WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [B >= 100] (?,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (?,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (?,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<1,0,A>, 0, .= 0) (<1,0,B>, 0, .= 0) (<1,0,C>, C, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<6,0,A>, 1 + A, .+ 1) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<7,0,A>, A, .= 0) (<7,0,B>, 1 + B, .+ 1) (<7,0,C>, C, .= 0) (<8,0,A>, A, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [B >= 100] (?,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (?,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (?,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) (<3,0,A>, ?) (<3,0,B>, 99) (<3,0,C>, C) (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) (<8,0,A>, ?) (<8,0,B>, 99) (<8,0,C>, C) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [B >= 100] (?,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (?,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (?,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) (<3,0,A>, ?) (<3,0,B>, 99) (<3,0,C>, C) (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) (<8,0,A>, ?) (<8,0,B>, 99) (<8,0,C>, C) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,3)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [B >= 100] (?,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (?,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (?,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) (<3,0,A>, ?) (<3,0,B>, 99) (<3,0,C>, C) (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) (<8,0,A>, ?) (<8,0,B>, 99) (<8,0,C>, C) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,8] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (?,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (?,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (?,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = -1*x1 + x3 p(evalfbb2in) = 1 + -1*x1 + x3 p(evalfbb3in) = 1 + -1*x1 + x3 p(evalfbbin) = 1 + -1*x1 + x3 p(evalfentryin) = 1 + x3 p(evalfstart) = 1 + x3 The following rules are strictly oriented: [C >= 1 + A] ==> evalfbbin(A,B,C) = 1 + -1*A + C > -1*A + C = evalfbb1in(A,B,C) The following rules are weakly oriented: True ==> evalfstart(A,B,C) = 1 + C >= 1 + C = evalfentryin(A,B,C) True ==> evalfentryin(A,B,C) = 1 + C >= 1 + C = evalfbb3in(0,0,C) [99 >= B] ==> evalfbb3in(A,B,C) = 1 + -1*A + C >= 1 + -1*A + C = evalfbbin(A,B,C) [A >= C] ==> evalfbbin(A,B,C) = 1 + -1*A + C >= 1 + -1*A + C = evalfbb2in(A,B,C) True ==> evalfbb1in(A,B,C) = -1*A + C >= -1*A + C = evalfbb3in(1 + A,B,C) True ==> evalfbb2in(A,B,C) = 1 + -1*A + C >= 1 + -1*A + C = evalfbb3in(A,1 + B,C) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (?,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (1 + C,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (?,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (1,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (?,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (1 + C,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (1 + C,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,4,7,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 99 + -1*x2 p(evalfbb2in) = 99 + -1*x2 p(evalfbb3in) = 100 + -1*x2 p(evalfbbin) = 99 + -1*x2 The following rules are strictly oriented: [99 >= B] ==> evalfbb3in(A,B,C) = 100 + -1*B > 99 + -1*B = evalfbbin(A,B,C) The following rules are weakly oriented: [C >= 1 + A] ==> evalfbbin(A,B,C) = 99 + -1*B >= 99 + -1*B = evalfbb1in(A,B,C) [A >= C] ==> evalfbbin(A,B,C) = 99 + -1*B >= 99 + -1*B = evalfbb2in(A,B,C) True ==> evalfbb2in(A,B,C) = 99 + -1*B >= 99 + -1*B = evalfbb3in(A,1 + B,C) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (1,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (299 + 199*C,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (1 + C,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (1 + C,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C) True (1,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [99 >= B] (299 + 199*C,1) 4. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 + A] (1 + C,1) 5. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [A >= C] (299 + 199*C,1) 6. evalfbb1in(A,B,C) -> evalfbb3in(1 + A,B,C) True (1 + C,1) 7. evalfbb2in(A,B,C) -> evalfbb3in(A,1 + B,C) True (299 + 199*C,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))