 3. f300(A) -> f1(A) [0 >= A] (1,1) Signature: {(f1,1);(f300,1);(f5,1)} Flow Graph: [0->{0},2->{0},3->{}] Sizebounds: (<0,0,A>, ?) (<2,0,A>, 1 + A) (<3,0,A>, A) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))