WORST_CASE(?,O(1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A) -> f1(300)    True       (1,1)
          1. f1(A) -> f1(-1 + A) [A >= 102] (?,1)
          2. f1(A) -> f1(-1 + A) [100 >= A] (?,1)
        Signature:
          {(f0,1);(f1,1)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{1,2}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,   300, .= 300) 
          (<1,0,A>, 1 + A,   .+ 1) 
          (<2,0,A>, 1 + A,   .+ 1) 
* Step 2: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A) -> f1(300)    True       (1,1)
          1. f1(A) -> f1(-1 + A) [A >= 102] (?,1)
          2. f1(A) -> f1(-1 + A) [100 >= A] (?,1)
        Signature:
          {(f0,1);(f1,1)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{1,2}]
        Sizebounds:
          (<0,0,A>, ?) 
          (<1,0,A>, ?) 
          (<2,0,A>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, 300) 
          (<1,0,A>,   ?) 
          (<2,0,A>,  99) 
* Step 3: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A) -> f1(300)    True       (1,1)
          1. f1(A) -> f1(-1 + A) [A >= 102] (?,1)
          2. f1(A) -> f1(-1 + A) [100 >= A] (?,1)
        Signature:
          {(f0,1);(f1,1)}
        Flow Graph:
          [0->{1,2},1->{1,2},2->{1,2}]
        Sizebounds:
          (<0,0,A>, 300) 
          (<1,0,A>,   ?) 
          (<2,0,A>,  99) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,2),(1,2),(2,1)]
* Step 4: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A) -> f1(300)    True       (1,1)
          1. f1(A) -> f1(-1 + A) [A >= 102] (?,1)
          2. f1(A) -> f1(-1 + A) [100 >= A] (?,1)
        Signature:
          {(f0,1);(f1,1)}
        Flow Graph:
          [0->{1},1->{1},2->{2}]
        Sizebounds:
          (<0,0,A>, 300) 
          (<1,0,A>,   ?) 
          (<2,0,A>,  99) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [2]
* Step 5: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A) -> f1(300)    True       (1,1)
          1. f1(A) -> f1(-1 + A) [A >= 102] (?,1)
        Signature:
          {(f0,1);(f1,1)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, 300) 
          (<1,0,A>,   ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f0) = 199      
          p(f1) = -101 + x1
        
        The following rules are strictly oriented:
        [A >= 102] ==>           
             f1(A)   = -101 + A  
                     > -102 + A  
                     = f1(-1 + A)
        
        
        The following rules are weakly oriented:
           True ==>        
          f0(A)   = 199    
                 >= 199    
                  = f1(300)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A) -> f1(300)    True       (1,1)  
          1. f1(A) -> f1(-1 + A) [A >= 102] (199,1)
        Signature:
          {(f0,1);(f1,1)}
        Flow Graph:
          [0->{1},1->{1}]
        Sizebounds:
          (<0,0,A>, 300) 
          (<1,0,A>,   ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))