WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb3in(0,0,C)     True         (?,1)
          2. evalfbb3in(A,B,C)    -> evalfbbin(A,B,C)      [99 >= B]    (?,1)
          3. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)  [B >= 100]   (?,1)
          4. evalfbbin(A,B,C)     -> evalfbb1in(A,B,C)     [C >= 1 + A] (?,1)
          5. evalfbbin(A,B,C)     -> evalfbb2in(A,B,C)     [A >= C]     (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb3in(1 + A,B,C) True         (?,1)
          7. evalfbb2in(A,B,C)    -> evalfbb3in(A,1 + B,C) True         (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)      True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) (<0,0,B>,     B, .= 0) (<0,0,C>, C, .= 0) 
          (<1,0,A>,     0, .= 0) (<1,0,B>,     0, .= 0) (<1,0,C>, C, .= 0) 
          (<2,0,A>,     A, .= 0) (<2,0,B>,     B, .= 0) (<2,0,C>, C, .= 0) 
          (<3,0,A>,     A, .= 0) (<3,0,B>,     B, .= 0) (<3,0,C>, C, .= 0) 
          (<4,0,A>,     A, .= 0) (<4,0,B>,     B, .= 0) (<4,0,C>, C, .= 0) 
          (<5,0,A>,     A, .= 0) (<5,0,B>,     B, .= 0) (<5,0,C>, C, .= 0) 
          (<6,0,A>, 1 + A, .+ 1) (<6,0,B>,     B, .= 0) (<6,0,C>, C, .= 0) 
          (<7,0,A>,     A, .= 0) (<7,0,B>, 1 + B, .+ 1) (<7,0,C>, C, .= 0) 
          (<8,0,A>,     A, .= 0) (<8,0,B>,     B, .= 0) (<8,0,C>, C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb3in(0,0,C)     True         (?,1)
          2. evalfbb3in(A,B,C)    -> evalfbbin(A,B,C)      [99 >= B]    (?,1)
          3. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)  [B >= 100]   (?,1)
          4. evalfbbin(A,B,C)     -> evalfbb1in(A,B,C)     [C >= 1 + A] (?,1)
          5. evalfbbin(A,B,C)     -> evalfbb2in(A,B,C)     [A >= C]     (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb3in(1 + A,B,C) True         (?,1)
          7. evalfbb2in(A,B,C)    -> evalfbb3in(A,1 + B,C) True         (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)      True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>,  B) (<0,0,C>, C) 
          (<1,0,A>, 0) (<1,0,B>,  0) (<1,0,C>, C) 
          (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) 
          (<3,0,A>, ?) (<3,0,B>, 99) (<3,0,C>, C) 
          (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) 
          (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) 
          (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) 
          (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) 
          (<8,0,A>, ?) (<8,0,B>, 99) (<8,0,C>, C) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb3in(0,0,C)     True         (?,1)
          2. evalfbb3in(A,B,C)    -> evalfbbin(A,B,C)      [99 >= B]    (?,1)
          3. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)  [B >= 100]   (?,1)
          4. evalfbbin(A,B,C)     -> evalfbb1in(A,B,C)     [C >= 1 + A] (?,1)
          5. evalfbbin(A,B,C)     -> evalfbb2in(A,B,C)     [A >= C]     (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb3in(1 + A,B,C) True         (?,1)
          7. evalfbb2in(A,B,C)    -> evalfbb3in(A,1 + B,C) True         (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)      True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,  B) (<0,0,C>, C) 
          (<1,0,A>, 0) (<1,0,B>,  0) (<1,0,C>, C) 
          (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) 
          (<3,0,A>, ?) (<3,0,B>, 99) (<3,0,C>, C) 
          (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) 
          (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) 
          (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) 
          (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) 
          (<8,0,A>, ?) (<8,0,B>, 99) (<8,0,C>, C) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,3)]
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb3in(0,0,C)     True         (?,1)
          2. evalfbb3in(A,B,C)    -> evalfbbin(A,B,C)      [99 >= B]    (?,1)
          3. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)  [B >= 100]   (?,1)
          4. evalfbbin(A,B,C)     -> evalfbb1in(A,B,C)     [C >= 1 + A] (?,1)
          5. evalfbbin(A,B,C)     -> evalfbb2in(A,B,C)     [A >= C]     (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb3in(1 + A,B,C) True         (?,1)
          7. evalfbb2in(A,B,C)    -> evalfbb3in(A,1 + B,C) True         (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)      True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,  B) (<0,0,C>, C) 
          (<1,0,A>, 0) (<1,0,B>,  0) (<1,0,C>, C) 
          (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) 
          (<3,0,A>, ?) (<3,0,B>, 99) (<3,0,C>, C) 
          (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) 
          (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) 
          (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) 
          (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) 
          (<8,0,A>, ?) (<8,0,B>, 99) (<8,0,C>, C) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,8]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)
          1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C)     True         (?,1)
          2. evalfbb3in(A,B,C)   -> evalfbbin(A,B,C)      [99 >= B]    (?,1)
          4. evalfbbin(A,B,C)    -> evalfbb1in(A,B,C)     [C >= 1 + A] (?,1)
          5. evalfbbin(A,B,C)    -> evalfbb2in(A,B,C)     [A >= C]     (?,1)
          6. evalfbb1in(A,B,C)   -> evalfbb3in(1 + A,B,C) True         (?,1)
          7. evalfbb2in(A,B,C)   -> evalfbb3in(A,1 + B,C) True         (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,  B) (<0,0,C>, C) 
          (<1,0,A>, 0) (<1,0,B>,  0) (<1,0,C>, C) 
          (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) 
          (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) 
          (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) 
          (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) 
          (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalfbb1in) = -1*x1 + x3    
            p(evalfbb2in) = 1 + -1*x1 + x3
            p(evalfbb3in) = 1 + -1*x1 + x3
             p(evalfbbin) = 1 + -1*x1 + x3
          p(evalfentryin) = 1 + x3        
            p(evalfstart) = 1 + x3        
        
        The following rules are strictly oriented:
              [C >= 1 + A] ==>                  
          evalfbbin(A,B,C)   = 1 + -1*A + C     
                             > -1*A + C         
                             = evalfbb1in(A,B,C)
        
        
        The following rules are weakly oriented:
                         True ==>                      
            evalfstart(A,B,C)   = 1 + C                
                               >= 1 + C                
                                = evalfentryin(A,B,C)  
        
                         True ==>                      
          evalfentryin(A,B,C)   = 1 + C                
                               >= 1 + C                
                                = evalfbb3in(0,0,C)    
        
                    [99 >= B] ==>                      
            evalfbb3in(A,B,C)   = 1 + -1*A + C         
                               >= 1 + -1*A + C         
                                = evalfbbin(A,B,C)     
        
                     [A >= C] ==>                      
             evalfbbin(A,B,C)   = 1 + -1*A + C         
                               >= 1 + -1*A + C         
                                = evalfbb2in(A,B,C)    
        
                         True ==>                      
            evalfbb1in(A,B,C)   = -1*A + C             
                               >= -1*A + C             
                                = evalfbb3in(1 + A,B,C)
        
                         True ==>                      
            evalfbb2in(A,B,C)   = 1 + -1*A + C         
                               >= 1 + -1*A + C         
                                = evalfbb3in(A,1 + B,C)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)    
          1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C)     True         (?,1)    
          2. evalfbb3in(A,B,C)   -> evalfbbin(A,B,C)      [99 >= B]    (?,1)    
          4. evalfbbin(A,B,C)    -> evalfbb1in(A,B,C)     [C >= 1 + A] (1 + C,1)
          5. evalfbbin(A,B,C)    -> evalfbb2in(A,B,C)     [A >= C]     (?,1)    
          6. evalfbb1in(A,B,C)   -> evalfbb3in(1 + A,B,C) True         (?,1)    
          7. evalfbb2in(A,B,C)   -> evalfbb3in(A,1 + B,C) True         (?,1)    
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,  B) (<0,0,C>, C) 
          (<1,0,A>, 0) (<1,0,B>,  0) (<1,0,C>, C) 
          (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) 
          (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) 
          (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) 
          (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) 
          (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)    
          1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C)     True         (1,1)    
          2. evalfbb3in(A,B,C)   -> evalfbbin(A,B,C)      [99 >= B]    (?,1)    
          4. evalfbbin(A,B,C)    -> evalfbb1in(A,B,C)     [C >= 1 + A] (1 + C,1)
          5. evalfbbin(A,B,C)    -> evalfbb2in(A,B,C)     [A >= C]     (?,1)    
          6. evalfbb1in(A,B,C)   -> evalfbb3in(1 + A,B,C) True         (1 + C,1)
          7. evalfbb2in(A,B,C)   -> evalfbb3in(A,1 + B,C) True         (?,1)    
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,  B) (<0,0,C>, C) 
          (<1,0,A>, 0) (<1,0,B>,  0) (<1,0,C>, C) 
          (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) 
          (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) 
          (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) 
          (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) 
          (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,4,7,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb1in) = 99 + -1*x2 
          p(evalfbb2in) = 99 + -1*x2 
          p(evalfbb3in) = 100 + -1*x2
           p(evalfbbin) = 99 + -1*x2 
        
        The following rules are strictly oriented:
                  [99 >= B] ==>                 
          evalfbb3in(A,B,C)   = 100 + -1*B      
                              > 99 + -1*B       
                              = evalfbbin(A,B,C)
        
        
        The following rules are weakly oriented:
               [C >= 1 + A] ==>                      
           evalfbbin(A,B,C)   = 99 + -1*B            
                             >= 99 + -1*B            
                              = evalfbb1in(A,B,C)    
        
                   [A >= C] ==>                      
           evalfbbin(A,B,C)   = 99 + -1*B            
                             >= 99 + -1*B            
                              = evalfbb2in(A,B,C)    
        
                       True ==>                      
          evalfbb2in(A,B,C)   = 99 + -1*B            
                             >= 99 + -1*B            
                              = evalfbb3in(A,1 + B,C)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>,  B) (<0,0,C>, C) 
        (<1,0,A>, 0) (<1,0,B>,  0) (<1,0,C>, C) 
        (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) 
        (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) 
        (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) 
        (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) 
        (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) 
* Step 8: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)          
          1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C)     True         (1,1)          
          2. evalfbb3in(A,B,C)   -> evalfbbin(A,B,C)      [99 >= B]    (299 + 199*C,1)
          4. evalfbbin(A,B,C)    -> evalfbb1in(A,B,C)     [C >= 1 + A] (1 + C,1)      
          5. evalfbbin(A,B,C)    -> evalfbb2in(A,B,C)     [A >= C]     (?,1)          
          6. evalfbb1in(A,B,C)   -> evalfbb3in(1 + A,B,C) True         (1 + C,1)      
          7. evalfbb2in(A,B,C)   -> evalfbb3in(A,1 + B,C) True         (?,1)          
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,  B) (<0,0,C>, C) 
          (<1,0,A>, 0) (<1,0,B>,  0) (<1,0,C>, C) 
          (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) 
          (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) 
          (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) 
          (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) 
          (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 9: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)   True         (1,1)          
          1. evalfentryin(A,B,C) -> evalfbb3in(0,0,C)     True         (1,1)          
          2. evalfbb3in(A,B,C)   -> evalfbbin(A,B,C)      [99 >= B]    (299 + 199*C,1)
          4. evalfbbin(A,B,C)    -> evalfbb1in(A,B,C)     [C >= 1 + A] (1 + C,1)      
          5. evalfbbin(A,B,C)    -> evalfbb2in(A,B,C)     [A >= C]     (299 + 199*C,1)
          6. evalfbb1in(A,B,C)   -> evalfbb3in(1 + A,B,C) True         (1 + C,1)      
          7. evalfbb2in(A,B,C)   -> evalfbb3in(A,1 + B,C) True         (299 + 199*C,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,  B) (<0,0,C>, C) 
          (<1,0,A>, 0) (<1,0,B>,  0) (<1,0,C>, C) 
          (<2,0,A>, ?) (<2,0,B>, 99) (<2,0,C>, C) 
          (<4,0,A>, C) (<4,0,B>, 99) (<4,0,C>, C) 
          (<5,0,A>, ?) (<5,0,B>, 99) (<5,0,C>, C) 
          (<6,0,A>, C) (<6,0,B>, 99) (<6,0,C>, C) 
          (<7,0,A>, ?) (<7,0,B>, 99) (<7,0,C>, C) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))