WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f8(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N) True (1,1) 1. f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(1,C,C,E,E,P,O,0,1,P,O,7,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 2. f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(1,C,C,E,E,P,O,0,1,P,O,7,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 3. f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(1,1 + C,1 + C,1 + E,1 + E,P,4,1,1,P,4,7,M,N) [7 >= P && P >= 1] (?,1) 4. f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f2(0,C,C,E,E,3,P,0,0,3,P,2,M,N) [7 >= P && 3 >= P && P >= 1] (?,1) 5. f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f2(0,C,C,E,E,3,P,0,0,3,P,2,M,N) [7 >= P && P >= 5] (?,1) 6. f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f2(0,1 + C,1 + C,1 + E,1 + E,3,4,1,0,3,4,2,M,N) True (?,1) 7. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(1,C,C,E,E,P,O,H,1,P,O,7,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 8. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(1,C,C,E,E,P,O,H,1,P,O,7,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 9. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(1,1 + C,1 + C,1 + E,1 + E,P,4,1,1,P,4,7,M,N) [7 >= P && P >= 1] (?,1) 10. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f3(0,C,C,E,E,P,O,H,0,P,O,3,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f3(0,C,C,E,E,P,O,H,0,P,O,3,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f3(0,1 + C,1 + C,1 + E,1 + E,P,4,1,0,P,4,3,M,N) [7 >= P && P >= 1] (?,1) 13. f3(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f6(1,C,C,E,E,P,O,H,1,P,O,6,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f6(1,C,C,E,E,P,O,H,1,P,O,6,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f6(1,1 + C,1 + C,1 + E,1 + E,P,4,1,1,P,4,6,M,N) [7 >= P && P >= 1] (?,1) 16. f6(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f4(P,C,C,E,E,O,2,0,P,O,2,4,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (?,1) 17. f6(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f4(P,C,C,E,E,O,7,1,P,O,7,4,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f2(0,C,C,E,E,P,O,0,0,P,O,2,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f2(0,C,C,E,E,P,O,0,0,P,O,2,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f2(0,1 + C,1 + C,1 + E,1 + E,P,4,0,0,P,4,2,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (?,1) 21. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(0,C,C,E,E,P,O,H,0,P,O,7,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 22. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(0,C,C,E,E,P,O,H,0,P,O,7,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 23. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(0,1 + C,1 + C,1 + E,1 + E,P,4,1,0,P,4,7,M,N) [1 + E >= M && 1 + C >= N && 7 >= P && P >= 1] (?,1) 24. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(1,C,C,E,E,P,O,H,1,P,O,7,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 25. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(1,C,C,E,E,P,O,H,1,P,O,7,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 26. f4(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> f7(1,1 + C,1 + C,1 + E,1 + E,P,4,1,1,P,4,7,M,N) [7 >= P && P >= 1] (?,1) Signature: {(f1,14);(f2,14);(f3,14);(f4,14);(f6,14);(f7,14);(f8,14)} Flow Graph: [0->{1,2,3,4,5,6},1->{},2->{},3->{},4->{7,8,9,10,11,12},5->{7,8,9,10,11,12},6->{7,8,9,10,11,12},7->{} ,8->{},9->{},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16,17},14->{16,17},15->{16,17},16->{18,19,20 ,21,22,23,24,25,26},17->{18,19,20,21,22,23,24,25,26},18->{7,8,9,10,11,12},19->{7,8,9,10,11,12},20->{7,8,9,10 ,11,12},21->{},22->{},23->{},24->{},25->{},26->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [A,B,D,F,G,I,J,K,L] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f8(C,E,H,M,N) -> f1(C,E,H,M,N) True (1,1) 1. f1(C,E,H,M,N) -> f7(C,E,0,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 2. f1(C,E,H,M,N) -> f7(C,E,0,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 3. f1(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 4. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && 3 >= P && P >= 1] (?,1) 5. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && P >= 5] (?,1) 6. f1(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (?,1) 7. f2(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 8. f2(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 9. f2(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (?,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (?,1) 21. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 22. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 23. f4(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [1 + E >= M && 1 + C >= N && 7 >= P && P >= 1] (?,1) 24. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 25. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 26. f4(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [0->{1,2,3,4,5,6},1->{},2->{},3->{},4->{7,8,9,10,11,12},5->{7,8,9,10,11,12},6->{7,8,9,10,11,12},7->{} ,8->{},9->{},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16,17},14->{16,17},15->{16,17},16->{18,19,20 ,21,22,23,24,25,26},17->{18,19,20,21,22,23,24,25,26},18->{7,8,9,10,11,12},19->{7,8,9,10,11,12},20->{7,8,9,10 ,11,12},21->{},22->{},23->{},24->{},25->{},26->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,C>, C, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,H>, H, .= 0) (< 0,0,M>, M, .= 0) (< 0,0,N>, N, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,E>, E, .= 0) (< 1,0,H>, 0, .= 0) (< 1,0,M>, M, .= 0) (< 1,0,N>, N, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,H>, 0, .= 0) (< 2,0,M>, M, .= 0) (< 2,0,N>, N, .= 0) (< 3,0,C>, 1 + C, .+ 1) (< 3,0,E>, 1 + E, .+ 1) (< 3,0,H>, 1, .= 1) (< 3,0,M>, M, .= 0) (< 3,0,N>, N, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,H>, 0, .= 0) (< 4,0,M>, M, .= 0) (< 4,0,N>, N, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,H>, 0, .= 0) (< 5,0,M>, M, .= 0) (< 5,0,N>, N, .= 0) (< 6,0,C>, 1 + C, .+ 1) (< 6,0,E>, 1 + E, .+ 1) (< 6,0,H>, 1, .= 1) (< 6,0,M>, M, .= 0) (< 6,0,N>, N, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,M>, M, .= 0) (< 7,0,N>, N, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,H>, H, .= 0) (< 8,0,M>, M, .= 0) (< 8,0,N>, N, .= 0) (< 9,0,C>, 1 + C, .+ 1) (< 9,0,E>, 1 + E, .+ 1) (< 9,0,H>, 1, .= 1) (< 9,0,M>, M, .= 0) (< 9,0,N>, N, .= 0) (<10,0,C>, C, .= 0) (<10,0,E>, E, .= 0) (<10,0,H>, H, .= 0) (<10,0,M>, M, .= 0) (<10,0,N>, N, .= 0) (<11,0,C>, C, .= 0) (<11,0,E>, E, .= 0) (<11,0,H>, H, .= 0) (<11,0,M>, M, .= 0) (<11,0,N>, N, .= 0) (<12,0,C>, 1 + C, .+ 1) (<12,0,E>, 1 + E, .+ 1) (<12,0,H>, 1, .= 1) (<12,0,M>, M, .= 0) (<12,0,N>, N, .= 0) (<13,0,C>, C, .= 0) (<13,0,E>, E, .= 0) (<13,0,H>, H, .= 0) (<13,0,M>, M, .= 0) (<13,0,N>, N, .= 0) (<14,0,C>, C, .= 0) (<14,0,E>, E, .= 0) (<14,0,H>, H, .= 0) (<14,0,M>, M, .= 0) (<14,0,N>, N, .= 0) (<15,0,C>, 1 + C, .+ 1) (<15,0,E>, 1 + E, .+ 1) (<15,0,H>, 1, .= 1) (<15,0,M>, M, .= 0) (<15,0,N>, N, .= 0) (<16,0,C>, C, .= 0) (<16,0,E>, E, .= 0) (<16,0,H>, 0, .= 0) (<16,0,M>, M, .= 0) (<16,0,N>, N, .= 0) (<17,0,C>, C, .= 0) (<17,0,E>, E, .= 0) (<17,0,H>, 1, .= 1) (<17,0,M>, M, .= 0) (<17,0,N>, N, .= 0) (<18,0,C>, C, .= 0) (<18,0,E>, E, .= 0) (<18,0,H>, 0, .= 0) (<18,0,M>, M, .= 0) (<18,0,N>, N, .= 0) (<19,0,C>, C, .= 0) (<19,0,E>, E, .= 0) (<19,0,H>, 0, .= 0) (<19,0,M>, M, .= 0) (<19,0,N>, N, .= 0) (<20,0,C>, 1 + C, .+ 1) (<20,0,E>, 1 + E, .+ 1) (<20,0,H>, 0, .= 0) (<20,0,M>, M, .= 0) (<20,0,N>, N, .= 0) (<21,0,C>, C, .= 0) (<21,0,E>, E, .= 0) (<21,0,H>, H, .= 0) (<21,0,M>, M, .= 0) (<21,0,N>, N, .= 0) (<22,0,C>, C, .= 0) (<22,0,E>, E, .= 0) (<22,0,H>, H, .= 0) (<22,0,M>, M, .= 0) (<22,0,N>, N, .= 0) (<23,0,C>, 1 + C, .+ 1) (<23,0,E>, 1 + E, .+ 1) (<23,0,H>, 1, .= 1) (<23,0,M>, M, .= 0) (<23,0,N>, N, .= 0) (<24,0,C>, C, .= 0) (<24,0,E>, E, .= 0) (<24,0,H>, H, .= 0) (<24,0,M>, M, .= 0) (<24,0,N>, N, .= 0) (<25,0,C>, C, .= 0) (<25,0,E>, E, .= 0) (<25,0,H>, H, .= 0) (<25,0,M>, M, .= 0) (<25,0,N>, N, .= 0) (<26,0,C>, 1 + C, .+ 1) (<26,0,E>, 1 + E, .+ 1) (<26,0,H>, 1, .= 1) (<26,0,M>, M, .= 0) (<26,0,N>, N, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f8(C,E,H,M,N) -> f1(C,E,H,M,N) True (1,1) 1. f1(C,E,H,M,N) -> f7(C,E,0,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 2. f1(C,E,H,M,N) -> f7(C,E,0,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 3. f1(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 4. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && 3 >= P && P >= 1] (?,1) 5. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && P >= 5] (?,1) 6. f1(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (?,1) 7. f2(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 8. f2(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 9. f2(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (?,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (?,1) 21. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 22. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 23. f4(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [1 + E >= M && 1 + C >= N && 7 >= P && P >= 1] (?,1) 24. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 25. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 26. f4(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [0->{1,2,3,4,5,6},1->{},2->{},3->{},4->{7,8,9,10,11,12},5->{7,8,9,10,11,12},6->{7,8,9,10,11,12},7->{} ,8->{},9->{},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16,17},14->{16,17},15->{16,17},16->{18,19,20 ,21,22,23,24,25,26},17->{18,19,20,21,22,23,24,25,26},18->{7,8,9,10,11,12},19->{7,8,9,10,11,12},20->{7,8,9,10 ,11,12},21->{},22->{},23->{},24->{},25->{},26->{}] Sizebounds: (< 0,0,C>, ?) (< 0,0,E>, ?) (< 0,0,H>, ?) (< 0,0,M>, ?) (< 0,0,N>, ?) (< 1,0,C>, ?) (< 1,0,E>, ?) (< 1,0,H>, ?) (< 1,0,M>, ?) (< 1,0,N>, ?) (< 2,0,C>, ?) (< 2,0,E>, ?) (< 2,0,H>, ?) (< 2,0,M>, ?) (< 2,0,N>, ?) (< 3,0,C>, ?) (< 3,0,E>, ?) (< 3,0,H>, ?) (< 3,0,M>, ?) (< 3,0,N>, ?) (< 4,0,C>, ?) (< 4,0,E>, ?) (< 4,0,H>, ?) (< 4,0,M>, ?) (< 4,0,N>, ?) (< 5,0,C>, ?) (< 5,0,E>, ?) (< 5,0,H>, ?) (< 5,0,M>, ?) (< 5,0,N>, ?) (< 6,0,C>, ?) (< 6,0,E>, ?) (< 6,0,H>, ?) (< 6,0,M>, ?) (< 6,0,N>, ?) (< 7,0,C>, ?) (< 7,0,E>, ?) (< 7,0,H>, ?) (< 7,0,M>, ?) (< 7,0,N>, ?) (< 8,0,C>, ?) (< 8,0,E>, ?) (< 8,0,H>, ?) (< 8,0,M>, ?) (< 8,0,N>, ?) (< 9,0,C>, ?) (< 9,0,E>, ?) (< 9,0,H>, ?) (< 9,0,M>, ?) (< 9,0,N>, ?) (<10,0,C>, ?) (<10,0,E>, ?) (<10,0,H>, ?) (<10,0,M>, ?) (<10,0,N>, ?) (<11,0,C>, ?) (<11,0,E>, ?) (<11,0,H>, ?) (<11,0,M>, ?) (<11,0,N>, ?) (<12,0,C>, ?) (<12,0,E>, ?) (<12,0,H>, ?) (<12,0,M>, ?) (<12,0,N>, ?) (<13,0,C>, ?) (<13,0,E>, ?) (<13,0,H>, ?) (<13,0,M>, ?) (<13,0,N>, ?) (<14,0,C>, ?) (<14,0,E>, ?) (<14,0,H>, ?) (<14,0,M>, ?) (<14,0,N>, ?) (<15,0,C>, ?) (<15,0,E>, ?) (<15,0,H>, ?) (<15,0,M>, ?) (<15,0,N>, ?) (<16,0,C>, ?) (<16,0,E>, ?) (<16,0,H>, ?) (<16,0,M>, ?) (<16,0,N>, ?) (<17,0,C>, ?) (<17,0,E>, ?) (<17,0,H>, ?) (<17,0,M>, ?) (<17,0,N>, ?) (<18,0,C>, ?) (<18,0,E>, ?) (<18,0,H>, ?) (<18,0,M>, ?) (<18,0,N>, ?) (<19,0,C>, ?) (<19,0,E>, ?) (<19,0,H>, ?) (<19,0,M>, ?) (<19,0,N>, ?) (<20,0,C>, ?) (<20,0,E>, ?) (<20,0,H>, ?) (<20,0,M>, ?) (<20,0,N>, ?) (<21,0,C>, ?) (<21,0,E>, ?) (<21,0,H>, ?) (<21,0,M>, ?) (<21,0,N>, ?) (<22,0,C>, ?) (<22,0,E>, ?) (<22,0,H>, ?) (<22,0,M>, ?) (<22,0,N>, ?) (<23,0,C>, ?) (<23,0,E>, ?) (<23,0,H>, ?) (<23,0,M>, ?) (<23,0,N>, ?) (<24,0,C>, ?) (<24,0,E>, ?) (<24,0,H>, ?) (<24,0,M>, ?) (<24,0,N>, ?) (<25,0,C>, ?) (<25,0,E>, ?) (<25,0,H>, ?) (<25,0,M>, ?) (<25,0,N>, ?) (<26,0,C>, ?) (<26,0,E>, ?) (<26,0,H>, ?) (<26,0,M>, ?) (<26,0,N>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,C>, C) (< 0,0,E>, E) (< 0,0,H>, H) (< 0,0,M>, M) (< 0,0,N>, N) (< 1,0,C>, C) (< 1,0,E>, E) (< 1,0,H>, 0) (< 1,0,M>, M) (< 1,0,N>, N) (< 2,0,C>, C) (< 2,0,E>, E) (< 2,0,H>, 0) (< 2,0,M>, M) (< 2,0,N>, N) (< 3,0,C>, 1 + C) (< 3,0,E>, 1 + E) (< 3,0,H>, 1) (< 3,0,M>, M) (< 3,0,N>, N) (< 4,0,C>, C) (< 4,0,E>, E) (< 4,0,H>, 0) (< 4,0,M>, M) (< 4,0,N>, N) (< 5,0,C>, C) (< 5,0,E>, E) (< 5,0,H>, 0) (< 5,0,M>, M) (< 5,0,N>, N) (< 6,0,C>, 1 + C) (< 6,0,E>, 1 + E) (< 6,0,H>, 1) (< 6,0,M>, M) (< 6,0,N>, N) (< 7,0,C>, 1 + C + N) (< 7,0,E>, 1 + E + M) (< 7,0,H>, 1) (< 7,0,M>, M) (< 7,0,N>, N) (< 8,0,C>, 1 + C + N) (< 8,0,E>, 1 + E + M) (< 8,0,H>, 1) (< 8,0,M>, M) (< 8,0,N>, N) (< 9,0,C>, 2 + C + N) (< 9,0,E>, 2 + E + M) (< 9,0,H>, 1) (< 9,0,M>, M) (< 9,0,N>, N) (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, 1 + C + N) (<21,0,E>, 1 + E + M) (<21,0,H>, 1) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, 1 + C + N) (<22,0,E>, 1 + E + M) (<22,0,H>, 1) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C + N) (<23,0,E>, 1 + E + M) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f8(C,E,H,M,N) -> f1(C,E,H,M,N) True (1,1) 1. f1(C,E,H,M,N) -> f7(C,E,0,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 2. f1(C,E,H,M,N) -> f7(C,E,0,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 3. f1(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 4. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && 3 >= P && P >= 1] (?,1) 5. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && P >= 5] (?,1) 6. f1(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (?,1) 7. f2(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 8. f2(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 9. f2(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (?,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (?,1) 21. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 22. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 23. f4(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [1 + E >= M && 1 + C >= N && 7 >= P && P >= 1] (?,1) 24. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 25. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 26. f4(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [0->{1,2,3,4,5,6},1->{},2->{},3->{},4->{7,8,9,10,11,12},5->{7,8,9,10,11,12},6->{7,8,9,10,11,12},7->{} ,8->{},9->{},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16,17},14->{16,17},15->{16,17},16->{18,19,20 ,21,22,23,24,25,26},17->{18,19,20,21,22,23,24,25,26},18->{7,8,9,10,11,12},19->{7,8,9,10,11,12},20->{7,8,9,10 ,11,12},21->{},22->{},23->{},24->{},25->{},26->{}] Sizebounds: (< 0,0,C>, C) (< 0,0,E>, E) (< 0,0,H>, H) (< 0,0,M>, M) (< 0,0,N>, N) (< 1,0,C>, C) (< 1,0,E>, E) (< 1,0,H>, 0) (< 1,0,M>, M) (< 1,0,N>, N) (< 2,0,C>, C) (< 2,0,E>, E) (< 2,0,H>, 0) (< 2,0,M>, M) (< 2,0,N>, N) (< 3,0,C>, 1 + C) (< 3,0,E>, 1 + E) (< 3,0,H>, 1) (< 3,0,M>, M) (< 3,0,N>, N) (< 4,0,C>, C) (< 4,0,E>, E) (< 4,0,H>, 0) (< 4,0,M>, M) (< 4,0,N>, N) (< 5,0,C>, C) (< 5,0,E>, E) (< 5,0,H>, 0) (< 5,0,M>, M) (< 5,0,N>, N) (< 6,0,C>, 1 + C) (< 6,0,E>, 1 + E) (< 6,0,H>, 1) (< 6,0,M>, M) (< 6,0,N>, N) (< 7,0,C>, 1 + C + N) (< 7,0,E>, 1 + E + M) (< 7,0,H>, 1) (< 7,0,M>, M) (< 7,0,N>, N) (< 8,0,C>, 1 + C + N) (< 8,0,E>, 1 + E + M) (< 8,0,H>, 1) (< 8,0,M>, M) (< 8,0,N>, N) (< 9,0,C>, 2 + C + N) (< 9,0,E>, 2 + E + M) (< 9,0,H>, 1) (< 9,0,M>, M) (< 9,0,N>, N) (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, 1 + C + N) (<21,0,E>, 1 + E + M) (<21,0,H>, 1) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, 1 + C + N) (<22,0,E>, 1 + E + M) (<22,0,H>, 1) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C + N) (<23,0,E>, 1 + E + M) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(16,18),(16,19)] * Step 5: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f8(C,E,H,M,N) -> f1(C,E,H,M,N) True (1,1) 1. f1(C,E,H,M,N) -> f7(C,E,0,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 2. f1(C,E,H,M,N) -> f7(C,E,0,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 3. f1(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 4. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && 3 >= P && P >= 1] (?,1) 5. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && P >= 5] (?,1) 6. f1(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (?,1) 7. f2(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 8. f2(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 9. f2(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (?,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (?,1) 21. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 22. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [E >= M && C >= N && 7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 23. f4(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [1 + E >= M && 1 + C >= N && 7 >= P && P >= 1] (?,1) 24. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 25. f4(C,E,H,M,N) -> f7(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 26. f4(C,E,H,M,N) -> f7(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [0->{1,2,3,4,5,6},1->{},2->{},3->{},4->{7,8,9,10,11,12},5->{7,8,9,10,11,12},6->{7,8,9,10,11,12},7->{} ,8->{},9->{},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16,17},14->{16,17},15->{16,17},16->{20,21,22 ,23,24,25,26},17->{18,19,20,21,22,23,24,25,26},18->{7,8,9,10,11,12},19->{7,8,9,10,11,12},20->{7,8,9,10,11 ,12},21->{},22->{},23->{},24->{},25->{},26->{}] Sizebounds: (< 0,0,C>, C) (< 0,0,E>, E) (< 0,0,H>, H) (< 0,0,M>, M) (< 0,0,N>, N) (< 1,0,C>, C) (< 1,0,E>, E) (< 1,0,H>, 0) (< 1,0,M>, M) (< 1,0,N>, N) (< 2,0,C>, C) (< 2,0,E>, E) (< 2,0,H>, 0) (< 2,0,M>, M) (< 2,0,N>, N) (< 3,0,C>, 1 + C) (< 3,0,E>, 1 + E) (< 3,0,H>, 1) (< 3,0,M>, M) (< 3,0,N>, N) (< 4,0,C>, C) (< 4,0,E>, E) (< 4,0,H>, 0) (< 4,0,M>, M) (< 4,0,N>, N) (< 5,0,C>, C) (< 5,0,E>, E) (< 5,0,H>, 0) (< 5,0,M>, M) (< 5,0,N>, N) (< 6,0,C>, 1 + C) (< 6,0,E>, 1 + E) (< 6,0,H>, 1) (< 6,0,M>, M) (< 6,0,N>, N) (< 7,0,C>, 1 + C + N) (< 7,0,E>, 1 + E + M) (< 7,0,H>, 1) (< 7,0,M>, M) (< 7,0,N>, N) (< 8,0,C>, 1 + C + N) (< 8,0,E>, 1 + E + M) (< 8,0,H>, 1) (< 8,0,M>, M) (< 8,0,N>, N) (< 9,0,C>, 2 + C + N) (< 9,0,E>, 2 + E + M) (< 9,0,H>, 1) (< 9,0,M>, M) (< 9,0,N>, N) (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, 1 + C + N) (<21,0,E>, 1 + E + M) (<21,0,H>, 1) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, 1 + C + N) (<22,0,E>, 1 + E + M) (<22,0,H>, 1) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C + N) (<23,0,E>, 1 + E + M) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [1,2,3,7,8,9,21,22,23,24,25,26] * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f8(C,E,H,M,N) -> f1(C,E,H,M,N) True (1,1) 4. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && 3 >= P && P >= 1] (?,1) 5. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && P >= 5] (?,1) 6. f1(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (?,1) 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (?,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (?,1) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [0->{4,5,6},4->{10,11,12},5->{10,11,12},6->{10,11,12},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16 ,17},14->{16,17},15->{16,17},16->{20},17->{18,19,20},18->{10,11,12},19->{10,11,12},20->{10,11,12}] Sizebounds: (< 0,0,C>, C) (< 0,0,E>, E) (< 0,0,H>, H) (< 0,0,M>, M) (< 0,0,N>, N) (< 4,0,C>, C) (< 4,0,E>, E) (< 4,0,H>, 0) (< 4,0,M>, M) (< 4,0,N>, N) (< 5,0,C>, C) (< 5,0,E>, E) (< 5,0,H>, 0) (< 5,0,M>, M) (< 5,0,N>, N) (< 6,0,C>, 1 + C) (< 6,0,E>, 1 + E) (< 6,0,H>, 1) (< 6,0,M>, M) (< 6,0,N>, N) (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = -13*x1 + 13*x5 p(f2) = -13*x1 + 13*x5 p(f3) = -13*x1 + 13*x5 p(f4) = -13*x1 + 13*x5 p(f6) = -13*x1 + 13*x5 p(f8) = -13*x1 + 13*x5 The following rules are strictly oriented: [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] ==> f4(C,E,H,M,N) = -13*C + 13*N > -13 + -13*C + 13*N = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: True ==> f8(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f1(C,E,H,M,N) [7 >= P && 3 >= P && P >= 1] ==> f1(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f2(C,E,0,M,N) [7 >= P && P >= 5] ==> f1(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f2(C,E,0,M,N) True ==> f1(C,E,H,M,N) = -13*C + 13*N >= -13 + -13*C + 13*N = f2(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] ==> f2(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] ==> f2(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f3(C,E,H,M,N) [7 >= P && P >= 1] ==> f2(C,E,H,M,N) = -13*C + 13*N >= -13 + -13*C + 13*N = f3(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] ==> f3(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] ==> f3(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f6(C,E,H,M,N) [7 >= P && P >= 1] ==> f3(C,E,H,M,N) = -13*C + 13*N >= -13 + -13*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] ==> f6(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] ==> f6(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f4(C,E,1,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] ==> f4(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] ==> f4(C,E,H,M,N) = -13*C + 13*N >= -13*C + 13*N = f2(C,E,0,M,N) * Step 7: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f8(C,E,H,M,N) -> f1(C,E,H,M,N) True (1,1) 4. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && 3 >= P && P >= 1] (?,1) 5. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && P >= 5] (?,1) 6. f1(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (?,1) 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (?,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [0->{4,5,6},4->{10,11,12},5->{10,11,12},6->{10,11,12},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16 ,17},14->{16,17},15->{16,17},16->{20},17->{18,19,20},18->{10,11,12},19->{10,11,12},20->{10,11,12}] Sizebounds: (< 0,0,C>, C) (< 0,0,E>, E) (< 0,0,H>, H) (< 0,0,M>, M) (< 0,0,N>, N) (< 4,0,C>, C) (< 4,0,E>, E) (< 4,0,H>, 0) (< 4,0,M>, M) (< 4,0,N>, N) (< 5,0,C>, C) (< 5,0,E>, E) (< 5,0,H>, 0) (< 5,0,M>, M) (< 5,0,N>, N) (< 6,0,C>, 1 + C) (< 6,0,E>, 1 + E) (< 6,0,H>, 1) (< 6,0,M>, M) (< 6,0,N>, N) (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 8: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f8(C,E,H,M,N) -> f1(C,E,H,M,N) True (1,1) 4. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && 3 >= P && P >= 1] (1,1) 5. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && P >= 5] (1,1) 6. f1(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,1) 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (?,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [0->{4,5,6},4->{10,11,12},5->{10,11,12},6->{10,11,12},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16 ,17},14->{16,17},15->{16,17},16->{20},17->{18,19,20},18->{10,11,12},19->{10,11,12},20->{10,11,12}] Sizebounds: (< 0,0,C>, C) (< 0,0,E>, E) (< 0,0,H>, H) (< 0,0,M>, M) (< 0,0,N>, N) (< 4,0,C>, C) (< 4,0,E>, E) (< 4,0,H>, 0) (< 4,0,M>, M) (< 4,0,N>, N) (< 5,0,C>, C) (< 5,0,E>, E) (< 5,0,H>, 0) (< 5,0,M>, M) (< 5,0,N>, N) (< 6,0,C>, 1 + C) (< 6,0,E>, 1 + E) (< 6,0,H>, 1) (< 6,0,M>, M) (< 6,0,N>, N) (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [10,18,17,13,11,19,16,14,12,15], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = 1 p(f3) = 1 p(f4) = x3 p(f6) = 1 The following rules are strictly oriented: [7 >= O && 1 >= P && P >= 0 && O >= 1] ==> f6(C,E,H,M,N) = 1 > 0 = f4(C,E,0,M,N) The following rules are weakly oriented: [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] ==> f2(C,E,H,M,N) = 1 >= 1 = f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] ==> f2(C,E,H,M,N) = 1 >= 1 = f3(C,E,H,M,N) [7 >= P && P >= 1] ==> f2(C,E,H,M,N) = 1 >= 1 = f3(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] ==> f3(C,E,H,M,N) = 1 >= 1 = f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] ==> f3(C,E,H,M,N) = 1 >= 1 = f6(C,E,H,M,N) [7 >= P && P >= 1] ==> f3(C,E,H,M,N) = 1 >= 1 = f6(1 + C,1 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] ==> f6(C,E,H,M,N) = 1 >= 1 = f4(C,E,1,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] ==> f4(C,E,H,M,N) = H >= 1 = f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] ==> f4(C,E,H,M,N) = H >= 1 = f2(C,E,0,M,N) We use the following global sizebounds: (< 0,0,C>, C) (< 0,0,E>, E) (< 0,0,H>, H) (< 0,0,M>, M) (< 0,0,N>, N) (< 4,0,C>, C) (< 4,0,E>, E) (< 4,0,H>, 0) (< 4,0,M>, M) (< 4,0,N>, N) (< 5,0,C>, C) (< 5,0,E>, E) (< 5,0,H>, 0) (< 5,0,M>, M) (< 5,0,N>, N) (< 6,0,C>, 1 + C) (< 6,0,E>, 1 + E) (< 6,0,H>, 1) (< 6,0,M>, M) (< 6,0,N>, N) (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) * Step 9: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f8(C,E,H,M,N) -> f1(C,E,H,M,N) True (1,1) 4. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && 3 >= P && P >= 1] (1,1) 5. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && P >= 5] (1,1) 6. f1(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,1) 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (3 + 13*C + 13*N,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [0->{4,5,6},4->{10,11,12},5->{10,11,12},6->{10,11,12},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16 ,17},14->{16,17},15->{16,17},16->{20},17->{18,19,20},18->{10,11,12},19->{10,11,12},20->{10,11,12}] Sizebounds: (< 0,0,C>, C) (< 0,0,E>, E) (< 0,0,H>, H) (< 0,0,M>, M) (< 0,0,N>, N) (< 4,0,C>, C) (< 4,0,E>, E) (< 4,0,H>, 0) (< 4,0,M>, M) (< 4,0,N>, N) (< 5,0,C>, C) (< 5,0,E>, E) (< 5,0,H>, 0) (< 5,0,M>, M) (< 5,0,N>, N) (< 6,0,C>, 1 + C) (< 6,0,E>, 1 + E) (< 6,0,H>, 1) (< 6,0,M>, M) (< 6,0,N>, N) (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) + Applied Processor: ChainProcessor False [0,4,5,6,10,11,12,13,14,15,16,17,18,19,20] + Details: We chained rule 0 to obtain the rules [21,22,23] . * Step 10: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && 3 >= P && P >= 1] (1,1) 5. f1(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P && P >= 5] (1,1) 6. f1(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,1) 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (3 + 13*C + 13*N,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) 21. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1] (1,2) 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [4->{10,11,12},5->{10,11,12},6->{10,11,12},10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16,17} ,14->{16,17},15->{16,17},16->{18,19,20},17->{18,19,20},18->{10,11,12},19->{10,11,12},20->{10,11,12},21->{10 ,11,12},22->{10,11,12},23->{10,11,12}] Sizebounds: (< 4,0,C>, C) (< 4,0,E>, E) (< 4,0,H>, 0) (< 4,0,M>, M) (< 4,0,N>, N) (< 5,0,C>, C) (< 5,0,E>, E) (< 5,0,H>, 0) (< 5,0,M>, M) (< 5,0,N>, N) (< 6,0,C>, 1 + C) (< 6,0,E>, 1 + E) (< 6,0,H>, 1) (< 6,0,M>, M) (< 6,0,N>, N) (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, C) (<21,0,E>, E) (<21,0,H>, 0) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [4,5,6] * Step 11: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 10. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (3 + 13*C + 13*N,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) 21. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1] (1,2) 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [10->{13,14,15},11->{13,14,15},12->{13,14,15},13->{16,17},14->{16,17},15->{16,17},16->{18,19,20},17->{18 ,19,20},18->{10,11,12},19->{10,11,12},20->{10,11,12},21->{10,11,12},22->{10,11,12},23->{10,11,12}] Sizebounds: (<10,0,C>, 1 + C + N) (<10,0,E>, 1 + E + M) (<10,0,H>, 1) (<10,0,M>, M) (<10,0,N>, N) (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, C) (<21,0,E>, E) (<21,0,H>, 0) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) + Applied Processor: ChainProcessor False [10,11,12,13,14,15,16,17,18,19,20,21,22,23] + Details: We chained rule 10 to obtain the rules [24,25,26] . * Step 12: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 11. f2(C,E,H,M,N) -> f3(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (3 + 13*C + 13*N,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) 21. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1] (1,2) 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [11->{13,14,15},12->{13,14,15},13->{16,17},14->{16,17},15->{16,17},16->{18,19,20},17->{18,19,20},18->{11 ,12,24,25,26},19->{11,12,24,25,26},20->{11,12,24,25,26},21->{11,12,24,25,26},22->{11,12,24,25,26},23->{11,12 ,24,25,26},24->{16,17},25->{16,17},26->{16,17}] Sizebounds: (<11,0,C>, 1 + C + N) (<11,0,E>, 1 + E + M) (<11,0,H>, 1) (<11,0,M>, M) (<11,0,N>, N) (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, C) (<21,0,E>, E) (<21,0,H>, 0) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) + Applied Processor: ChainProcessor False [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26] + Details: We chained rule 11 to obtain the rules [27,28,29] . * Step 13: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. f2(C,E,H,M,N) -> f3(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (3 + 13*C + 13*N,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) 21. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1] (1,2) 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [12->{13,14,15},13->{16,17},14->{16,17},15->{16,17},16->{18,19,20},17->{18,19,20},18->{12,24,25,26,27,28 ,29},19->{12,24,25,26,27,28,29},20->{12,24,25,26,27,28,29},21->{12,24,25,26,27,28,29},22->{12,24,25,26,27,28 ,29},23->{12,24,25,26,27,28,29},24->{16,17},25->{16,17},26->{16,17},27->{16,17},28->{16,17},29->{16,17}] Sizebounds: (<12,0,C>, 1 + C + N) (<12,0,E>, 1 + E + M) (<12,0,H>, 1) (<12,0,M>, M) (<12,0,N>, N) (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, C) (<21,0,E>, E) (<21,0,H>, 0) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) + Applied Processor: ChainProcessor False [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] + Details: We chained rule 12 to obtain the rules [30,31,32] . * Step 14: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 13. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1] (?,1) 14. f3(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1] (?,1) 15. f3(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1] (?,1) 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (3 + 13*C + 13*N,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) 21. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1] (1,2) 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [13->{16,17},14->{16,17},15->{16,17},16->{18,19,20},17->{18,19,20},18->{24,25,26,27,28,29,30,31,32} ,19->{24,25,26,27,28,29,30,31,32},20->{24,25,26,27,28,29,30,31,32},21->{24,25,26,27,28,29,30,31,32},22->{24 ,25,26,27,28,29,30,31,32},23->{24,25,26,27,28,29,30,31,32},24->{16,17},25->{16,17},26->{16,17},27->{16,17} ,28->{16,17},29->{16,17},30->{16,17},31->{16,17},32->{16,17}] Sizebounds: (<13,0,C>, 1 + C + N) (<13,0,E>, 1 + E + M) (<13,0,H>, 1) (<13,0,M>, M) (<13,0,N>, N) (<14,0,C>, 1 + C + N) (<14,0,E>, 1 + E + M) (<14,0,H>, 1) (<14,0,M>, M) (<14,0,N>, N) (<15,0,C>, 1 + C + N) (<15,0,E>, 1 + E + M) (<15,0,H>, 1) (<15,0,M>, M) (<15,0,N>, N) (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, C) (<21,0,E>, E) (<21,0,H>, 0) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [13,14,15] * Step 15: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 16. f6(C,E,H,M,N) -> f4(C,E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1] (3 + 13*C + 13*N,1) 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) 21. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1] (1,2) 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [16->{18,19,20},17->{18,19,20},18->{24,25,26,27,28,29,30,31,32},19->{24,25,26,27,28,29,30,31,32},20->{24 ,25,26,27,28,29,30,31,32},21->{24,25,26,27,28,29,30,31,32},22->{24,25,26,27,28,29,30,31,32},23->{24,25,26,27 ,28,29,30,31,32},24->{16,17},25->{16,17},26->{16,17},27->{16,17},28->{16,17},29->{16,17},30->{16,17},31->{16 ,17},32->{16,17}] Sizebounds: (<16,0,C>, 1 + C + N) (<16,0,E>, 1 + E + M) (<16,0,H>, 0) (<16,0,M>, M) (<16,0,N>, N) (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, C) (<21,0,E>, E) (<21,0,H>, 0) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) + Applied Processor: ChainProcessor False [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32] + Details: We chained rule 16 to obtain the rules [33,34,35] . * Step 16: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 17. f6(C,E,H,M,N) -> f4(C,E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && H = 1] (?,1) 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) 21. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1] (1,2) 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [17->{18,19,20},18->{24,25,26,27,28,29,30,31,32},19->{24,25,26,27,28,29,30,31,32},20->{24,25,26,27,28,29 ,30,31,32},21->{24,25,26,27,28,29,30,31,32},22->{24,25,26,27,28,29,30,31,32},23->{24,25,26,27,28,29,30,31 ,32},24->{17,33,34,35},25->{17,33,34,35},26->{17,33,34,35},27->{17,33,34,35},28->{17,33,34,35},29->{17,33,34 ,35},30->{17,33,34,35},31->{17,33,34,35},32->{17,33,34,35},33->{24,25,26,27,28,29,30,31,32},34->{24,25,26,27 ,28,29,30,31,32},35->{24,25,26,27,28,29,30,31,32}] Sizebounds: (<17,0,C>, 1 + C + N) (<17,0,E>, 1 + E + M) (<17,0,H>, 1) (<17,0,M>, M) (<17,0,N>, N) (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, C) (<21,0,E>, E) (<21,0,H>, 0) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) + Applied Processor: ChainProcessor False [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] + Details: We chained rule 17 to obtain the rules [36,37,38] . * Step 17: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 18. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && H = 1] (?,1) 19. f4(C,E,H,M,N) -> f2(C,E,0,M,N) [M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O && 7 >= P && O >= 5 && P >= 1 && H = 1] (?,1) 20. f4(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P && P >= 1] (13*C + 13*N,1) 21. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1] (1,2) 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [18->{24,25,26,27,28,29,30,31,32},19->{24,25,26,27,28,29,30,31,32},20->{24,25,26,27,28,29,30,31,32} ,21->{24,25,26,27,28,29,30,31,32},22->{24,25,26,27,28,29,30,31,32},23->{24,25,26,27,28,29,30,31,32},24->{33 ,34,35,36,37,38},25->{33,34,35,36,37,38},26->{33,34,35,36,37,38},27->{33,34,35,36,37,38},28->{33,34,35,36,37 ,38},29->{33,34,35,36,37,38},30->{33,34,35,36,37,38},31->{33,34,35,36,37,38},32->{33,34,35,36,37,38},33->{24 ,25,26,27,28,29,30,31,32},34->{24,25,26,27,28,29,30,31,32},35->{24,25,26,27,28,29,30,31,32},36->{24,25,26,27 ,28,29,30,31,32},37->{24,25,26,27,28,29,30,31,32},38->{24,25,26,27,28,29,30,31,32}] Sizebounds: (<18,0,C>, N) (<18,0,E>, M) (<18,0,H>, 0) (<18,0,M>, M) (<18,0,N>, N) (<19,0,C>, N) (<19,0,E>, M) (<19,0,H>, 0) (<19,0,M>, M) (<19,0,N>, N) (<20,0,C>, N) (<20,0,E>, M) (<20,0,H>, 0) (<20,0,M>, M) (<20,0,N>, N) (<21,0,C>, C) (<21,0,E>, E) (<21,0,H>, 0) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [18,19,20] * Step 18: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 21. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1] (1,2) 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [21->{24,25,26,27,28,29,30,31,32},22->{24,25,26,27,28,29,30,31,32},23->{24,25,26,27,28,29,30,31,32} ,24->{33,34,35,36,37,38},25->{33,34,35,36,37,38},26->{33,34,35,36,37,38},27->{33,34,35,36,37,38},28->{33,34 ,35,36,37,38},29->{33,34,35,36,37,38},30->{33,34,35,36,37,38},31->{33,34,35,36,37,38},32->{33,34,35,36,37 ,38},33->{24,25,26,27,28,29,30,31,32},34->{24,25,26,27,28,29,30,31,32},35->{24,25,26,27,28,29,30,31,32} ,36->{24,25,26,27,28,29,30,31,32},37->{24,25,26,27,28,29,30,31,32},38->{24,25,26,27,28,29,30,31,32}] Sizebounds: (<21,0,C>, C) (<21,0,E>, E) (<21,0,H>, 0) (<21,0,M>, M) (<21,0,N>, N) (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) + Applied Processor: ChainProcessor False [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] + Details: We chained rule 21 to obtain the rules [39,40,41,42,43,44,45,46,47] . * Step 19: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 22. f8(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= P$ && P$ >= 5] (1,2) 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [22->{24,25,26,27,28,29,30,31,32},23->{24,25,26,27,28,29,30,31,32},24->{33,34,35,36,37,38},25->{33,34,35 ,36,37,38},26->{33,34,35,36,37,38},27->{33,34,35,36,37,38},28->{33,34,35,36,37,38},29->{33,34,35,36,37,38} ,30->{33,34,35,36,37,38},31->{33,34,35,36,37,38},32->{33,34,35,36,37,38},33->{24,25,26,27,28,29,30,31,32} ,34->{24,25,26,27,28,29,30,31,32},35->{24,25,26,27,28,29,30,31,32},36->{24,25,26,27,28,29,30,31,32},37->{24 ,25,26,27,28,29,30,31,32},38->{24,25,26,27,28,29,30,31,32},39->{33,34,35,36,37,38},40->{33,34,35,36,37,38} ,41->{33,34,35,36,37,38},42->{33,34,35,36,37,38},43->{33,34,35,36,37,38},44->{33,34,35,36,37,38},45->{33,34 ,35,36,37,38},46->{33,34,35,36,37,38},47->{33,34,35,36,37,38}] Sizebounds: (<22,0,C>, C) (<22,0,E>, E) (<22,0,H>, 0) (<22,0,M>, M) (<22,0,N>, N) (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) (<39,0,C>, 1 + C + N) (<39,0,E>, 1 + E + M) (<39,0,H>, 1) (<39,0,M>, M) (<39,0,N>, N) (<40,0,C>, 1 + C + N) (<40,0,E>, 1 + E + M) (<40,0,H>, 1) (<40,0,M>, M) (<40,0,N>, N) (<41,0,C>, 1 + C + N) (<41,0,E>, 1 + E + M) (<41,0,H>, 1) (<41,0,M>, M) (<41,0,N>, N) (<42,0,C>, 1 + C + N) (<42,0,E>, 1 + E + M) (<42,0,H>, 1) (<42,0,M>, M) (<42,0,N>, N) (<43,0,C>, 1 + C + N) (<43,0,E>, 1 + E + M) (<43,0,H>, 1) (<43,0,M>, M) (<43,0,N>, N) (<44,0,C>, 1 + C + N) (<44,0,E>, 1 + E + M) (<44,0,H>, 1) (<44,0,M>, M) (<44,0,N>, N) (<45,0,C>, 1 + C + N) (<45,0,E>, 1 + E + M) (<45,0,H>, 1) (<45,0,M>, M) (<45,0,N>, N) (<46,0,C>, 1 + C + N) (<46,0,E>, 1 + E + M) (<46,0,H>, 1) (<46,0,M>, M) (<46,0,N>, N) (<47,0,C>, 1 + C + N) (<47,0,E>, 1 + E + M) (<47,0,H>, 1) (<47,0,M>, M) (<47,0,N>, N) + Applied Processor: ChainProcessor False [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47] + Details: We chained rule 22 to obtain the rules [48,49,50,51,52,53,54,55,56] . * Step 20: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 23. f8(C,E,H,M,N) -> f2(1 + C,1 + E,1,M,N) True (1,2) 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [23->{24,25,26,27,28,29,30,31,32},24->{33,34,35,36,37,38},25->{33,34,35,36,37,38},26->{33,34,35,36,37,38} ,27->{33,34,35,36,37,38},28->{33,34,35,36,37,38},29->{33,34,35,36,37,38},30->{33,34,35,36,37,38},31->{33,34 ,35,36,37,38},32->{33,34,35,36,37,38},33->{24,25,26,27,28,29,30,31,32},34->{24,25,26,27,28,29,30,31,32} ,35->{24,25,26,27,28,29,30,31,32},36->{24,25,26,27,28,29,30,31,32},37->{24,25,26,27,28,29,30,31,32},38->{24 ,25,26,27,28,29,30,31,32},39->{33,34,35,36,37,38},40->{33,34,35,36,37,38},41->{33,34,35,36,37,38},42->{33,34 ,35,36,37,38},43->{33,34,35,36,37,38},44->{33,34,35,36,37,38},45->{33,34,35,36,37,38},46->{33,34,35,36,37 ,38},47->{33,34,35,36,37,38},48->{33,34,35,36,37,38},49->{33,34,35,36,37,38},50->{33,34,35,36,37,38},51->{33 ,34,35,36,37,38},52->{33,34,35,36,37,38},53->{33,34,35,36,37,38},54->{33,34,35,36,37,38},55->{33,34,35,36,37 ,38},56->{33,34,35,36,37,38}] Sizebounds: (<23,0,C>, 1 + C) (<23,0,E>, 1 + E) (<23,0,H>, 1) (<23,0,M>, M) (<23,0,N>, N) (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) (<39,0,C>, 1 + C + N) (<39,0,E>, 1 + E + M) (<39,0,H>, 1) (<39,0,M>, M) (<39,0,N>, N) (<40,0,C>, 1 + C + N) (<40,0,E>, 1 + E + M) (<40,0,H>, 1) (<40,0,M>, M) (<40,0,N>, N) (<41,0,C>, 1 + C + N) (<41,0,E>, 1 + E + M) (<41,0,H>, 1) (<41,0,M>, M) (<41,0,N>, N) (<42,0,C>, 1 + C + N) (<42,0,E>, 1 + E + M) (<42,0,H>, 1) (<42,0,M>, M) (<42,0,N>, N) (<43,0,C>, 1 + C + N) (<43,0,E>, 1 + E + M) (<43,0,H>, 1) (<43,0,M>, M) (<43,0,N>, N) (<44,0,C>, 1 + C + N) (<44,0,E>, 1 + E + M) (<44,0,H>, 1) (<44,0,M>, M) (<44,0,N>, N) (<45,0,C>, 1 + C + N) (<45,0,E>, 1 + E + M) (<45,0,H>, 1) (<45,0,M>, M) (<45,0,N>, N) (<46,0,C>, 1 + C + N) (<46,0,E>, 1 + E + M) (<46,0,H>, 1) (<46,0,M>, M) (<46,0,N>, N) (<47,0,C>, 1 + C + N) (<47,0,E>, 1 + E + M) (<47,0,H>, 1) (<47,0,M>, M) (<47,0,N>, N) (<48,0,C>, 1 + C + N) (<48,0,E>, 1 + E + M) (<48,0,H>, 1) (<48,0,M>, M) (<48,0,N>, N) (<49,0,C>, 1 + C + N) (<49,0,E>, 1 + E + M) (<49,0,H>, 1) (<49,0,M>, M) (<49,0,N>, N) (<50,0,C>, 1 + C + N) (<50,0,E>, 1 + E + M) (<50,0,H>, 1) (<50,0,M>, M) (<50,0,N>, N) (<51,0,C>, 1 + C + N) (<51,0,E>, 1 + E + M) (<51,0,H>, 1) (<51,0,M>, M) (<51,0,N>, N) (<52,0,C>, 1 + C + N) (<52,0,E>, 1 + E + M) (<52,0,H>, 1) (<52,0,M>, M) (<52,0,N>, N) (<53,0,C>, 1 + C + N) (<53,0,E>, 1 + E + M) (<53,0,H>, 1) (<53,0,M>, M) (<53,0,N>, N) (<54,0,C>, 1 + C + N) (<54,0,E>, 1 + E + M) (<54,0,H>, 1) (<54,0,M>, M) (<54,0,N>, N) (<55,0,C>, 1 + C + N) (<55,0,E>, 1 + E + M) (<55,0,H>, 1) (<55,0,M>, M) (<55,0,N>, N) (<56,0,C>, 1 + C + N) (<56,0,E>, 1 + E + M) (<56,0,H>, 1) (<56,0,M>, M) (<56,0,N>, N) + Applied Processor: ChainProcessor False [23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] + Details: We chained rule 23 to obtain the rules [57,58,59,60,61,62,63,64,65] . * Step 21: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 24. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [24->{33,34,35,36,37,38},25->{33,34,35,36,37,38},26->{33,34,35,36,37,38},27->{33,34,35,36,37,38},28->{33 ,34,35,36,37,38},29->{33,34,35,36,37,38},30->{33,34,35,36,37,38},31->{33,34,35,36,37,38},32->{33,34,35,36,37 ,38},33->{24,25,26,27,28,29,30,31,32},34->{24,25,26,27,28,29,30,31,32},35->{24,25,26,27,28,29,30,31,32} ,36->{24,25,26,27,28,29,30,31,32},37->{24,25,26,27,28,29,30,31,32},38->{24,25,26,27,28,29,30,31,32},39->{33 ,34,35,36,37,38},40->{33,34,35,36,37,38},41->{33,34,35,36,37,38},42->{33,34,35,36,37,38},43->{33,34,35,36,37 ,38},44->{33,34,35,36,37,38},45->{33,34,35,36,37,38},46->{33,34,35,36,37,38},47->{33,34,35,36,37,38},48->{33 ,34,35,36,37,38},49->{33,34,35,36,37,38},50->{33,34,35,36,37,38},51->{33,34,35,36,37,38},52->{33,34,35,36,37 ,38},53->{33,34,35,36,37,38},54->{33,34,35,36,37,38},55->{33,34,35,36,37,38},56->{33,34,35,36,37,38},57->{33 ,34,35,36,37,38},58->{33,34,35,36,37,38},59->{33,34,35,36,37,38},60->{33,34,35,36,37,38},61->{33,34,35,36,37 ,38},62->{33,34,35,36,37,38},63->{33,34,35,36,37,38},64->{33,34,35,36,37,38},65->{33,34,35,36,37,38}] Sizebounds: (<24,0,C>, 1 + C + N) (<24,0,E>, 1 + E + M) (<24,0,H>, 1) (<24,0,M>, M) (<24,0,N>, N) (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) (<39,0,C>, 1 + C + N) (<39,0,E>, 1 + E + M) (<39,0,H>, 1) (<39,0,M>, M) (<39,0,N>, N) (<40,0,C>, 1 + C + N) (<40,0,E>, 1 + E + M) (<40,0,H>, 1) (<40,0,M>, M) (<40,0,N>, N) (<41,0,C>, 1 + C + N) (<41,0,E>, 1 + E + M) (<41,0,H>, 1) (<41,0,M>, M) (<41,0,N>, N) (<42,0,C>, 1 + C + N) (<42,0,E>, 1 + E + M) (<42,0,H>, 1) (<42,0,M>, M) (<42,0,N>, N) (<43,0,C>, 1 + C + N) (<43,0,E>, 1 + E + M) (<43,0,H>, 1) (<43,0,M>, M) (<43,0,N>, N) (<44,0,C>, 1 + C + N) (<44,0,E>, 1 + E + M) (<44,0,H>, 1) (<44,0,M>, M) (<44,0,N>, N) (<45,0,C>, 1 + C + N) (<45,0,E>, 1 + E + M) (<45,0,H>, 1) (<45,0,M>, M) (<45,0,N>, N) (<46,0,C>, 1 + C + N) (<46,0,E>, 1 + E + M) (<46,0,H>, 1) (<46,0,M>, M) (<46,0,N>, N) (<47,0,C>, 1 + C + N) (<47,0,E>, 1 + E + M) (<47,0,H>, 1) (<47,0,M>, M) (<47,0,N>, N) (<48,0,C>, 1 + C + N) (<48,0,E>, 1 + E + M) (<48,0,H>, 1) (<48,0,M>, M) (<48,0,N>, N) (<49,0,C>, 1 + C + N) (<49,0,E>, 1 + E + M) (<49,0,H>, 1) (<49,0,M>, M) (<49,0,N>, N) (<50,0,C>, 1 + C + N) (<50,0,E>, 1 + E + M) (<50,0,H>, 1) (<50,0,M>, M) (<50,0,N>, N) (<51,0,C>, 1 + C + N) (<51,0,E>, 1 + E + M) (<51,0,H>, 1) (<51,0,M>, M) (<51,0,N>, N) (<52,0,C>, 1 + C + N) (<52,0,E>, 1 + E + M) (<52,0,H>, 1) (<52,0,M>, M) (<52,0,N>, N) (<53,0,C>, 1 + C + N) (<53,0,E>, 1 + E + M) (<53,0,H>, 1) (<53,0,M>, M) (<53,0,N>, N) (<54,0,C>, 1 + C + N) (<54,0,E>, 1 + E + M) (<54,0,H>, 1) (<54,0,M>, M) (<54,0,N>, N) (<55,0,C>, 1 + C + N) (<55,0,E>, 1 + E + M) (<55,0,H>, 1) (<55,0,M>, M) (<55,0,N>, N) (<56,0,C>, 1 + C + N) (<56,0,E>, 1 + E + M) (<56,0,H>, 1) (<56,0,M>, M) (<56,0,N>, N) (<57,0,C>, 1 + C + N) (<57,0,E>, 1 + E + M) (<57,0,H>, 1) (<57,0,M>, M) (<57,0,N>, N) (<58,0,C>, 1 + C + N) (<58,0,E>, 1 + E + M) (<58,0,H>, 1) (<58,0,M>, M) (<58,0,N>, N) (<59,0,C>, 1 + C + N) (<59,0,E>, 1 + E + M) (<59,0,H>, 1) (<59,0,M>, M) (<59,0,N>, N) (<60,0,C>, 1 + C + N) (<60,0,E>, 1 + E + M) (<60,0,H>, 1) (<60,0,M>, M) (<60,0,N>, N) (<61,0,C>, 1 + C + N) (<61,0,E>, 1 + E + M) (<61,0,H>, 1) (<61,0,M>, M) (<61,0,N>, N) (<62,0,C>, 1 + C + N) (<62,0,E>, 1 + E + M) (<62,0,H>, 1) (<62,0,M>, M) (<62,0,N>, N) (<63,0,C>, 1 + C + N) (<63,0,E>, 1 + E + M) (<63,0,H>, 1) (<63,0,M>, M) (<63,0,N>, N) (<64,0,C>, 1 + C + N) (<64,0,E>, 1 + E + M) (<64,0,H>, 1) (<64,0,M>, M) (<64,0,N>, N) (<65,0,C>, 1 + C + N) (<65,0,E>, 1 + E + M) (<65,0,H>, 1) (<65,0,M>, M) (<65,0,N>, N) + Applied Processor: ChainProcessor False [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] + Details: We chained rule 24 to obtain the rules [66,67,68,69,70,71] . * Step 22: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 25. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 66. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 67. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 69. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 70. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 71. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [25->{33,34,35,36,37,38},26->{33,34,35,36,37,38},27->{33,34,35,36,37,38},28->{33,34,35,36,37,38},29->{33 ,34,35,36,37,38},30->{33,34,35,36,37,38},31->{33,34,35,36,37,38},32->{33,34,35,36,37,38},33->{25,26,27,28,29 ,30,31,32,66,67,68,69,70,71},34->{25,26,27,28,29,30,31,32,66,67,68,69,70,71},35->{25,26,27,28,29,30,31,32,66 ,67,68,69,70,71},36->{25,26,27,28,29,30,31,32,66,67,68,69,70,71},37->{25,26,27,28,29,30,31,32,66,67,68,69,70 ,71},38->{25,26,27,28,29,30,31,32,66,67,68,69,70,71},39->{33,34,35,36,37,38},40->{33,34,35,36,37,38},41->{33 ,34,35,36,37,38},42->{33,34,35,36,37,38},43->{33,34,35,36,37,38},44->{33,34,35,36,37,38},45->{33,34,35,36,37 ,38},46->{33,34,35,36,37,38},47->{33,34,35,36,37,38},48->{33,34,35,36,37,38},49->{33,34,35,36,37,38},50->{33 ,34,35,36,37,38},51->{33,34,35,36,37,38},52->{33,34,35,36,37,38},53->{33,34,35,36,37,38},54->{33,34,35,36,37 ,38},55->{33,34,35,36,37,38},56->{33,34,35,36,37,38},57->{33,34,35,36,37,38},58->{33,34,35,36,37,38},59->{33 ,34,35,36,37,38},60->{33,34,35,36,37,38},61->{33,34,35,36,37,38},62->{33,34,35,36,37,38},63->{33,34,35,36,37 ,38},64->{33,34,35,36,37,38},65->{33,34,35,36,37,38},66->{25,26,27,28,29,30,31,32,66,67,68,69,70,71},67->{25 ,26,27,28,29,30,31,32,66,67,68,69,70,71},68->{25,26,27,28,29,30,31,32,66,67,68,69,70,71},69->{25,26,27,28,29 ,30,31,32,66,67,68,69,70,71},70->{25,26,27,28,29,30,31,32,66,67,68,69,70,71},71->{25,26,27,28,29,30,31,32,66 ,67,68,69,70,71}] Sizebounds: (<25,0,C>, 1 + C + N) (<25,0,E>, 1 + E + M) (<25,0,H>, 1) (<25,0,M>, M) (<25,0,N>, N) (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) (<39,0,C>, 1 + C + N) (<39,0,E>, 1 + E + M) (<39,0,H>, 1) (<39,0,M>, M) (<39,0,N>, N) (<40,0,C>, 1 + C + N) (<40,0,E>, 1 + E + M) (<40,0,H>, 1) (<40,0,M>, M) (<40,0,N>, N) (<41,0,C>, 1 + C + N) (<41,0,E>, 1 + E + M) (<41,0,H>, 1) (<41,0,M>, M) (<41,0,N>, N) (<42,0,C>, 1 + C + N) (<42,0,E>, 1 + E + M) (<42,0,H>, 1) (<42,0,M>, M) (<42,0,N>, N) (<43,0,C>, 1 + C + N) (<43,0,E>, 1 + E + M) (<43,0,H>, 1) (<43,0,M>, M) (<43,0,N>, N) (<44,0,C>, 1 + C + N) (<44,0,E>, 1 + E + M) (<44,0,H>, 1) (<44,0,M>, M) (<44,0,N>, N) (<45,0,C>, 1 + C + N) (<45,0,E>, 1 + E + M) (<45,0,H>, 1) (<45,0,M>, M) (<45,0,N>, N) (<46,0,C>, 1 + C + N) (<46,0,E>, 1 + E + M) (<46,0,H>, 1) (<46,0,M>, M) (<46,0,N>, N) (<47,0,C>, 1 + C + N) (<47,0,E>, 1 + E + M) (<47,0,H>, 1) (<47,0,M>, M) (<47,0,N>, N) (<48,0,C>, 1 + C + N) (<48,0,E>, 1 + E + M) (<48,0,H>, 1) (<48,0,M>, M) (<48,0,N>, N) (<49,0,C>, 1 + C + N) (<49,0,E>, 1 + E + M) (<49,0,H>, 1) (<49,0,M>, M) (<49,0,N>, N) (<50,0,C>, 1 + C + N) (<50,0,E>, 1 + E + M) (<50,0,H>, 1) (<50,0,M>, M) (<50,0,N>, N) (<51,0,C>, 1 + C + N) (<51,0,E>, 1 + E + M) (<51,0,H>, 1) (<51,0,M>, M) (<51,0,N>, N) (<52,0,C>, 1 + C + N) (<52,0,E>, 1 + E + M) (<52,0,H>, 1) (<52,0,M>, M) (<52,0,N>, N) (<53,0,C>, 1 + C + N) (<53,0,E>, 1 + E + M) (<53,0,H>, 1) (<53,0,M>, M) (<53,0,N>, N) (<54,0,C>, 1 + C + N) (<54,0,E>, 1 + E + M) (<54,0,H>, 1) (<54,0,M>, M) (<54,0,N>, N) (<55,0,C>, 1 + C + N) (<55,0,E>, 1 + E + M) (<55,0,H>, 1) (<55,0,M>, M) (<55,0,N>, N) (<56,0,C>, 1 + C + N) (<56,0,E>, 1 + E + M) (<56,0,H>, 1) (<56,0,M>, M) (<56,0,N>, N) (<57,0,C>, 1 + C + N) (<57,0,E>, 1 + E + M) (<57,0,H>, 1) (<57,0,M>, M) (<57,0,N>, N) (<58,0,C>, 1 + C + N) (<58,0,E>, 1 + E + M) (<58,0,H>, 1) (<58,0,M>, M) (<58,0,N>, N) (<59,0,C>, 1 + C + N) (<59,0,E>, 1 + E + M) (<59,0,H>, 1) (<59,0,M>, M) (<59,0,N>, N) (<60,0,C>, 1 + C + N) (<60,0,E>, 1 + E + M) (<60,0,H>, 1) (<60,0,M>, M) (<60,0,N>, N) (<61,0,C>, 1 + C + N) (<61,0,E>, 1 + E + M) (<61,0,H>, 1) (<61,0,M>, M) (<61,0,N>, N) (<62,0,C>, 1 + C + N) (<62,0,E>, 1 + E + M) (<62,0,H>, 1) (<62,0,M>, M) (<62,0,N>, N) (<63,0,C>, 1 + C + N) (<63,0,E>, 1 + E + M) (<63,0,H>, 1) (<63,0,M>, M) (<63,0,N>, N) (<64,0,C>, 1 + C + N) (<64,0,E>, 1 + E + M) (<64,0,H>, 1) (<64,0,M>, M) (<64,0,N>, N) (<65,0,C>, 1 + C + N) (<65,0,E>, 1 + E + M) (<65,0,H>, 1) (<65,0,M>, M) (<65,0,N>, N) (<66,0,C>, N) (<66,0,E>, M) (<66,0,H>, 0) (<66,0,M>, M) (<66,0,N>, N) (<67,0,C>, N) (<67,0,E>, M) (<67,0,H>, 0) (<67,0,M>, M) (<67,0,N>, N) (<68,0,C>, N) (<68,0,E>, M) (<68,0,H>, 0) (<68,0,M>, M) (<68,0,N>, N) (<69,0,C>, N) (<69,0,E>, M) (<69,0,H>, 0) (<69,0,M>, M) (<69,0,N>, N) (<70,0,C>, N) (<70,0,E>, M) (<70,0,H>, 0) (<70,0,M>, M) (<70,0,N>, N) (<71,0,C>, N) (<71,0,E>, M) (<71,0,H>, 0) (<71,0,M>, M) (<71,0,N>, N) + Applied Processor: ChainProcessor False [25,26,27,28,29,30,31,32,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] + Details: We chained rule 25 to obtain the rules [72,73,74,75,76,77] . * Step 23: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 26. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 66. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 67. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 69. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 70. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 71. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 72. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 73. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 75. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 76. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 77. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [26->{33,34,35,36,37,38},27->{33,34,35,36,37,38},28->{33,34,35,36,37,38},29->{33,34,35,36,37,38},30->{33 ,34,35,36,37,38},31->{33,34,35,36,37,38},32->{33,34,35,36,37,38},33->{26,27,28,29,30,31,32,66,67,68,69,70,71 ,72,73,74,75,76,77},34->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77},35->{26,27,28,29,30,31,32 ,66,67,68,69,70,71,72,73,74,75,76,77},36->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77},37->{26 ,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77},38->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74 ,75,76,77},39->{33,34,35,36,37,38},40->{33,34,35,36,37,38},41->{33,34,35,36,37,38},42->{33,34,35,36,37,38} ,43->{33,34,35,36,37,38},44->{33,34,35,36,37,38},45->{33,34,35,36,37,38},46->{33,34,35,36,37,38},47->{33,34 ,35,36,37,38},48->{33,34,35,36,37,38},49->{33,34,35,36,37,38},50->{33,34,35,36,37,38},51->{33,34,35,36,37 ,38},52->{33,34,35,36,37,38},53->{33,34,35,36,37,38},54->{33,34,35,36,37,38},55->{33,34,35,36,37,38},56->{33 ,34,35,36,37,38},57->{33,34,35,36,37,38},58->{33,34,35,36,37,38},59->{33,34,35,36,37,38},60->{33,34,35,36,37 ,38},61->{33,34,35,36,37,38},62->{33,34,35,36,37,38},63->{33,34,35,36,37,38},64->{33,34,35,36,37,38},65->{33 ,34,35,36,37,38},66->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77},67->{26,27,28,29,30,31,32,66 ,67,68,69,70,71,72,73,74,75,76,77},68->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77},69->{26,27 ,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77},70->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75 ,76,77},71->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77},72->{26,27,28,29,30,31,32,66,67,68,69 ,70,71,72,73,74,75,76,77},73->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77},74->{26,27,28,29,30 ,31,32,66,67,68,69,70,71,72,73,74,75,76,77},75->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77} ,76->{26,27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77},77->{26,27,28,29,30,31,32,66,67,68,69,70,71 ,72,73,74,75,76,77}] Sizebounds: (<26,0,C>, 1 + C + N) (<26,0,E>, 1 + E + M) (<26,0,H>, 1) (<26,0,M>, M) (<26,0,N>, N) (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) (<39,0,C>, 1 + C + N) (<39,0,E>, 1 + E + M) (<39,0,H>, 1) (<39,0,M>, M) (<39,0,N>, N) (<40,0,C>, 1 + C + N) (<40,0,E>, 1 + E + M) (<40,0,H>, 1) (<40,0,M>, M) (<40,0,N>, N) (<41,0,C>, 1 + C + N) (<41,0,E>, 1 + E + M) (<41,0,H>, 1) (<41,0,M>, M) (<41,0,N>, N) (<42,0,C>, 1 + C + N) (<42,0,E>, 1 + E + M) (<42,0,H>, 1) (<42,0,M>, M) (<42,0,N>, N) (<43,0,C>, 1 + C + N) (<43,0,E>, 1 + E + M) (<43,0,H>, 1) (<43,0,M>, M) (<43,0,N>, N) (<44,0,C>, 1 + C + N) (<44,0,E>, 1 + E + M) (<44,0,H>, 1) (<44,0,M>, M) (<44,0,N>, N) (<45,0,C>, 1 + C + N) (<45,0,E>, 1 + E + M) (<45,0,H>, 1) (<45,0,M>, M) (<45,0,N>, N) (<46,0,C>, 1 + C + N) (<46,0,E>, 1 + E + M) (<46,0,H>, 1) (<46,0,M>, M) (<46,0,N>, N) (<47,0,C>, 1 + C + N) (<47,0,E>, 1 + E + M) (<47,0,H>, 1) (<47,0,M>, M) (<47,0,N>, N) (<48,0,C>, 1 + C + N) (<48,0,E>, 1 + E + M) (<48,0,H>, 1) (<48,0,M>, M) (<48,0,N>, N) (<49,0,C>, 1 + C + N) (<49,0,E>, 1 + E + M) (<49,0,H>, 1) (<49,0,M>, M) (<49,0,N>, N) (<50,0,C>, 1 + C + N) (<50,0,E>, 1 + E + M) (<50,0,H>, 1) (<50,0,M>, M) (<50,0,N>, N) (<51,0,C>, 1 + C + N) (<51,0,E>, 1 + E + M) (<51,0,H>, 1) (<51,0,M>, M) (<51,0,N>, N) (<52,0,C>, 1 + C + N) (<52,0,E>, 1 + E + M) (<52,0,H>, 1) (<52,0,M>, M) (<52,0,N>, N) (<53,0,C>, 1 + C + N) (<53,0,E>, 1 + E + M) (<53,0,H>, 1) (<53,0,M>, M) (<53,0,N>, N) (<54,0,C>, 1 + C + N) (<54,0,E>, 1 + E + M) (<54,0,H>, 1) (<54,0,M>, M) (<54,0,N>, N) (<55,0,C>, 1 + C + N) (<55,0,E>, 1 + E + M) (<55,0,H>, 1) (<55,0,M>, M) (<55,0,N>, N) (<56,0,C>, 1 + C + N) (<56,0,E>, 1 + E + M) (<56,0,H>, 1) (<56,0,M>, M) (<56,0,N>, N) (<57,0,C>, 1 + C + N) (<57,0,E>, 1 + E + M) (<57,0,H>, 1) (<57,0,M>, M) (<57,0,N>, N) (<58,0,C>, 1 + C + N) (<58,0,E>, 1 + E + M) (<58,0,H>, 1) (<58,0,M>, M) (<58,0,N>, N) (<59,0,C>, 1 + C + N) (<59,0,E>, 1 + E + M) (<59,0,H>, 1) (<59,0,M>, M) (<59,0,N>, N) (<60,0,C>, 1 + C + N) (<60,0,E>, 1 + E + M) (<60,0,H>, 1) (<60,0,M>, M) (<60,0,N>, N) (<61,0,C>, 1 + C + N) (<61,0,E>, 1 + E + M) (<61,0,H>, 1) (<61,0,M>, M) (<61,0,N>, N) (<62,0,C>, 1 + C + N) (<62,0,E>, 1 + E + M) (<62,0,H>, 1) (<62,0,M>, M) (<62,0,N>, N) (<63,0,C>, 1 + C + N) (<63,0,E>, 1 + E + M) (<63,0,H>, 1) (<63,0,M>, M) (<63,0,N>, N) (<64,0,C>, 1 + C + N) (<64,0,E>, 1 + E + M) (<64,0,H>, 1) (<64,0,M>, M) (<64,0,N>, N) (<65,0,C>, 1 + C + N) (<65,0,E>, 1 + E + M) (<65,0,H>, 1) (<65,0,M>, M) (<65,0,N>, N) (<66,0,C>, N) (<66,0,E>, M) (<66,0,H>, 0) (<66,0,M>, M) (<66,0,N>, N) (<67,0,C>, N) (<67,0,E>, M) (<67,0,H>, 0) (<67,0,M>, M) (<67,0,N>, N) (<68,0,C>, N) (<68,0,E>, M) (<68,0,H>, 0) (<68,0,M>, M) (<68,0,N>, N) (<69,0,C>, N) (<69,0,E>, M) (<69,0,H>, 0) (<69,0,M>, M) (<69,0,N>, N) (<70,0,C>, N) (<70,0,E>, M) (<70,0,H>, 0) (<70,0,M>, M) (<70,0,N>, N) (<71,0,C>, N) (<71,0,E>, M) (<71,0,H>, 0) (<71,0,M>, M) (<71,0,N>, N) (<72,0,C>, N) (<72,0,E>, M) (<72,0,H>, 0) (<72,0,M>, M) (<72,0,N>, N) (<73,0,C>, N) (<73,0,E>, M) (<73,0,H>, 0) (<73,0,M>, M) (<73,0,N>, N) (<74,0,C>, N) (<74,0,E>, M) (<74,0,H>, 0) (<74,0,M>, M) (<74,0,N>, N) (<75,0,C>, N) (<75,0,E>, M) (<75,0,H>, 0) (<75,0,M>, M) (<75,0,N>, N) (<76,0,C>, N) (<76,0,E>, M) (<76,0,H>, 0) (<76,0,M>, M) (<76,0,N>, N) (<77,0,C>, N) (<77,0,E>, M) (<77,0,H>, 0) (<77,0,M>, M) (<77,0,N>, N) + Applied Processor: ChainProcessor False [26,27,28,29,30,31,32,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] + Details: We chained rule 26 to obtain the rules [78,79,80,81,82,83] . * Step 24: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 27. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 66. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 67. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 69. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 70. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 71. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 72. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 73. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 75. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 76. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 77. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 78. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 79. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [27->{33,34,35,36,37,38},28->{33,34,35,36,37,38},29->{33,34,35,36,37,38},30->{33,34,35,36,37,38},31->{33 ,34,35,36,37,38},32->{33,34,35,36,37,38},33->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80 ,81,82,83},34->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},35->{27,28,29,30,31 ,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},36->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74 ,75,76,77,78,79,80,81,82,83},37->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83} ,38->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},39->{33,34,35,36,37,38} ,40->{33,34,35,36,37,38},41->{33,34,35,36,37,38},42->{33,34,35,36,37,38},43->{33,34,35,36,37,38},44->{33,34 ,35,36,37,38},45->{33,34,35,36,37,38},46->{33,34,35,36,37,38},47->{33,34,35,36,37,38},48->{33,34,35,36,37 ,38},49->{33,34,35,36,37,38},50->{33,34,35,36,37,38},51->{33,34,35,36,37,38},52->{33,34,35,36,37,38},53->{33 ,34,35,36,37,38},54->{33,34,35,36,37,38},55->{33,34,35,36,37,38},56->{33,34,35,36,37,38},57->{33,34,35,36,37 ,38},58->{33,34,35,36,37,38},59->{33,34,35,36,37,38},60->{33,34,35,36,37,38},61->{33,34,35,36,37,38},62->{33 ,34,35,36,37,38},63->{33,34,35,36,37,38},64->{33,34,35,36,37,38},65->{33,34,35,36,37,38},66->{27,28,29,30,31 ,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},67->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74 ,75,76,77,78,79,80,81,82,83},68->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83} ,69->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},70->{27,28,29,30,31,32,66,67 ,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},71->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77 ,78,79,80,81,82,83},72->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},73->{27,28 ,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},74->{27,28,29,30,31,32,66,67,68,69,70,71 ,72,73,74,75,76,77,78,79,80,81,82,83},75->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 ,82,83},76->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},77->{27,28,29,30,31,32 ,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},78->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75 ,76,77,78,79,80,81,82,83},79->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83} ,80->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},81->{27,28,29,30,31,32,66,67 ,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83},82->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77 ,78,79,80,81,82,83},83->{27,28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83}] Sizebounds: (<27,0,C>, 1 + C + N) (<27,0,E>, 1 + E + M) (<27,0,H>, 1) (<27,0,M>, M) (<27,0,N>, N) (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) (<39,0,C>, 1 + C + N) (<39,0,E>, 1 + E + M) (<39,0,H>, 1) (<39,0,M>, M) (<39,0,N>, N) (<40,0,C>, 1 + C + N) (<40,0,E>, 1 + E + M) (<40,0,H>, 1) (<40,0,M>, M) (<40,0,N>, N) (<41,0,C>, 1 + C + N) (<41,0,E>, 1 + E + M) (<41,0,H>, 1) (<41,0,M>, M) (<41,0,N>, N) (<42,0,C>, 1 + C + N) (<42,0,E>, 1 + E + M) (<42,0,H>, 1) (<42,0,M>, M) (<42,0,N>, N) (<43,0,C>, 1 + C + N) (<43,0,E>, 1 + E + M) (<43,0,H>, 1) (<43,0,M>, M) (<43,0,N>, N) (<44,0,C>, 1 + C + N) (<44,0,E>, 1 + E + M) (<44,0,H>, 1) (<44,0,M>, M) (<44,0,N>, N) (<45,0,C>, 1 + C + N) (<45,0,E>, 1 + E + M) (<45,0,H>, 1) (<45,0,M>, M) (<45,0,N>, N) (<46,0,C>, 1 + C + N) (<46,0,E>, 1 + E + M) (<46,0,H>, 1) (<46,0,M>, M) (<46,0,N>, N) (<47,0,C>, 1 + C + N) (<47,0,E>, 1 + E + M) (<47,0,H>, 1) (<47,0,M>, M) (<47,0,N>, N) (<48,0,C>, 1 + C + N) (<48,0,E>, 1 + E + M) (<48,0,H>, 1) (<48,0,M>, M) (<48,0,N>, N) (<49,0,C>, 1 + C + N) (<49,0,E>, 1 + E + M) (<49,0,H>, 1) (<49,0,M>, M) (<49,0,N>, N) (<50,0,C>, 1 + C + N) (<50,0,E>, 1 + E + M) (<50,0,H>, 1) (<50,0,M>, M) (<50,0,N>, N) (<51,0,C>, 1 + C + N) (<51,0,E>, 1 + E + M) (<51,0,H>, 1) (<51,0,M>, M) (<51,0,N>, N) (<52,0,C>, 1 + C + N) (<52,0,E>, 1 + E + M) (<52,0,H>, 1) (<52,0,M>, M) (<52,0,N>, N) (<53,0,C>, 1 + C + N) (<53,0,E>, 1 + E + M) (<53,0,H>, 1) (<53,0,M>, M) (<53,0,N>, N) (<54,0,C>, 1 + C + N) (<54,0,E>, 1 + E + M) (<54,0,H>, 1) (<54,0,M>, M) (<54,0,N>, N) (<55,0,C>, 1 + C + N) (<55,0,E>, 1 + E + M) (<55,0,H>, 1) (<55,0,M>, M) (<55,0,N>, N) (<56,0,C>, 1 + C + N) (<56,0,E>, 1 + E + M) (<56,0,H>, 1) (<56,0,M>, M) (<56,0,N>, N) (<57,0,C>, 1 + C + N) (<57,0,E>, 1 + E + M) (<57,0,H>, 1) (<57,0,M>, M) (<57,0,N>, N) (<58,0,C>, 1 + C + N) (<58,0,E>, 1 + E + M) (<58,0,H>, 1) (<58,0,M>, M) (<58,0,N>, N) (<59,0,C>, 1 + C + N) (<59,0,E>, 1 + E + M) (<59,0,H>, 1) (<59,0,M>, M) (<59,0,N>, N) (<60,0,C>, 1 + C + N) (<60,0,E>, 1 + E + M) (<60,0,H>, 1) (<60,0,M>, M) (<60,0,N>, N) (<61,0,C>, 1 + C + N) (<61,0,E>, 1 + E + M) (<61,0,H>, 1) (<61,0,M>, M) (<61,0,N>, N) (<62,0,C>, 1 + C + N) (<62,0,E>, 1 + E + M) (<62,0,H>, 1) (<62,0,M>, M) (<62,0,N>, N) (<63,0,C>, 1 + C + N) (<63,0,E>, 1 + E + M) (<63,0,H>, 1) (<63,0,M>, M) (<63,0,N>, N) (<64,0,C>, 1 + C + N) (<64,0,E>, 1 + E + M) (<64,0,H>, 1) (<64,0,M>, M) (<64,0,N>, N) (<65,0,C>, 1 + C + N) (<65,0,E>, 1 + E + M) (<65,0,H>, 1) (<65,0,M>, M) (<65,0,N>, N) (<66,0,C>, N) (<66,0,E>, M) (<66,0,H>, 0) (<66,0,M>, M) (<66,0,N>, N) (<67,0,C>, N) (<67,0,E>, M) (<67,0,H>, 0) (<67,0,M>, M) (<67,0,N>, N) (<68,0,C>, N) (<68,0,E>, M) (<68,0,H>, 0) (<68,0,M>, M) (<68,0,N>, N) (<69,0,C>, N) (<69,0,E>, M) (<69,0,H>, 0) (<69,0,M>, M) (<69,0,N>, N) (<70,0,C>, N) (<70,0,E>, M) (<70,0,H>, 0) (<70,0,M>, M) (<70,0,N>, N) (<71,0,C>, N) (<71,0,E>, M) (<71,0,H>, 0) (<71,0,M>, M) (<71,0,N>, N) (<72,0,C>, N) (<72,0,E>, M) (<72,0,H>, 0) (<72,0,M>, M) (<72,0,N>, N) (<73,0,C>, N) (<73,0,E>, M) (<73,0,H>, 0) (<73,0,M>, M) (<73,0,N>, N) (<74,0,C>, N) (<74,0,E>, M) (<74,0,H>, 0) (<74,0,M>, M) (<74,0,N>, N) (<75,0,C>, N) (<75,0,E>, M) (<75,0,H>, 0) (<75,0,M>, M) (<75,0,N>, N) (<76,0,C>, N) (<76,0,E>, M) (<76,0,H>, 0) (<76,0,M>, M) (<76,0,N>, N) (<77,0,C>, N) (<77,0,E>, M) (<77,0,H>, 0) (<77,0,M>, M) (<77,0,N>, N) (<78,0,C>, N) (<78,0,E>, M) (<78,0,H>, 0) (<78,0,M>, M) (<78,0,N>, N) (<79,0,C>, N) (<79,0,E>, M) (<79,0,H>, 0) (<79,0,M>, M) (<79,0,N>, N) (<80,0,C>, N) (<80,0,E>, M) (<80,0,H>, 0) (<80,0,M>, M) (<80,0,N>, N) (<81,0,C>, N) (<81,0,E>, M) (<81,0,H>, 0) (<81,0,M>, M) (<81,0,N>, N) (<82,0,C>, N) (<82,0,E>, M) (<82,0,H>, 0) (<82,0,M>, M) (<82,0,N>, N) (<83,0,C>, N) (<83,0,E>, M) (<83,0,H>, 0) (<83,0,M>, M) (<83,0,N>, N) + Applied Processor: ChainProcessor False [27,28,29,30,31,32,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] + Details: We chained rule 27 to obtain the rules [84,85,86,87,88,89] . * Step 25: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 28. f2(C,E,H,M,N) -> f6(C,E,H,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 66. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 67. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 69. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 70. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 71. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 72. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 73. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 75. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 76. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 77. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 78. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 79. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 84. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 85. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 87. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 88. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 89. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [28->{33,34,35,36,37,38},29->{33,34,35,36,37,38},30->{33,34,35,36,37,38},31->{33,34,35,36,37,38},32->{33 ,34,35,36,37,38},33->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 ,89},34->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},35->{28,29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},36->{28,29,30,31,32,66,67 ,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},37->{28,29,30,31,32,66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},38->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77 ,78,79,80,81,82,83,84,85,86,87,88,89},39->{33,34,35,36,37,38},40->{33,34,35,36,37,38},41->{33,34,35,36,37 ,38},42->{33,34,35,36,37,38},43->{33,34,35,36,37,38},44->{33,34,35,36,37,38},45->{33,34,35,36,37,38},46->{33 ,34,35,36,37,38},47->{33,34,35,36,37,38},48->{33,34,35,36,37,38},49->{33,34,35,36,37,38},50->{33,34,35,36,37 ,38},51->{33,34,35,36,37,38},52->{33,34,35,36,37,38},53->{33,34,35,36,37,38},54->{33,34,35,36,37,38},55->{33 ,34,35,36,37,38},56->{33,34,35,36,37,38},57->{33,34,35,36,37,38},58->{33,34,35,36,37,38},59->{33,34,35,36,37 ,38},60->{33,34,35,36,37,38},61->{33,34,35,36,37,38},62->{33,34,35,36,37,38},63->{33,34,35,36,37,38},64->{33 ,34,35,36,37,38},65->{33,34,35,36,37,38},66->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 ,82,83,84,85,86,87,88,89},67->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 ,87,88,89},68->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89} ,69->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},70->{28,29,30 ,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},71->{28,29,30,31,32,66,67,68 ,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},72->{28,29,30,31,32,66,67,68,69,70,71,72,73 ,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},73->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78 ,79,80,81,82,83,84,85,86,87,88,89},74->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 ,84,85,86,87,88,89},75->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 ,89},76->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},77->{28,29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},78->{28,29,30,31,32,66,67 ,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},79->{28,29,30,31,32,66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},80->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77 ,78,79,80,81,82,83,84,85,86,87,88,89},81->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 ,83,84,85,86,87,88,89},82->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87 ,88,89},83->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},84->{28 ,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},85->{28,29,30,31,32,66 ,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},86->{28,29,30,31,32,66,67,68,69,70,71 ,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89},87->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76 ,77,78,79,80,81,82,83,84,85,86,87,88,89},88->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81 ,82,83,84,85,86,87,88,89},89->{28,29,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 ,87,88,89}] Sizebounds: (<28,0,C>, 1 + C + N) (<28,0,E>, 1 + E + M) (<28,0,H>, 1) (<28,0,M>, M) (<28,0,N>, N) (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) (<39,0,C>, 1 + C + N) (<39,0,E>, 1 + E + M) (<39,0,H>, 1) (<39,0,M>, M) (<39,0,N>, N) (<40,0,C>, 1 + C + N) (<40,0,E>, 1 + E + M) (<40,0,H>, 1) (<40,0,M>, M) (<40,0,N>, N) (<41,0,C>, 1 + C + N) (<41,0,E>, 1 + E + M) (<41,0,H>, 1) (<41,0,M>, M) (<41,0,N>, N) (<42,0,C>, 1 + C + N) (<42,0,E>, 1 + E + M) (<42,0,H>, 1) (<42,0,M>, M) (<42,0,N>, N) (<43,0,C>, 1 + C + N) (<43,0,E>, 1 + E + M) (<43,0,H>, 1) (<43,0,M>, M) (<43,0,N>, N) (<44,0,C>, 1 + C + N) (<44,0,E>, 1 + E + M) (<44,0,H>, 1) (<44,0,M>, M) (<44,0,N>, N) (<45,0,C>, 1 + C + N) (<45,0,E>, 1 + E + M) (<45,0,H>, 1) (<45,0,M>, M) (<45,0,N>, N) (<46,0,C>, 1 + C + N) (<46,0,E>, 1 + E + M) (<46,0,H>, 1) (<46,0,M>, M) (<46,0,N>, N) (<47,0,C>, 1 + C + N) (<47,0,E>, 1 + E + M) (<47,0,H>, 1) (<47,0,M>, M) (<47,0,N>, N) (<48,0,C>, 1 + C + N) (<48,0,E>, 1 + E + M) (<48,0,H>, 1) (<48,0,M>, M) (<48,0,N>, N) (<49,0,C>, 1 + C + N) (<49,0,E>, 1 + E + M) (<49,0,H>, 1) (<49,0,M>, M) (<49,0,N>, N) (<50,0,C>, 1 + C + N) (<50,0,E>, 1 + E + M) (<50,0,H>, 1) (<50,0,M>, M) (<50,0,N>, N) (<51,0,C>, 1 + C + N) (<51,0,E>, 1 + E + M) (<51,0,H>, 1) (<51,0,M>, M) (<51,0,N>, N) (<52,0,C>, 1 + C + N) (<52,0,E>, 1 + E + M) (<52,0,H>, 1) (<52,0,M>, M) (<52,0,N>, N) (<53,0,C>, 1 + C + N) (<53,0,E>, 1 + E + M) (<53,0,H>, 1) (<53,0,M>, M) (<53,0,N>, N) (<54,0,C>, 1 + C + N) (<54,0,E>, 1 + E + M) (<54,0,H>, 1) (<54,0,M>, M) (<54,0,N>, N) (<55,0,C>, 1 + C + N) (<55,0,E>, 1 + E + M) (<55,0,H>, 1) (<55,0,M>, M) (<55,0,N>, N) (<56,0,C>, 1 + C + N) (<56,0,E>, 1 + E + M) (<56,0,H>, 1) (<56,0,M>, M) (<56,0,N>, N) (<57,0,C>, 1 + C + N) (<57,0,E>, 1 + E + M) (<57,0,H>, 1) (<57,0,M>, M) (<57,0,N>, N) (<58,0,C>, 1 + C + N) (<58,0,E>, 1 + E + M) (<58,0,H>, 1) (<58,0,M>, M) (<58,0,N>, N) (<59,0,C>, 1 + C + N) (<59,0,E>, 1 + E + M) (<59,0,H>, 1) (<59,0,M>, M) (<59,0,N>, N) (<60,0,C>, 1 + C + N) (<60,0,E>, 1 + E + M) (<60,0,H>, 1) (<60,0,M>, M) (<60,0,N>, N) (<61,0,C>, 1 + C + N) (<61,0,E>, 1 + E + M) (<61,0,H>, 1) (<61,0,M>, M) (<61,0,N>, N) (<62,0,C>, 1 + C + N) (<62,0,E>, 1 + E + M) (<62,0,H>, 1) (<62,0,M>, M) (<62,0,N>, N) (<63,0,C>, 1 + C + N) (<63,0,E>, 1 + E + M) (<63,0,H>, 1) (<63,0,M>, M) (<63,0,N>, N) (<64,0,C>, 1 + C + N) (<64,0,E>, 1 + E + M) (<64,0,H>, 1) (<64,0,M>, M) (<64,0,N>, N) (<65,0,C>, 1 + C + N) (<65,0,E>, 1 + E + M) (<65,0,H>, 1) (<65,0,M>, M) (<65,0,N>, N) (<66,0,C>, N) (<66,0,E>, M) (<66,0,H>, 0) (<66,0,M>, M) (<66,0,N>, N) (<67,0,C>, N) (<67,0,E>, M) (<67,0,H>, 0) (<67,0,M>, M) (<67,0,N>, N) (<68,0,C>, N) (<68,0,E>, M) (<68,0,H>, 0) (<68,0,M>, M) (<68,0,N>, N) (<69,0,C>, N) (<69,0,E>, M) (<69,0,H>, 0) (<69,0,M>, M) (<69,0,N>, N) (<70,0,C>, N) (<70,0,E>, M) (<70,0,H>, 0) (<70,0,M>, M) (<70,0,N>, N) (<71,0,C>, N) (<71,0,E>, M) (<71,0,H>, 0) (<71,0,M>, M) (<71,0,N>, N) (<72,0,C>, N) (<72,0,E>, M) (<72,0,H>, 0) (<72,0,M>, M) (<72,0,N>, N) (<73,0,C>, N) (<73,0,E>, M) (<73,0,H>, 0) (<73,0,M>, M) (<73,0,N>, N) (<74,0,C>, N) (<74,0,E>, M) (<74,0,H>, 0) (<74,0,M>, M) (<74,0,N>, N) (<75,0,C>, N) (<75,0,E>, M) (<75,0,H>, 0) (<75,0,M>, M) (<75,0,N>, N) (<76,0,C>, N) (<76,0,E>, M) (<76,0,H>, 0) (<76,0,M>, M) (<76,0,N>, N) (<77,0,C>, N) (<77,0,E>, M) (<77,0,H>, 0) (<77,0,M>, M) (<77,0,N>, N) (<78,0,C>, N) (<78,0,E>, M) (<78,0,H>, 0) (<78,0,M>, M) (<78,0,N>, N) (<79,0,C>, N) (<79,0,E>, M) (<79,0,H>, 0) (<79,0,M>, M) (<79,0,N>, N) (<80,0,C>, N) (<80,0,E>, M) (<80,0,H>, 0) (<80,0,M>, M) (<80,0,N>, N) (<81,0,C>, N) (<81,0,E>, M) (<81,0,H>, 0) (<81,0,M>, M) (<81,0,N>, N) (<82,0,C>, N) (<82,0,E>, M) (<82,0,H>, 0) (<82,0,M>, M) (<82,0,N>, N) (<83,0,C>, N) (<83,0,E>, M) (<83,0,H>, 0) (<83,0,M>, M) (<83,0,N>, N) (<84,0,C>, N) (<84,0,E>, M) (<84,0,H>, 0) (<84,0,M>, M) (<84,0,N>, N) (<85,0,C>, N) (<85,0,E>, M) (<85,0,H>, 0) (<85,0,M>, M) (<85,0,N>, N) (<86,0,C>, N) (<86,0,E>, M) (<86,0,H>, 0) (<86,0,M>, M) (<86,0,N>, N) (<87,0,C>, N) (<87,0,E>, M) (<87,0,H>, 0) (<87,0,M>, M) (<87,0,N>, N) (<88,0,C>, N) (<88,0,E>, M) (<88,0,H>, 0) (<88,0,M>, M) (<88,0,N>, N) (<89,0,C>, N) (<89,0,E>, M) (<89,0,H>, 0) (<89,0,M>, M) (<89,0,N>, N) + Applied Processor: ChainProcessor False [28,29,30,31,32,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] + Details: We chained rule 28 to obtain the rules [90,91,92,93,94,95] . * Step 26: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 29. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 66. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 67. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 69. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 70. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 71. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 72. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 73. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 75. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 76. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 77. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 78. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 79. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 84. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 85. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 87. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 88. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 89. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 90. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 91. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 93. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 94. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 95. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [29->{33,34,35,36,37,38},30->{33,34,35,36,37,38},31->{33,34,35,36,37,38},32->{33,34,35,36,37,38},33->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},34->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},35->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},36->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},37->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},38->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},39->{33 ,34,35,36,37,38},40->{33,34,35,36,37,38},41->{33,34,35,36,37,38},42->{33,34,35,36,37,38},43->{33,34,35,36,37 ,38},44->{33,34,35,36,37,38},45->{33,34,35,36,37,38},46->{33,34,35,36,37,38},47->{33,34,35,36,37,38},48->{33 ,34,35,36,37,38},49->{33,34,35,36,37,38},50->{33,34,35,36,37,38},51->{33,34,35,36,37,38},52->{33,34,35,36,37 ,38},53->{33,34,35,36,37,38},54->{33,34,35,36,37,38},55->{33,34,35,36,37,38},56->{33,34,35,36,37,38},57->{33 ,34,35,36,37,38},58->{33,34,35,36,37,38},59->{33,34,35,36,37,38},60->{33,34,35,36,37,38},61->{33,34,35,36,37 ,38},62->{33,34,35,36,37,38},63->{33,34,35,36,37,38},64->{33,34,35,36,37,38},65->{33,34,35,36,37,38},66->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},67->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},68->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},69->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},70->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},71->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},72->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},73->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},74->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},75->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},76->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},77->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},78->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},79->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},80->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},81->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},82->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},83->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},84->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},85->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},86->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},87->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},88->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},89->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},90->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},91->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},92->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},93->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},94->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95},95->{29 ,30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95}] Sizebounds: (<29,0,C>, 1 + C + N) (<29,0,E>, 1 + E + M) (<29,0,H>, 1) (<29,0,M>, M) (<29,0,N>, N) (<30,0,C>, 1 + C + N) (<30,0,E>, 1 + E + M) (<30,0,H>, 1) (<30,0,M>, M) (<30,0,N>, N) (<31,0,C>, 1 + C + N) (<31,0,E>, 1 + E + M) (<31,0,H>, 1) (<31,0,M>, M) (<31,0,N>, N) (<32,0,C>, 1 + C + N) (<32,0,E>, 1 + E + M) (<32,0,H>, 1) (<32,0,M>, M) (<32,0,N>, N) (<33,0,C>, N) (<33,0,E>, M) (<33,0,H>, 0) (<33,0,M>, M) (<33,0,N>, N) (<34,0,C>, N) (<34,0,E>, M) (<34,0,H>, 0) (<34,0,M>, M) (<34,0,N>, N) (<35,0,C>, N) (<35,0,E>, M) (<35,0,H>, 0) (<35,0,M>, M) (<35,0,N>, N) (<36,0,C>, N) (<36,0,E>, M) (<36,0,H>, 0) (<36,0,M>, M) (<36,0,N>, N) (<37,0,C>, N) (<37,0,E>, M) (<37,0,H>, 0) (<37,0,M>, M) (<37,0,N>, N) (<38,0,C>, N) (<38,0,E>, M) (<38,0,H>, 0) (<38,0,M>, M) (<38,0,N>, N) (<39,0,C>, 1 + C + N) (<39,0,E>, 1 + E + M) (<39,0,H>, 1) (<39,0,M>, M) (<39,0,N>, N) (<40,0,C>, 1 + C + N) (<40,0,E>, 1 + E + M) (<40,0,H>, 1) (<40,0,M>, M) (<40,0,N>, N) (<41,0,C>, 1 + C + N) (<41,0,E>, 1 + E + M) (<41,0,H>, 1) (<41,0,M>, M) (<41,0,N>, N) (<42,0,C>, 1 + C + N) (<42,0,E>, 1 + E + M) (<42,0,H>, 1) (<42,0,M>, M) (<42,0,N>, N) (<43,0,C>, 1 + C + N) (<43,0,E>, 1 + E + M) (<43,0,H>, 1) (<43,0,M>, M) (<43,0,N>, N) (<44,0,C>, 1 + C + N) (<44,0,E>, 1 + E + M) (<44,0,H>, 1) (<44,0,M>, M) (<44,0,N>, N) (<45,0,C>, 1 + C + N) (<45,0,E>, 1 + E + M) (<45,0,H>, 1) (<45,0,M>, M) (<45,0,N>, N) (<46,0,C>, 1 + C + N) (<46,0,E>, 1 + E + M) (<46,0,H>, 1) (<46,0,M>, M) (<46,0,N>, N) (<47,0,C>, 1 + C + N) (<47,0,E>, 1 + E + M) (<47,0,H>, 1) (<47,0,M>, M) (<47,0,N>, N) (<48,0,C>, 1 + C + N) (<48,0,E>, 1 + E + M) (<48,0,H>, 1) (<48,0,M>, M) (<48,0,N>, N) (<49,0,C>, 1 + C + N) (<49,0,E>, 1 + E + M) (<49,0,H>, 1) (<49,0,M>, M) (<49,0,N>, N) (<50,0,C>, 1 + C + N) (<50,0,E>, 1 + E + M) (<50,0,H>, 1) (<50,0,M>, M) (<50,0,N>, N) (<51,0,C>, 1 + C + N) (<51,0,E>, 1 + E + M) (<51,0,H>, 1) (<51,0,M>, M) (<51,0,N>, N) (<52,0,C>, 1 + C + N) (<52,0,E>, 1 + E + M) (<52,0,H>, 1) (<52,0,M>, M) (<52,0,N>, N) (<53,0,C>, 1 + C + N) (<53,0,E>, 1 + E + M) (<53,0,H>, 1) (<53,0,M>, M) (<53,0,N>, N) (<54,0,C>, 1 + C + N) (<54,0,E>, 1 + E + M) (<54,0,H>, 1) (<54,0,M>, M) (<54,0,N>, N) (<55,0,C>, 1 + C + N) (<55,0,E>, 1 + E + M) (<55,0,H>, 1) (<55,0,M>, M) (<55,0,N>, N) (<56,0,C>, 1 + C + N) (<56,0,E>, 1 + E + M) (<56,0,H>, 1) (<56,0,M>, M) (<56,0,N>, N) (<57,0,C>, 1 + C + N) (<57,0,E>, 1 + E + M) (<57,0,H>, 1) (<57,0,M>, M) (<57,0,N>, N) (<58,0,C>, 1 + C + N) (<58,0,E>, 1 + E + M) (<58,0,H>, 1) (<58,0,M>, M) (<58,0,N>, N) (<59,0,C>, 1 + C + N) (<59,0,E>, 1 + E + M) (<59,0,H>, 1) (<59,0,M>, M) (<59,0,N>, N) (<60,0,C>, 1 + C + N) (<60,0,E>, 1 + E + M) (<60,0,H>, 1) (<60,0,M>, M) (<60,0,N>, N) (<61,0,C>, 1 + C + N) (<61,0,E>, 1 + E + M) (<61,0,H>, 1) (<61,0,M>, M) (<61,0,N>, N) (<62,0,C>, 1 + C + N) (<62,0,E>, 1 + E + M) (<62,0,H>, 1) (<62,0,M>, M) (<62,0,N>, N) (<63,0,C>, 1 + C + N) (<63,0,E>, 1 + E + M) (<63,0,H>, 1) (<63,0,M>, M) (<63,0,N>, N) (<64,0,C>, 1 + C + N) (<64,0,E>, 1 + E + M) (<64,0,H>, 1) (<64,0,M>, M) (<64,0,N>, N) (<65,0,C>, 1 + C + N) (<65,0,E>, 1 + E + M) (<65,0,H>, 1) (<65,0,M>, M) (<65,0,N>, N) (<66,0,C>, N) (<66,0,E>, M) (<66,0,H>, 0) (<66,0,M>, M) (<66,0,N>, N) (<67,0,C>, N) (<67,0,E>, M) (<67,0,H>, 0) (<67,0,M>, M) (<67,0,N>, N) (<68,0,C>, N) (<68,0,E>, M) (<68,0,H>, 0) (<68,0,M>, M) (<68,0,N>, N) (<69,0,C>, N) (<69,0,E>, M) (<69,0,H>, 0) (<69,0,M>, M) (<69,0,N>, N) (<70,0,C>, N) (<70,0,E>, M) (<70,0,H>, 0) (<70,0,M>, M) (<70,0,N>, N) (<71,0,C>, N) (<71,0,E>, M) (<71,0,H>, 0) (<71,0,M>, M) (<71,0,N>, N) (<72,0,C>, N) (<72,0,E>, M) (<72,0,H>, 0) (<72,0,M>, M) (<72,0,N>, N) (<73,0,C>, N) (<73,0,E>, M) (<73,0,H>, 0) (<73,0,M>, M) (<73,0,N>, N) (<74,0,C>, N) (<74,0,E>, M) (<74,0,H>, 0) (<74,0,M>, M) (<74,0,N>, N) (<75,0,C>, N) (<75,0,E>, M) (<75,0,H>, 0) (<75,0,M>, M) (<75,0,N>, N) (<76,0,C>, N) (<76,0,E>, M) (<76,0,H>, 0) (<76,0,M>, M) (<76,0,N>, N) (<77,0,C>, N) (<77,0,E>, M) (<77,0,H>, 0) (<77,0,M>, M) (<77,0,N>, N) (<78,0,C>, N) (<78,0,E>, M) (<78,0,H>, 0) (<78,0,M>, M) (<78,0,N>, N) (<79,0,C>, N) (<79,0,E>, M) (<79,0,H>, 0) (<79,0,M>, M) (<79,0,N>, N) (<80,0,C>, N) (<80,0,E>, M) (<80,0,H>, 0) (<80,0,M>, M) (<80,0,N>, N) (<81,0,C>, N) (<81,0,E>, M) (<81,0,H>, 0) (<81,0,M>, M) (<81,0,N>, N) (<82,0,C>, N) (<82,0,E>, M) (<82,0,H>, 0) (<82,0,M>, M) (<82,0,N>, N) (<83,0,C>, N) (<83,0,E>, M) (<83,0,H>, 0) (<83,0,M>, M) (<83,0,N>, N) (<84,0,C>, N) (<84,0,E>, M) (<84,0,H>, 0) (<84,0,M>, M) (<84,0,N>, N) (<85,0,C>, N) (<85,0,E>, M) (<85,0,H>, 0) (<85,0,M>, M) (<85,0,N>, N) (<86,0,C>, N) (<86,0,E>, M) (<86,0,H>, 0) (<86,0,M>, M) (<86,0,N>, N) (<87,0,C>, N) (<87,0,E>, M) (<87,0,H>, 0) (<87,0,M>, M) (<87,0,N>, N) (<88,0,C>, N) (<88,0,E>, M) (<88,0,H>, 0) (<88,0,M>, M) (<88,0,N>, N) (<89,0,C>, N) (<89,0,E>, M) (<89,0,H>, 0) (<89,0,M>, M) (<89,0,N>, N) (<90,0,C>, N) (<90,0,E>, M) (<90,0,H>, 0) (<90,0,M>, M) (<90,0,N>, N) (<91,0,C>, N) (<91,0,E>, M) (<91,0,H>, 0) (<91,0,M>, M) (<91,0,N>, N) (<92,0,C>, N) (<92,0,E>, M) (<92,0,H>, 0) (<92,0,M>, M) (<92,0,N>, N) (<93,0,C>, N) (<93,0,E>, M) (<93,0,H>, 0) (<93,0,M>, M) (<93,0,N>, N) (<94,0,C>, N) (<94,0,E>, M) (<94,0,H>, 0) (<94,0,M>, M) (<94,0,N>, N) (<95,0,C>, N) (<95,0,E>, M) (<95,0,H>, 0) (<95,0,M>, M) (<95,0,N>, N) + Applied Processor: ChainProcessor False [29,30,31,32,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] + Details: We chained rule 29 to obtain the rules [96,97,98,99,100,101] . * Step 27: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 66. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 67. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 69. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 70. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 71. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 72. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 73. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 75. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 76. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 77. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 78. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 79. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 84. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 85. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 87. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 88. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 89. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 90. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 91. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 93. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 94. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 95. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 96. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 97. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{33,34,35,36,37,38},31->{33,34,35,36,37,38},32->{33,34,35,36,37,38},33->{30,31,32,66,67,68,69,70,71 ,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},34->{30,31,32 ,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 ,101},35->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 ,95,96,97,98,99,100,101},36->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88 ,89,90,91,92,93,94,95,96,97,98,99,100,101},37->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 ,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},38->{30,31,32,66,67,68,69,70,71,72,73,74,75,76 ,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},39->{33,34,35,36,37,38} ,40->{33,34,35,36,37,38},41->{33,34,35,36,37,38},42->{33,34,35,36,37,38},43->{33,34,35,36,37,38},44->{33,34 ,35,36,37,38},45->{33,34,35,36,37,38},46->{33,34,35,36,37,38},47->{33,34,35,36,37,38},48->{33,34,35,36,37 ,38},49->{33,34,35,36,37,38},50->{33,34,35,36,37,38},51->{33,34,35,36,37,38},52->{33,34,35,36,37,38},53->{33 ,34,35,36,37,38},54->{33,34,35,36,37,38},55->{33,34,35,36,37,38},56->{33,34,35,36,37,38},57->{33,34,35,36,37 ,38},58->{33,34,35,36,37,38},59->{33,34,35,36,37,38},60->{33,34,35,36,37,38},61->{33,34,35,36,37,38},62->{33 ,34,35,36,37,38},63->{33,34,35,36,37,38},64->{33,34,35,36,37,38},65->{33,34,35,36,37,38},66->{30,31,32,66,67 ,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101} ,67->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 ,97,98,99,100,101},68->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 ,91,92,93,94,95,96,97,98,99,100,101},69->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 ,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},70->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78 ,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},71->{30,31,32,66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},72->{30,31,32,66 ,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101} ,73->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 ,97,98,99,100,101},74->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 ,91,92,93,94,95,96,97,98,99,100,101},75->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 ,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},76->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78 ,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},77->{30,31,32,66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},78->{30,31,32,66 ,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101} ,79->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 ,97,98,99,100,101},80->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 ,91,92,93,94,95,96,97,98,99,100,101},81->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 ,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},82->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78 ,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},83->{30,31,32,66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},84->{30,31,32,66 ,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101} ,85->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 ,97,98,99,100,101},86->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 ,91,92,93,94,95,96,97,98,99,100,101},87->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 ,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},88->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78 ,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},89->{30,31,32,66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},90->{30,31,32,66 ,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101} ,91->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 ,97,98,99,100,101},92->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 ,91,92,93,94,95,96,97,98,99,100,101},93->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 ,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},94->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78 ,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},95->{30,31,32,66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},96->{30,31,32,66 ,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101} ,97->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96 ,97,98,99,100,101},98->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 ,91,92,93,94,95,96,97,98,99,100,101},99->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84 ,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},100->{30,31,32,66,67,68,69,70,71,72,73,74,75,76,77,78 ,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101},101->{30,31,32,66,67,68,69,70,71,72 ,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101}] Sizebounds: (< 30,0,C>, 1 + C + N) (< 30,0,E>, 1 + E + M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, 1 + C + N) (< 31,0,E>, 1 + E + M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, 1 + C + N) (< 32,0,E>, 1 + E + M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 33,0,C>, N) (< 33,0,E>, M) (< 33,0,H>, 0) (< 33,0,M>, M) (< 33,0,N>, N) (< 34,0,C>, N) (< 34,0,E>, M) (< 34,0,H>, 0) (< 34,0,M>, M) (< 34,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, 1 + C + N) (< 39,0,E>, 1 + E + M) (< 39,0,H>, 1) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, 1 + C + N) (< 40,0,E>, 1 + E + M) (< 40,0,H>, 1) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C + N) (< 41,0,E>, 1 + E + M) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, 1 + C + N) (< 42,0,E>, 1 + E + M) (< 42,0,H>, 1) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, 1 + C + N) (< 43,0,E>, 1 + E + M) (< 43,0,H>, 1) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C + N) (< 44,0,E>, 1 + E + M) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C + N) (< 45,0,E>, 1 + E + M) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C + N) (< 46,0,E>, 1 + E + M) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 1 + C + N) (< 47,0,E>, 1 + E + M) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, 1 + C + N) (< 48,0,E>, 1 + E + M) (< 48,0,H>, 1) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, 1 + C + N) (< 49,0,E>, 1 + E + M) (< 49,0,H>, 1) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C + N) (< 50,0,E>, 1 + E + M) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, 1 + C + N) (< 51,0,E>, 1 + E + M) (< 51,0,H>, 1) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, 1 + C + N) (< 52,0,E>, 1 + E + M) (< 52,0,H>, 1) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C + N) (< 53,0,E>, 1 + E + M) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C + N) (< 54,0,E>, 1 + E + M) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C + N) (< 55,0,E>, 1 + E + M) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 1 + C + N) (< 56,0,E>, 1 + E + M) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C + N) (< 57,0,E>, 1 + E + M) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C + N) (< 58,0,E>, 1 + E + M) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 1 + C + N) (< 59,0,E>, 1 + E + M) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C + N) (< 60,0,E>, 1 + E + M) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C + N) (< 61,0,E>, 1 + E + M) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 1 + C + N) (< 62,0,E>, 1 + E + M) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 1 + C + N) (< 63,0,E>, 1 + E + M) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 1 + C + N) (< 64,0,E>, 1 + E + M) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 1 + C + N) (< 65,0,E>, 1 + E + M) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 66,0,C>, N) (< 66,0,E>, M) (< 66,0,H>, 0) (< 66,0,M>, M) (< 66,0,N>, N) (< 67,0,C>, N) (< 67,0,E>, M) (< 67,0,H>, 0) (< 67,0,M>, M) (< 67,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 69,0,C>, N) (< 69,0,E>, M) (< 69,0,H>, 0) (< 69,0,M>, M) (< 69,0,N>, N) (< 70,0,C>, N) (< 70,0,E>, M) (< 70,0,H>, 0) (< 70,0,M>, M) (< 70,0,N>, N) (< 71,0,C>, N) (< 71,0,E>, M) (< 71,0,H>, 0) (< 71,0,M>, M) (< 71,0,N>, N) (< 72,0,C>, N) (< 72,0,E>, M) (< 72,0,H>, 0) (< 72,0,M>, M) (< 72,0,N>, N) (< 73,0,C>, N) (< 73,0,E>, M) (< 73,0,H>, 0) (< 73,0,M>, M) (< 73,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 75,0,C>, N) (< 75,0,E>, M) (< 75,0,H>, 0) (< 75,0,M>, M) (< 75,0,N>, N) (< 76,0,C>, N) (< 76,0,E>, M) (< 76,0,H>, 0) (< 76,0,M>, M) (< 76,0,N>, N) (< 77,0,C>, N) (< 77,0,E>, M) (< 77,0,H>, 0) (< 77,0,M>, M) (< 77,0,N>, N) (< 78,0,C>, N) (< 78,0,E>, M) (< 78,0,H>, 0) (< 78,0,M>, M) (< 78,0,N>, N) (< 79,0,C>, N) (< 79,0,E>, M) (< 79,0,H>, 0) (< 79,0,M>, M) (< 79,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 84,0,C>, N) (< 84,0,E>, M) (< 84,0,H>, 0) (< 84,0,M>, M) (< 84,0,N>, N) (< 85,0,C>, N) (< 85,0,E>, M) (< 85,0,H>, 0) (< 85,0,M>, M) (< 85,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 87,0,C>, N) (< 87,0,E>, M) (< 87,0,H>, 0) (< 87,0,M>, M) (< 87,0,N>, N) (< 88,0,C>, N) (< 88,0,E>, M) (< 88,0,H>, 0) (< 88,0,M>, M) (< 88,0,N>, N) (< 89,0,C>, N) (< 89,0,E>, M) (< 89,0,H>, 0) (< 89,0,M>, M) (< 89,0,N>, N) (< 90,0,C>, N) (< 90,0,E>, M) (< 90,0,H>, 0) (< 90,0,M>, M) (< 90,0,N>, N) (< 91,0,C>, N) (< 91,0,E>, M) (< 91,0,H>, 0) (< 91,0,M>, M) (< 91,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 93,0,C>, N) (< 93,0,E>, M) (< 93,0,H>, 0) (< 93,0,M>, M) (< 93,0,N>, N) (< 94,0,C>, N) (< 94,0,E>, M) (< 94,0,H>, 0) (< 94,0,M>, M) (< 94,0,N>, N) (< 95,0,C>, N) (< 95,0,E>, M) (< 95,0,H>, 0) (< 95,0,M>, M) (< 95,0,N>, N) (< 96,0,C>, N) (< 96,0,E>, M) (< 96,0,H>, 0) (< 96,0,M>, M) (< 96,0,N>, N) (< 97,0,C>, N) (< 97,0,E>, M) (< 97,0,H>, 0) (< 97,0,M>, M) (< 97,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(30,33) ,(30,34) ,(31,33) ,(31,34) ,(32,33) ,(32,34) ,(33,30) ,(33,31) ,(33,32) ,(33,66) ,(33,67) ,(33,68) ,(33,69) ,(33,70) ,(33,71) ,(33,72) ,(33,73) ,(33,74) ,(33,75) ,(33,76) ,(33,77) ,(33,78) ,(33,79) ,(33,80) ,(33,81) ,(33,82) ,(33,83) ,(33,84) ,(33,85) ,(33,86) ,(33,87) ,(33,88) ,(33,89) ,(33,90) ,(33,91) ,(33,92) ,(33,93) ,(33,94) ,(33,95) ,(33,96) ,(33,97) ,(33,98) ,(33,99) ,(33,100) ,(33,101) ,(34,30) ,(34,31) ,(34,32) ,(34,66) ,(34,67) ,(34,68) ,(34,69) ,(34,70) ,(34,71) ,(34,72) ,(34,73) ,(34,74) ,(34,75) ,(34,76) ,(34,77) ,(34,78) ,(34,79) ,(34,80) ,(34,81) ,(34,82) ,(34,83) ,(34,84) ,(34,85) ,(34,86) ,(34,87) ,(34,88) ,(34,89) ,(34,90) ,(34,91) ,(34,92) ,(34,93) ,(34,94) ,(34,95) ,(34,96) ,(34,97) ,(34,98) ,(34,99) ,(34,100) ,(34,101) ,(35,66) ,(35,67) ,(35,69) ,(35,70) ,(35,71) ,(35,72) ,(35,73) ,(35,75) ,(35,76) ,(35,77) ,(35,78) ,(35,79) ,(35,84) ,(35,85) ,(35,87) ,(35,88) ,(35,89) ,(35,90) ,(35,91) ,(35,93) ,(35,94) ,(35,95) ,(35,96) ,(35,97) ,(36,66) ,(36,67) ,(36,69) ,(36,70) ,(36,71) ,(36,72) ,(36,73) ,(36,75) ,(36,76) ,(36,77) ,(36,78) ,(36,79) ,(36,84) ,(36,85) ,(36,87) ,(36,88) ,(36,89) ,(36,90) ,(36,91) ,(36,93) ,(36,94) ,(36,95) ,(36,96) ,(36,97) ,(37,66) ,(37,67) ,(37,69) ,(37,70) ,(37,71) ,(37,72) ,(37,73) ,(37,75) ,(37,76) ,(37,77) ,(37,78) ,(37,79) ,(37,84) ,(37,85) ,(37,87) ,(37,88) ,(37,89) ,(37,90) ,(37,91) ,(37,93) ,(37,94) ,(37,95) ,(37,96) ,(37,97) ,(38,66) ,(38,67) ,(38,69) ,(38,70) ,(38,71) ,(38,72) ,(38,73) ,(38,75) ,(38,76) ,(38,77) ,(38,78) ,(38,79) ,(38,84) ,(38,85) ,(38,87) ,(38,88) ,(38,89) ,(38,90) ,(38,91) ,(38,93) ,(38,94) ,(38,95) ,(38,96) ,(38,97) ,(39,33) ,(39,34) ,(39,36) ,(39,37) ,(39,38) ,(40,33) ,(40,34) ,(40,36) ,(40,37) ,(40,38) ,(41,33) ,(41,34) ,(42,33) ,(42,34) ,(42,36) ,(42,37) ,(42,38) ,(43,33) ,(43,34) ,(43,36) ,(43,37) ,(43,38) ,(44,33) ,(44,34) ,(45,33) ,(45,34) ,(46,33) ,(46,34) ,(47,33) ,(47,34) ,(48,33) ,(48,34) ,(48,36) ,(48,37) ,(48,38) ,(49,33) ,(49,34) ,(49,36) ,(49,37) ,(49,38) ,(50,33) ,(50,34) ,(51,33) ,(51,34) ,(51,36) ,(51,37) ,(51,38) ,(52,33) ,(52,34) ,(52,36) ,(52,37) ,(52,38) ,(53,33) ,(53,34) ,(54,33) ,(54,34) ,(55,33) ,(55,34) ,(56,33) ,(56,34) ,(57,33) ,(57,34) ,(58,33) ,(58,34) ,(59,33) ,(59,34) ,(60,33) ,(60,34) ,(61,33) ,(61,34) ,(62,33) ,(62,34) ,(63,33) ,(63,34) ,(64,33) ,(64,34) ,(65,33) ,(65,34) ,(66,30) ,(66,31) ,(66,32) ,(66,66) ,(66,67) ,(66,68) ,(66,69) ,(66,70) ,(66,71) ,(66,72) ,(66,73) ,(66,74) ,(66,75) ,(66,76) ,(66,77) ,(66,78) ,(66,79) ,(66,80) ,(66,81) ,(66,82) ,(66,83) ,(66,84) ,(66,85) ,(66,86) ,(66,87) ,(66,88) ,(66,89) ,(66,90) ,(66,91) ,(66,92) ,(66,93) ,(66,94) ,(66,95) ,(66,96) ,(66,97) ,(66,98) ,(66,99) ,(66,100) ,(66,101) ,(67,30) ,(67,31) ,(67,32) ,(67,66) ,(67,67) ,(67,68) ,(67,69) ,(67,70) ,(67,71) ,(67,72) ,(67,73) ,(67,74) ,(67,75) ,(67,76) ,(67,77) ,(67,78) ,(67,79) ,(67,80) ,(67,81) ,(67,82) ,(67,83) ,(67,84) ,(67,85) ,(67,86) ,(67,87) ,(67,88) ,(67,89) ,(67,90) ,(67,91) ,(67,92) ,(67,93) ,(67,94) ,(67,95) ,(67,96) ,(67,97) ,(67,98) ,(67,99) ,(67,100) ,(67,101) ,(68,66) ,(68,67) ,(68,69) ,(68,70) ,(68,71) ,(68,72) ,(68,73) ,(68,75) ,(68,76) ,(68,77) ,(68,78) ,(68,79) ,(68,84) ,(68,85) ,(68,87) ,(68,88) ,(68,89) ,(68,90) ,(68,91) ,(68,93) ,(68,94) ,(68,95) ,(68,96) ,(68,97) ,(69,66) ,(69,67) ,(69,69) ,(69,70) ,(69,71) ,(69,72) ,(69,73) ,(69,75) ,(69,76) ,(69,77) ,(69,78) ,(69,79) ,(69,84) ,(69,85) ,(69,87) ,(69,88) ,(69,89) ,(69,90) ,(69,91) ,(69,93) ,(69,94) ,(69,95) ,(69,96) ,(69,97) ,(70,66) ,(70,67) ,(70,69) ,(70,70) ,(70,71) ,(70,72) ,(70,73) ,(70,75) ,(70,76) ,(70,77) ,(70,78) ,(70,79) ,(70,84) ,(70,85) ,(70,87) ,(70,88) ,(70,89) ,(70,90) ,(70,91) ,(70,93) ,(70,94) ,(70,95) ,(70,96) ,(70,97) ,(71,66) ,(71,67) ,(71,69) ,(71,70) ,(71,71) ,(71,72) ,(71,73) ,(71,75) ,(71,76) ,(71,77) ,(71,78) ,(71,79) ,(71,84) ,(71,85) ,(71,87) ,(71,88) ,(71,89) ,(71,90) ,(71,91) ,(71,93) ,(71,94) ,(71,95) ,(71,96) ,(71,97) ,(72,30) ,(72,31) ,(72,32) ,(72,66) ,(72,67) ,(72,68) ,(72,69) ,(72,70) ,(72,71) ,(72,72) ,(72,73) ,(72,74) ,(72,75) ,(72,76) ,(72,77) ,(72,78) ,(72,79) ,(72,80) ,(72,81) ,(72,82) ,(72,83) ,(72,84) ,(72,85) ,(72,86) ,(72,87) ,(72,88) ,(72,89) ,(72,90) ,(72,91) ,(72,92) ,(72,93) ,(72,94) ,(72,95) ,(72,96) ,(72,97) ,(72,98) ,(72,99) ,(72,100) ,(72,101) ,(73,30) ,(73,31) ,(73,32) ,(73,66) ,(73,67) ,(73,68) ,(73,69) ,(73,70) ,(73,71) ,(73,72) ,(73,73) ,(73,74) ,(73,75) ,(73,76) ,(73,77) ,(73,78) ,(73,79) ,(73,80) ,(73,81) ,(73,82) ,(73,83) ,(73,84) ,(73,85) ,(73,86) ,(73,87) ,(73,88) ,(73,89) ,(73,90) ,(73,91) ,(73,92) ,(73,93) ,(73,94) ,(73,95) ,(73,96) ,(73,97) ,(73,98) ,(73,99) ,(73,100) ,(73,101) ,(74,66) ,(74,67) ,(74,69) ,(74,70) ,(74,71) ,(74,72) ,(74,73) ,(74,75) ,(74,76) ,(74,77) ,(74,78) ,(74,79) ,(74,84) ,(74,85) ,(74,87) ,(74,88) ,(74,89) ,(74,90) ,(74,91) ,(74,93) ,(74,94) ,(74,95) ,(74,96) ,(74,97) ,(75,66) ,(75,67) ,(75,69) ,(75,70) ,(75,71) ,(75,72) ,(75,73) ,(75,75) ,(75,76) ,(75,77) ,(75,78) ,(75,79) ,(75,84) ,(75,85) ,(75,87) ,(75,88) ,(75,89) ,(75,90) ,(75,91) ,(75,93) ,(75,94) ,(75,95) ,(75,96) ,(75,97) ,(76,66) ,(76,67) ,(76,69) ,(76,70) ,(76,71) ,(76,72) ,(76,73) ,(76,75) ,(76,76) ,(76,77) ,(76,78) ,(76,79) ,(76,84) ,(76,85) ,(76,87) ,(76,88) ,(76,89) ,(76,90) ,(76,91) ,(76,93) ,(76,94) ,(76,95) ,(76,96) ,(76,97) ,(77,66) ,(77,67) ,(77,69) ,(77,70) ,(77,71) ,(77,72) ,(77,73) ,(77,75) ,(77,76) ,(77,77) ,(77,78) ,(77,79) ,(77,84) ,(77,85) ,(77,87) ,(77,88) ,(77,89) ,(77,90) ,(77,91) ,(77,93) ,(77,94) ,(77,95) ,(77,96) ,(77,97) ,(78,30) ,(78,31) ,(78,32) ,(78,66) ,(78,67) ,(78,68) ,(78,69) ,(78,70) ,(78,71) ,(78,72) ,(78,73) ,(78,74) ,(78,75) ,(78,76) ,(78,77) ,(78,78) ,(78,79) ,(78,80) ,(78,81) ,(78,82) ,(78,83) ,(78,84) ,(78,85) ,(78,86) ,(78,87) ,(78,88) ,(78,89) ,(78,90) ,(78,91) ,(78,92) ,(78,93) ,(78,94) ,(78,95) ,(78,96) ,(78,97) ,(78,98) ,(78,99) ,(78,100) ,(78,101) ,(79,30) ,(79,31) ,(79,32) ,(79,66) ,(79,67) ,(79,68) ,(79,69) ,(79,70) ,(79,71) ,(79,72) ,(79,73) ,(79,74) ,(79,75) ,(79,76) ,(79,77) ,(79,78) ,(79,79) ,(79,80) ,(79,81) ,(79,82) ,(79,83) ,(79,84) ,(79,85) ,(79,86) ,(79,87) ,(79,88) ,(79,89) ,(79,90) ,(79,91) ,(79,92) ,(79,93) ,(79,94) ,(79,95) ,(79,96) ,(79,97) ,(79,98) ,(79,99) ,(79,100) ,(79,101) ,(80,66) ,(80,67) ,(80,69) ,(80,70) ,(80,71) ,(80,72) ,(80,73) ,(80,75) ,(80,76) ,(80,77) ,(80,78) ,(80,79) ,(80,84) ,(80,85) ,(80,87) ,(80,88) ,(80,89) ,(80,90) ,(80,91) ,(80,93) ,(80,94) ,(80,95) ,(80,96) ,(80,97) ,(81,66) ,(81,67) ,(81,69) ,(81,70) ,(81,71) ,(81,72) ,(81,73) ,(81,75) ,(81,76) ,(81,77) ,(81,78) ,(81,79) ,(81,84) ,(81,85) ,(81,87) ,(81,88) ,(81,89) ,(81,90) ,(81,91) ,(81,93) ,(81,94) ,(81,95) ,(81,96) ,(81,97) ,(82,66) ,(82,67) ,(82,69) ,(82,70) ,(82,71) ,(82,72) ,(82,73) ,(82,75) ,(82,76) ,(82,77) ,(82,78) ,(82,79) ,(82,84) ,(82,85) ,(82,87) ,(82,88) ,(82,89) ,(82,90) ,(82,91) ,(82,93) ,(82,94) ,(82,95) ,(82,96) ,(82,97) ,(83,66) ,(83,67) ,(83,69) ,(83,70) ,(83,71) ,(83,72) ,(83,73) ,(83,75) ,(83,76) ,(83,77) ,(83,78) ,(83,79) ,(83,84) ,(83,85) ,(83,87) ,(83,88) ,(83,89) ,(83,90) ,(83,91) ,(83,93) ,(83,94) ,(83,95) ,(83,96) ,(83,97) ,(84,30) ,(84,31) ,(84,32) ,(84,66) ,(84,67) ,(84,68) ,(84,69) ,(84,70) ,(84,71) ,(84,72) ,(84,73) ,(84,74) ,(84,75) ,(84,76) ,(84,77) ,(84,78) ,(84,79) ,(84,80) ,(84,81) ,(84,82) ,(84,83) ,(84,84) ,(84,85) ,(84,86) ,(84,87) ,(84,88) ,(84,89) ,(84,90) ,(84,91) ,(84,92) ,(84,93) ,(84,94) ,(84,95) ,(84,96) ,(84,97) ,(84,98) ,(84,99) ,(84,100) ,(84,101) ,(85,30) ,(85,31) ,(85,32) ,(85,66) ,(85,67) ,(85,68) ,(85,69) ,(85,70) ,(85,71) ,(85,72) ,(85,73) ,(85,74) ,(85,75) ,(85,76) ,(85,77) ,(85,78) ,(85,79) ,(85,80) ,(85,81) ,(85,82) ,(85,83) ,(85,84) ,(85,85) ,(85,86) ,(85,87) ,(85,88) ,(85,89) ,(85,90) ,(85,91) ,(85,92) ,(85,93) ,(85,94) ,(85,95) ,(85,96) ,(85,97) ,(85,98) ,(85,99) ,(85,100) ,(85,101) ,(86,66) ,(86,67) ,(86,69) ,(86,70) ,(86,71) ,(86,72) ,(86,73) ,(86,75) ,(86,76) ,(86,77) ,(86,78) ,(86,79) ,(86,84) ,(86,85) ,(86,87) ,(86,88) ,(86,89) ,(86,90) ,(86,91) ,(86,93) ,(86,94) ,(86,95) ,(86,96) ,(86,97) ,(87,66) ,(87,67) ,(87,69) ,(87,70) ,(87,71) ,(87,72) ,(87,73) ,(87,75) ,(87,76) ,(87,77) ,(87,78) ,(87,79) ,(87,84) ,(87,85) ,(87,87) ,(87,88) ,(87,89) ,(87,90) ,(87,91) ,(87,93) ,(87,94) ,(87,95) ,(87,96) ,(87,97) ,(88,66) ,(88,67) ,(88,69) ,(88,70) ,(88,71) ,(88,72) ,(88,73) ,(88,75) ,(88,76) ,(88,77) ,(88,78) ,(88,79) ,(88,84) ,(88,85) ,(88,87) ,(88,88) ,(88,89) ,(88,90) ,(88,91) ,(88,93) ,(88,94) ,(88,95) ,(88,96) ,(88,97) ,(89,66) ,(89,67) ,(89,69) ,(89,70) ,(89,71) ,(89,72) ,(89,73) ,(89,75) ,(89,76) ,(89,77) ,(89,78) ,(89,79) ,(89,84) ,(89,85) ,(89,87) ,(89,88) ,(89,89) ,(89,90) ,(89,91) ,(89,93) ,(89,94) ,(89,95) ,(89,96) ,(89,97) ,(90,30) ,(90,31) ,(90,32) ,(90,66) ,(90,67) ,(90,68) ,(90,69) ,(90,70) ,(90,71) ,(90,72) ,(90,73) ,(90,74) ,(90,75) ,(90,76) ,(90,77) ,(90,78) ,(90,79) ,(90,80) ,(90,81) ,(90,82) ,(90,83) ,(90,84) ,(90,85) ,(90,86) ,(90,87) ,(90,88) ,(90,89) ,(90,90) ,(90,91) ,(90,92) ,(90,93) ,(90,94) ,(90,95) ,(90,96) ,(90,97) ,(90,98) ,(90,99) ,(90,100) ,(90,101) ,(91,30) ,(91,31) ,(91,32) ,(91,66) ,(91,67) ,(91,68) ,(91,69) ,(91,70) ,(91,71) ,(91,72) ,(91,73) ,(91,74) ,(91,75) ,(91,76) ,(91,77) ,(91,78) ,(91,79) ,(91,80) ,(91,81) ,(91,82) ,(91,83) ,(91,84) ,(91,85) ,(91,86) ,(91,87) ,(91,88) ,(91,89) ,(91,90) ,(91,91) ,(91,92) ,(91,93) ,(91,94) ,(91,95) ,(91,96) ,(91,97) ,(91,98) ,(91,99) ,(91,100) ,(91,101) ,(92,66) ,(92,67) ,(92,69) ,(92,70) ,(92,71) ,(92,72) ,(92,73) ,(92,75) ,(92,76) ,(92,77) ,(92,78) ,(92,79) ,(92,84) ,(92,85) ,(92,87) ,(92,88) ,(92,89) ,(92,90) ,(92,91) ,(92,93) ,(92,94) ,(92,95) ,(92,96) ,(92,97) ,(93,66) ,(93,67) ,(93,69) ,(93,70) ,(93,71) ,(93,72) ,(93,73) ,(93,75) ,(93,76) ,(93,77) ,(93,78) ,(93,79) ,(93,84) ,(93,85) ,(93,87) ,(93,88) ,(93,89) ,(93,90) ,(93,91) ,(93,93) ,(93,94) ,(93,95) ,(93,96) ,(93,97) ,(94,66) ,(94,67) ,(94,69) ,(94,70) ,(94,71) ,(94,72) ,(94,73) ,(94,75) ,(94,76) ,(94,77) ,(94,78) ,(94,79) ,(94,84) ,(94,85) ,(94,87) ,(94,88) ,(94,89) ,(94,90) ,(94,91) ,(94,93) ,(94,94) ,(94,95) ,(94,96) ,(94,97) ,(95,66) ,(95,67) ,(95,69) ,(95,70) ,(95,71) ,(95,72) ,(95,73) ,(95,75) ,(95,76) ,(95,77) ,(95,78) ,(95,79) ,(95,84) ,(95,85) ,(95,87) ,(95,88) ,(95,89) ,(95,90) ,(95,91) ,(95,93) ,(95,94) ,(95,95) ,(95,96) ,(95,97) ,(96,30) ,(96,31) ,(96,32) ,(96,66) ,(96,67) ,(96,68) ,(96,69) ,(96,70) ,(96,71) ,(96,72) ,(96,73) ,(96,74) ,(96,75) ,(96,76) ,(96,77) ,(96,78) ,(96,79) ,(96,80) ,(96,81) ,(96,82) ,(96,83) ,(96,84) ,(96,85) ,(96,86) ,(96,87) ,(96,88) ,(96,89) ,(96,90) ,(96,91) ,(96,92) ,(96,93) ,(96,94) ,(96,95) ,(96,96) ,(96,97) ,(96,98) ,(96,99) ,(96,100) ,(96,101) ,(97,30) ,(97,31) ,(97,32) ,(97,66) ,(97,67) ,(97,68) ,(97,69) ,(97,70) ,(97,71) ,(97,72) ,(97,73) ,(97,74) ,(97,75) ,(97,76) ,(97,77) ,(97,78) ,(97,79) ,(97,80) ,(97,81) ,(97,82) ,(97,83) ,(97,84) ,(97,85) ,(97,86) ,(97,87) ,(97,88) ,(97,89) ,(97,90) ,(97,91) ,(97,92) ,(97,93) ,(97,94) ,(97,95) ,(97,96) ,(97,97) ,(97,98) ,(97,99) ,(97,100) ,(97,101) ,(98,66) ,(98,67) ,(98,69) ,(98,70) ,(98,71) ,(98,72) ,(98,73) ,(98,75) ,(98,76) ,(98,77) ,(98,78) ,(98,79) ,(98,84) ,(98,85) ,(98,87) ,(98,88) ,(98,89) ,(98,90) ,(98,91) ,(98,93) ,(98,94) ,(98,95) ,(98,96) ,(98,97) ,(99,66) ,(99,67) ,(99,69) ,(99,70) ,(99,71) ,(99,72) ,(99,73) ,(99,75) ,(99,76) ,(99,77) ,(99,78) ,(99,79) ,(99,84) ,(99,85) ,(99,87) ,(99,88) ,(99,89) ,(99,90) ,(99,91) ,(99,93) ,(99,94) ,(99,95) ,(99,96) ,(99,97) ,(100,66) ,(100,67) ,(100,69) ,(100,70) ,(100,71) ,(100,72) ,(100,73) ,(100,75) ,(100,76) ,(100,77) ,(100,78) ,(100,79) ,(100,84) ,(100,85) ,(100,87) ,(100,88) ,(100,89) ,(100,90) ,(100,91) ,(100,93) ,(100,94) ,(100,95) ,(100,96) ,(100,97) ,(101,66) ,(101,67) ,(101,69) ,(101,70) ,(101,71) ,(101,72) ,(101,73) ,(101,75) ,(101,76) ,(101,77) ,(101,78) ,(101,79) ,(101,84) ,(101,85) ,(101,87) ,(101,88) ,(101,89) ,(101,90) ,(101,91) ,(101,93) ,(101,94) ,(101,95) ,(101,96) ,(101,97)] * Step 28: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 33. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 0 = 1] 34. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (3 + 13*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 0 = 1] 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 66. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 67. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 69. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 70. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 71. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 72. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 73. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 75. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 76. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 77. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 78. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 79. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 84. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 85. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 87. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 88. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 89. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 90. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 91. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 93. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 94. f2(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 95. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 96. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 0 = 1] 97. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 0 = 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},33->{},34->{},35->{30,31,32,68,74,80,81,82,83,86,92 ,98,99,100,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92 ,98,99,100,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38} ,42->{35},43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35} ,50->{35,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38} ,57->{35,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38} ,63->{35,36,37,38},64->{35,36,37,38},65->{35,36,37,38},66->{},67->{},68->{30,31,32,68,74,80,81,82,83,86,92 ,98,99,100,101},69->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},70->{30,31,32,68,74,80,81,82,83,86,92 ,98,99,100,101},71->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},72->{},73->{},74->{30,31,32,68,74,80,81 ,82,83,86,92,98,99,100,101},75->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},76->{30,31,32,68,74,80,81 ,82,83,86,92,98,99,100,101},77->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},78->{},79->{},80->{30,31,32 ,68,74,80,81,82,83,86,92,98,99,100,101},81->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32 ,68,74,80,81,82,83,86,92,98,99,100,101},83->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},84->{},85->{} ,86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},87->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101} ,88->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},89->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101} ,90->{},91->{},92->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},93->{30,31,32,68,74,80,81,82,83,86,92,98 ,99,100,101},94->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},95->{30,31,32,68,74,80,81,82,83,86,92,98 ,99,100,101},96->{},97->{},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30,31,32,68,74,80,81,82 ,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30,31,32,68,74,80,81,82 ,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, 1 + C + N) (< 30,0,E>, 1 + E + M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, 1 + C + N) (< 31,0,E>, 1 + E + M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, 1 + C + N) (< 32,0,E>, 1 + E + M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 33,0,C>, N) (< 33,0,E>, M) (< 33,0,H>, 0) (< 33,0,M>, M) (< 33,0,N>, N) (< 34,0,C>, N) (< 34,0,E>, M) (< 34,0,H>, 0) (< 34,0,M>, M) (< 34,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, 1 + C + N) (< 39,0,E>, 1 + E + M) (< 39,0,H>, 1) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, 1 + C + N) (< 40,0,E>, 1 + E + M) (< 40,0,H>, 1) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C + N) (< 41,0,E>, 1 + E + M) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, 1 + C + N) (< 42,0,E>, 1 + E + M) (< 42,0,H>, 1) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, 1 + C + N) (< 43,0,E>, 1 + E + M) (< 43,0,H>, 1) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C + N) (< 44,0,E>, 1 + E + M) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C + N) (< 45,0,E>, 1 + E + M) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C + N) (< 46,0,E>, 1 + E + M) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 1 + C + N) (< 47,0,E>, 1 + E + M) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, 1 + C + N) (< 48,0,E>, 1 + E + M) (< 48,0,H>, 1) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, 1 + C + N) (< 49,0,E>, 1 + E + M) (< 49,0,H>, 1) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C + N) (< 50,0,E>, 1 + E + M) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, 1 + C + N) (< 51,0,E>, 1 + E + M) (< 51,0,H>, 1) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, 1 + C + N) (< 52,0,E>, 1 + E + M) (< 52,0,H>, 1) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C + N) (< 53,0,E>, 1 + E + M) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C + N) (< 54,0,E>, 1 + E + M) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C + N) (< 55,0,E>, 1 + E + M) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 1 + C + N) (< 56,0,E>, 1 + E + M) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C + N) (< 57,0,E>, 1 + E + M) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C + N) (< 58,0,E>, 1 + E + M) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 1 + C + N) (< 59,0,E>, 1 + E + M) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C + N) (< 60,0,E>, 1 + E + M) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C + N) (< 61,0,E>, 1 + E + M) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 1 + C + N) (< 62,0,E>, 1 + E + M) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 1 + C + N) (< 63,0,E>, 1 + E + M) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 1 + C + N) (< 64,0,E>, 1 + E + M) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 1 + C + N) (< 65,0,E>, 1 + E + M) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 66,0,C>, N) (< 66,0,E>, M) (< 66,0,H>, 0) (< 66,0,M>, M) (< 66,0,N>, N) (< 67,0,C>, N) (< 67,0,E>, M) (< 67,0,H>, 0) (< 67,0,M>, M) (< 67,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 69,0,C>, N) (< 69,0,E>, M) (< 69,0,H>, 0) (< 69,0,M>, M) (< 69,0,N>, N) (< 70,0,C>, N) (< 70,0,E>, M) (< 70,0,H>, 0) (< 70,0,M>, M) (< 70,0,N>, N) (< 71,0,C>, N) (< 71,0,E>, M) (< 71,0,H>, 0) (< 71,0,M>, M) (< 71,0,N>, N) (< 72,0,C>, N) (< 72,0,E>, M) (< 72,0,H>, 0) (< 72,0,M>, M) (< 72,0,N>, N) (< 73,0,C>, N) (< 73,0,E>, M) (< 73,0,H>, 0) (< 73,0,M>, M) (< 73,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 75,0,C>, N) (< 75,0,E>, M) (< 75,0,H>, 0) (< 75,0,M>, M) (< 75,0,N>, N) (< 76,0,C>, N) (< 76,0,E>, M) (< 76,0,H>, 0) (< 76,0,M>, M) (< 76,0,N>, N) (< 77,0,C>, N) (< 77,0,E>, M) (< 77,0,H>, 0) (< 77,0,M>, M) (< 77,0,N>, N) (< 78,0,C>, N) (< 78,0,E>, M) (< 78,0,H>, 0) (< 78,0,M>, M) (< 78,0,N>, N) (< 79,0,C>, N) (< 79,0,E>, M) (< 79,0,H>, 0) (< 79,0,M>, M) (< 79,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 84,0,C>, N) (< 84,0,E>, M) (< 84,0,H>, 0) (< 84,0,M>, M) (< 84,0,N>, N) (< 85,0,C>, N) (< 85,0,E>, M) (< 85,0,H>, 0) (< 85,0,M>, M) (< 85,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 87,0,C>, N) (< 87,0,E>, M) (< 87,0,H>, 0) (< 87,0,M>, M) (< 87,0,N>, N) (< 88,0,C>, N) (< 88,0,E>, M) (< 88,0,H>, 0) (< 88,0,M>, M) (< 88,0,N>, N) (< 89,0,C>, N) (< 89,0,E>, M) (< 89,0,H>, 0) (< 89,0,M>, M) (< 89,0,N>, N) (< 90,0,C>, N) (< 90,0,E>, M) (< 90,0,H>, 0) (< 90,0,M>, M) (< 90,0,N>, N) (< 91,0,C>, N) (< 91,0,E>, M) (< 91,0,H>, 0) (< 91,0,M>, M) (< 91,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 93,0,C>, N) (< 93,0,E>, M) (< 93,0,H>, 0) (< 93,0,M>, M) (< 93,0,N>, N) (< 94,0,C>, N) (< 94,0,E>, M) (< 94,0,H>, 0) (< 94,0,M>, M) (< 94,0,N>, N) (< 95,0,C>, N) (< 95,0,E>, M) (< 95,0,H>, 0) (< 95,0,M>, M) (< 95,0,N>, N) (< 96,0,C>, N) (< 96,0,E>, M) (< 96,0,H>, 0) (< 96,0,M>, M) (< 96,0,N>, N) (< 97,0,C>, N) (< 97,0,E>, M) (< 97,0,H>, 0) (< 97,0,M>, M) (< 97,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [33 ,34 ,66 ,67 ,69 ,70 ,71 ,72 ,73 ,75 ,76 ,77 ,78 ,79 ,84 ,85 ,87 ,88 ,89 ,90 ,91 ,93 ,94 ,95 ,96 ,97] * Step 29: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, 1 + C + N) (< 30,0,E>, 1 + E + M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, 1 + C + N) (< 31,0,E>, 1 + E + M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, 1 + C + N) (< 32,0,E>, 1 + E + M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, 1 + C + N) (< 39,0,E>, 1 + E + M) (< 39,0,H>, 1) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, 1 + C + N) (< 40,0,E>, 1 + E + M) (< 40,0,H>, 1) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C + N) (< 41,0,E>, 1 + E + M) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, 1 + C + N) (< 42,0,E>, 1 + E + M) (< 42,0,H>, 1) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, 1 + C + N) (< 43,0,E>, 1 + E + M) (< 43,0,H>, 1) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C + N) (< 44,0,E>, 1 + E + M) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C + N) (< 45,0,E>, 1 + E + M) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C + N) (< 46,0,E>, 1 + E + M) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 1 + C + N) (< 47,0,E>, 1 + E + M) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, 1 + C + N) (< 48,0,E>, 1 + E + M) (< 48,0,H>, 1) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, 1 + C + N) (< 49,0,E>, 1 + E + M) (< 49,0,H>, 1) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C + N) (< 50,0,E>, 1 + E + M) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, 1 + C + N) (< 51,0,E>, 1 + E + M) (< 51,0,H>, 1) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, 1 + C + N) (< 52,0,E>, 1 + E + M) (< 52,0,H>, 1) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C + N) (< 53,0,E>, 1 + E + M) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C + N) (< 54,0,E>, 1 + E + M) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C + N) (< 55,0,E>, 1 + E + M) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 1 + C + N) (< 56,0,E>, 1 + E + M) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C + N) (< 57,0,E>, 1 + E + M) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C + N) (< 58,0,E>, 1 + E + M) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 1 + C + N) (< 59,0,E>, 1 + E + M) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C + N) (< 60,0,E>, 1 + E + M) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C + N) (< 61,0,E>, 1 + E + M) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 1 + C + N) (< 62,0,E>, 1 + E + M) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 1 + C + N) (< 63,0,E>, 1 + E + M) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 1 + C + N) (< 64,0,E>, 1 + E + M) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 1 + C + N) (< 65,0,E>, 1 + E + M) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 30,0,C>, 1 + C, .+ 1) (< 30,0,E>, 1 + E, .+ 1) (< 30,0,H>, 1, .= 1) (< 30,0,M>, M, .= 0) (< 30,0,N>, N, .= 0) (< 31,0,C>, 1 + C, .+ 1) (< 31,0,E>, 1 + E, .+ 1) (< 31,0,H>, 1, .= 1) (< 31,0,M>, M, .= 0) (< 31,0,N>, N, .= 0) (< 32,0,C>, 2 + C, .+ 2) (< 32,0,E>, 2 + E, .+ 2) (< 32,0,H>, 1, .= 1) (< 32,0,M>, M, .= 0) (< 32,0,N>, N, .= 0) (< 35,0,C>, 1 + C, .+ 1) (< 35,0,E>, 1 + E, .+ 1) (< 35,0,H>, 0, .= 0) (< 35,0,M>, M, .= 0) (< 35,0,N>, N, .= 0) (< 36,0,C>, C, .= 0) (< 36,0,E>, E, .= 0) (< 36,0,H>, 0, .= 0) (< 36,0,M>, M, .= 0) (< 36,0,N>, N, .= 0) (< 37,0,C>, C, .= 0) (< 37,0,E>, E, .= 0) (< 37,0,H>, 0, .= 0) (< 37,0,M>, M, .= 0) (< 37,0,N>, N, .= 0) (< 38,0,C>, 1 + C, .+ 1) (< 38,0,E>, 1 + E, .+ 1) (< 38,0,H>, 0, .= 0) (< 38,0,M>, M, .= 0) (< 38,0,N>, N, .= 0) (< 39,0,C>, C, .= 0) (< 39,0,E>, E, .= 0) (< 39,0,H>, 0, .= 0) (< 39,0,M>, M, .= 0) (< 39,0,N>, N, .= 0) (< 40,0,C>, C, .= 0) (< 40,0,E>, E, .= 0) (< 40,0,H>, 0, .= 0) (< 40,0,M>, M, .= 0) (< 40,0,N>, N, .= 0) (< 41,0,C>, 1 + C, .+ 1) (< 41,0,E>, 1 + E, .+ 1) (< 41,0,H>, 1, .= 1) (< 41,0,M>, M, .= 0) (< 41,0,N>, N, .= 0) (< 42,0,C>, C, .= 0) (< 42,0,E>, E, .= 0) (< 42,0,H>, 0, .= 0) (< 42,0,M>, M, .= 0) (< 42,0,N>, N, .= 0) (< 43,0,C>, C, .= 0) (< 43,0,E>, E, .= 0) (< 43,0,H>, 0, .= 0) (< 43,0,M>, M, .= 0) (< 43,0,N>, N, .= 0) (< 44,0,C>, 1 + C, .+ 1) (< 44,0,E>, 1 + E, .+ 1) (< 44,0,H>, 1, .= 1) (< 44,0,M>, M, .= 0) (< 44,0,N>, N, .= 0) (< 45,0,C>, 1 + C, .+ 1) (< 45,0,E>, 1 + E, .+ 1) (< 45,0,H>, 1, .= 1) (< 45,0,M>, M, .= 0) (< 45,0,N>, N, .= 0) (< 46,0,C>, 1 + C, .+ 1) (< 46,0,E>, 1 + E, .+ 1) (< 46,0,H>, 1, .= 1) (< 46,0,M>, M, .= 0) (< 46,0,N>, N, .= 0) (< 47,0,C>, 2 + C, .+ 2) (< 47,0,E>, 2 + E, .+ 2) (< 47,0,H>, 1, .= 1) (< 47,0,M>, M, .= 0) (< 47,0,N>, N, .= 0) (< 48,0,C>, C, .= 0) (< 48,0,E>, E, .= 0) (< 48,0,H>, 0, .= 0) (< 48,0,M>, M, .= 0) (< 48,0,N>, N, .= 0) (< 49,0,C>, C, .= 0) (< 49,0,E>, E, .= 0) (< 49,0,H>, 0, .= 0) (< 49,0,M>, M, .= 0) (< 49,0,N>, N, .= 0) (< 50,0,C>, 1 + C, .+ 1) (< 50,0,E>, 1 + E, .+ 1) (< 50,0,H>, 1, .= 1) (< 50,0,M>, M, .= 0) (< 50,0,N>, N, .= 0) (< 51,0,C>, C, .= 0) (< 51,0,E>, E, .= 0) (< 51,0,H>, 0, .= 0) (< 51,0,M>, M, .= 0) (< 51,0,N>, N, .= 0) (< 52,0,C>, C, .= 0) (< 52,0,E>, E, .= 0) (< 52,0,H>, 0, .= 0) (< 52,0,M>, M, .= 0) (< 52,0,N>, N, .= 0) (< 53,0,C>, 1 + C, .+ 1) (< 53,0,E>, 1 + E, .+ 1) (< 53,0,H>, 1, .= 1) (< 53,0,M>, M, .= 0) (< 53,0,N>, N, .= 0) (< 54,0,C>, 1 + C, .+ 1) (< 54,0,E>, 1 + E, .+ 1) (< 54,0,H>, 1, .= 1) (< 54,0,M>, M, .= 0) (< 54,0,N>, N, .= 0) (< 55,0,C>, 1 + C, .+ 1) (< 55,0,E>, 1 + E, .+ 1) (< 55,0,H>, 1, .= 1) (< 55,0,M>, M, .= 0) (< 55,0,N>, N, .= 0) (< 56,0,C>, 2 + C, .+ 2) (< 56,0,E>, 2 + E, .+ 2) (< 56,0,H>, 1, .= 1) (< 56,0,M>, M, .= 0) (< 56,0,N>, N, .= 0) (< 57,0,C>, 1 + C, .+ 1) (< 57,0,E>, 1 + E, .+ 1) (< 57,0,H>, 1, .= 1) (< 57,0,M>, M, .= 0) (< 57,0,N>, N, .= 0) (< 58,0,C>, 1 + C, .+ 1) (< 58,0,E>, 1 + E, .+ 1) (< 58,0,H>, 1, .= 1) (< 58,0,M>, M, .= 0) (< 58,0,N>, N, .= 0) (< 59,0,C>, 2 + C, .+ 2) (< 59,0,E>, 2 + E, .+ 2) (< 59,0,H>, 1, .= 1) (< 59,0,M>, M, .= 0) (< 59,0,N>, N, .= 0) (< 60,0,C>, 1 + C, .+ 1) (< 60,0,E>, 1 + E, .+ 1) (< 60,0,H>, 1, .= 1) (< 60,0,M>, M, .= 0) (< 60,0,N>, N, .= 0) (< 61,0,C>, 1 + C, .+ 1) (< 61,0,E>, 1 + E, .+ 1) (< 61,0,H>, 1, .= 1) (< 61,0,M>, M, .= 0) (< 61,0,N>, N, .= 0) (< 62,0,C>, 2 + C, .+ 2) (< 62,0,E>, 2 + E, .+ 2) (< 62,0,H>, 1, .= 1) (< 62,0,M>, M, .= 0) (< 62,0,N>, N, .= 0) (< 63,0,C>, 2 + C, .+ 2) (< 63,0,E>, 2 + E, .+ 2) (< 63,0,H>, 1, .= 1) (< 63,0,M>, M, .= 0) (< 63,0,N>, N, .= 0) (< 64,0,C>, 2 + C, .+ 2) (< 64,0,E>, 2 + E, .+ 2) (< 64,0,H>, 1, .= 1) (< 64,0,M>, M, .= 0) (< 64,0,N>, N, .= 0) (< 65,0,C>, 3 + C, .+ 3) (< 65,0,E>, 3 + E, .+ 3) (< 65,0,H>, 1, .= 1) (< 65,0,M>, M, .= 0) (< 65,0,N>, N, .= 0) (< 68,0,C>, 1 + C, .+ 1) (< 68,0,E>, 1 + E, .+ 1) (< 68,0,H>, 0, .= 0) (< 68,0,M>, M, .= 0) (< 68,0,N>, N, .= 0) (< 74,0,C>, 1 + C, .+ 1) (< 74,0,E>, 1 + E, .+ 1) (< 74,0,H>, 0, .= 0) (< 74,0,M>, M, .= 0) (< 74,0,N>, N, .= 0) (< 80,0,C>, 2 + C, .+ 2) (< 80,0,E>, 2 + E, .+ 2) (< 80,0,H>, 0, .= 0) (< 80,0,M>, M, .= 0) (< 80,0,N>, N, .= 0) (< 81,0,C>, 1 + C, .+ 1) (< 81,0,E>, 1 + E, .+ 1) (< 81,0,H>, 0, .= 0) (< 81,0,M>, M, .= 0) (< 81,0,N>, N, .= 0) (< 82,0,C>, 1 + C, .+ 1) (< 82,0,E>, 1 + E, .+ 1) (< 82,0,H>, 0, .= 0) (< 82,0,M>, M, .= 0) (< 82,0,N>, N, .= 0) (< 83,0,C>, 2 + C, .+ 2) (< 83,0,E>, 2 + E, .+ 2) (< 83,0,H>, 0, .= 0) (< 83,0,M>, M, .= 0) (< 83,0,N>, N, .= 0) (< 86,0,C>, 1 + C, .+ 1) (< 86,0,E>, 1 + E, .+ 1) (< 86,0,H>, 0, .= 0) (< 86,0,M>, M, .= 0) (< 86,0,N>, N, .= 0) (< 92,0,C>, 1 + C, .+ 1) (< 92,0,E>, 1 + E, .+ 1) (< 92,0,H>, 0, .= 0) (< 92,0,M>, M, .= 0) (< 92,0,N>, N, .= 0) (< 98,0,C>, 2 + C, .+ 2) (< 98,0,E>, 2 + E, .+ 2) (< 98,0,H>, 0, .= 0) (< 98,0,M>, M, .= 0) (< 98,0,N>, N, .= 0) (< 99,0,C>, 1 + C, .+ 1) (< 99,0,E>, 1 + E, .+ 1) (< 99,0,H>, 0, .= 0) (< 99,0,M>, M, .= 0) (< 99,0,N>, N, .= 0) (<100,0,C>, 1 + C, .+ 1) (<100,0,E>, 1 + E, .+ 1) (<100,0,H>, 0, .= 0) (<100,0,M>, M, .= 0) (<100,0,N>, N, .= 0) (<101,0,C>, 2 + C, .+ 2) (<101,0,E>, 2 + E, .+ 2) (<101,0,H>, 0, .= 0) (<101,0,M>, M, .= 0) (<101,0,N>, N, .= 0) * Step 30: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, ?) (< 30,0,E>, ?) (< 30,0,H>, ?) (< 30,0,M>, ?) (< 30,0,N>, ?) (< 31,0,C>, ?) (< 31,0,E>, ?) (< 31,0,H>, ?) (< 31,0,M>, ?) (< 31,0,N>, ?) (< 32,0,C>, ?) (< 32,0,E>, ?) (< 32,0,H>, ?) (< 32,0,M>, ?) (< 32,0,N>, ?) (< 35,0,C>, ?) (< 35,0,E>, ?) (< 35,0,H>, ?) (< 35,0,M>, ?) (< 35,0,N>, ?) (< 36,0,C>, ?) (< 36,0,E>, ?) (< 36,0,H>, ?) (< 36,0,M>, ?) (< 36,0,N>, ?) (< 37,0,C>, ?) (< 37,0,E>, ?) (< 37,0,H>, ?) (< 37,0,M>, ?) (< 37,0,N>, ?) (< 38,0,C>, ?) (< 38,0,E>, ?) (< 38,0,H>, ?) (< 38,0,M>, ?) (< 38,0,N>, ?) (< 39,0,C>, ?) (< 39,0,E>, ?) (< 39,0,H>, ?) (< 39,0,M>, ?) (< 39,0,N>, ?) (< 40,0,C>, ?) (< 40,0,E>, ?) (< 40,0,H>, ?) (< 40,0,M>, ?) (< 40,0,N>, ?) (< 41,0,C>, ?) (< 41,0,E>, ?) (< 41,0,H>, ?) (< 41,0,M>, ?) (< 41,0,N>, ?) (< 42,0,C>, ?) (< 42,0,E>, ?) (< 42,0,H>, ?) (< 42,0,M>, ?) (< 42,0,N>, ?) (< 43,0,C>, ?) (< 43,0,E>, ?) (< 43,0,H>, ?) (< 43,0,M>, ?) (< 43,0,N>, ?) (< 44,0,C>, ?) (< 44,0,E>, ?) (< 44,0,H>, ?) (< 44,0,M>, ?) (< 44,0,N>, ?) (< 45,0,C>, ?) (< 45,0,E>, ?) (< 45,0,H>, ?) (< 45,0,M>, ?) (< 45,0,N>, ?) (< 46,0,C>, ?) (< 46,0,E>, ?) (< 46,0,H>, ?) (< 46,0,M>, ?) (< 46,0,N>, ?) (< 47,0,C>, ?) (< 47,0,E>, ?) (< 47,0,H>, ?) (< 47,0,M>, ?) (< 47,0,N>, ?) (< 48,0,C>, ?) (< 48,0,E>, ?) (< 48,0,H>, ?) (< 48,0,M>, ?) (< 48,0,N>, ?) (< 49,0,C>, ?) (< 49,0,E>, ?) (< 49,0,H>, ?) (< 49,0,M>, ?) (< 49,0,N>, ?) (< 50,0,C>, ?) (< 50,0,E>, ?) (< 50,0,H>, ?) (< 50,0,M>, ?) (< 50,0,N>, ?) (< 51,0,C>, ?) (< 51,0,E>, ?) (< 51,0,H>, ?) (< 51,0,M>, ?) (< 51,0,N>, ?) (< 52,0,C>, ?) (< 52,0,E>, ?) (< 52,0,H>, ?) (< 52,0,M>, ?) (< 52,0,N>, ?) (< 53,0,C>, ?) (< 53,0,E>, ?) (< 53,0,H>, ?) (< 53,0,M>, ?) (< 53,0,N>, ?) (< 54,0,C>, ?) (< 54,0,E>, ?) (< 54,0,H>, ?) (< 54,0,M>, ?) (< 54,0,N>, ?) (< 55,0,C>, ?) (< 55,0,E>, ?) (< 55,0,H>, ?) (< 55,0,M>, ?) (< 55,0,N>, ?) (< 56,0,C>, ?) (< 56,0,E>, ?) (< 56,0,H>, ?) (< 56,0,M>, ?) (< 56,0,N>, ?) (< 57,0,C>, ?) (< 57,0,E>, ?) (< 57,0,H>, ?) (< 57,0,M>, ?) (< 57,0,N>, ?) (< 58,0,C>, ?) (< 58,0,E>, ?) (< 58,0,H>, ?) (< 58,0,M>, ?) (< 58,0,N>, ?) (< 59,0,C>, ?) (< 59,0,E>, ?) (< 59,0,H>, ?) (< 59,0,M>, ?) (< 59,0,N>, ?) (< 60,0,C>, ?) (< 60,0,E>, ?) (< 60,0,H>, ?) (< 60,0,M>, ?) (< 60,0,N>, ?) (< 61,0,C>, ?) (< 61,0,E>, ?) (< 61,0,H>, ?) (< 61,0,M>, ?) (< 61,0,N>, ?) (< 62,0,C>, ?) (< 62,0,E>, ?) (< 62,0,H>, ?) (< 62,0,M>, ?) (< 62,0,N>, ?) (< 63,0,C>, ?) (< 63,0,E>, ?) (< 63,0,H>, ?) (< 63,0,M>, ?) (< 63,0,N>, ?) (< 64,0,C>, ?) (< 64,0,E>, ?) (< 64,0,H>, ?) (< 64,0,M>, ?) (< 64,0,N>, ?) (< 65,0,C>, ?) (< 65,0,E>, ?) (< 65,0,H>, ?) (< 65,0,M>, ?) (< 65,0,N>, ?) (< 68,0,C>, ?) (< 68,0,E>, ?) (< 68,0,H>, ?) (< 68,0,M>, ?) (< 68,0,N>, ?) (< 74,0,C>, ?) (< 74,0,E>, ?) (< 74,0,H>, ?) (< 74,0,M>, ?) (< 74,0,N>, ?) (< 80,0,C>, ?) (< 80,0,E>, ?) (< 80,0,H>, ?) (< 80,0,M>, ?) (< 80,0,N>, ?) (< 81,0,C>, ?) (< 81,0,E>, ?) (< 81,0,H>, ?) (< 81,0,M>, ?) (< 81,0,N>, ?) (< 82,0,C>, ?) (< 82,0,E>, ?) (< 82,0,H>, ?) (< 82,0,M>, ?) (< 82,0,N>, ?) (< 83,0,C>, ?) (< 83,0,E>, ?) (< 83,0,H>, ?) (< 83,0,M>, ?) (< 83,0,N>, ?) (< 86,0,C>, ?) (< 86,0,E>, ?) (< 86,0,H>, ?) (< 86,0,M>, ?) (< 86,0,N>, ?) (< 92,0,C>, ?) (< 92,0,E>, ?) (< 92,0,H>, ?) (< 92,0,M>, ?) (< 92,0,N>, ?) (< 98,0,C>, ?) (< 98,0,E>, ?) (< 98,0,H>, ?) (< 98,0,M>, ?) (< 98,0,N>, ?) (< 99,0,C>, ?) (< 99,0,E>, ?) (< 99,0,H>, ?) (< 99,0,M>, ?) (< 99,0,N>, ?) (<100,0,C>, ?) (<100,0,E>, ?) (<100,0,H>, ?) (<100,0,M>, ?) (<100,0,N>, ?) (<101,0,C>, ?) (<101,0,E>, ?) (<101,0,H>, ?) (<101,0,M>, ?) (<101,0,N>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) * Step 31: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 30 : True 31 : True 32 : True 35 : True 36 : True 37 : True 38 : True 39 : True 40 : True 41 : True 42 : True 43 : True 44 : True 45 : True 46 : True 47 : True 48 : True 49 : True 50 : True 51 : True 52 : True 53 : True 54 : True 55 : True 56 : True 57 : True 58 : True 59 : True 60 : True 61 : True 62 : True 63 : True 64 : True 65 : True 68 : True 74 : True 80 : True 81 : True 82 : True 83 : True 86 : True 92 : True 98 : True 99 : True 100 : True 101 : True . * Step 32: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -11 + -12*x2 + 12*x4 p(f6) = 1 + -12*x2 + 12*x4 p(f8) = 7 + -12*x2 + 12*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M > -35 + -12*E + 12*M = f2(2 + C,2 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -23 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 1 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 1 + -12*E + 12*M >= -11 + -12*E + 12*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 1 + -12*E + 12*M >= -11 + -12*E + 12*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 1 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 1 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 1 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 1 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 1 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -23 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 1 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 1 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 1 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 1 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -23 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -23 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -11 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -23 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -23 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -23 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -35 + -12*E + 12*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -35 + -12*E + 12*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -35 + -12*E + 12*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -35 + -12*E + 12*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -11 + -12*E + 12*M >= -23 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) * Step 33: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -6*x2 + 6*x4 p(f6) = 6 + -6*x2 + 6*x4 p(f8) = 12 + -6*x2 + 6*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M > -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -12 + -6*E + 6*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) * Step 34: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -6*x2 + 6*x4 p(f6) = 6 + -6*x2 + 6*x4 p(f8) = 12 + -6*x2 + 6*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M > -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -12 + -6*E + 6*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) * Step 35: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -17 + -15*x2 + 15*x4 p(f6) = -2 + -15*x2 + 15*x4 p(f8) = 7 + -15*x2 + 15*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M > -47 + -15*E + 15*M = f2(2 + C,2 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -32 + -15*E + 15*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = -2 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = -2 + -15*E + 15*M >= -17 + -15*E + 15*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = -2 + -15*E + 15*M >= -17 + -15*E + 15*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = -2 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -2 + -15*E + 15*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -2 + -15*E + 15*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -2 + -15*E + 15*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -2 + -15*E + 15*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -32 + -15*E + 15*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -2 + -15*E + 15*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -2 + -15*E + 15*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -2 + -15*E + 15*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -2 + -15*E + 15*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -32 + -15*E + 15*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -32 + -15*E + 15*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -17 + -15*E + 15*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -32 + -15*E + 15*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -32 + -15*E + 15*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -32 + -15*E + 15*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -15*E + 15*M >= -47 + -15*E + 15*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -47 + -15*E + 15*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -47 + -15*E + 15*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -32 + -15*E + 15*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -17 + -15*E + 15*M >= -47 + -15*E + 15*M = f2(2 + C,2 + E,0,M,N) * Step 36: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -6*x2 + 6*x4 p(f6) = 6 + -6*x2 + 6*x4 p(f8) = 12 + -6*x2 + 6*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M > -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -12 + -6*E + 6*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) * Step 37: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -6*x2 + 6*x4 p(f6) = 6 + -6*x2 + 6*x4 p(f8) = 12 + -6*x2 + 6*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M > -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -12 + -6*E + 6*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) * Step 38: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -11 + -18*x2 + 18*x4 p(f6) = 7 + -18*x2 + 18*x4 p(f8) = 7 + -18*x2 + 18*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M > -47 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -29 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 7 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 7 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= 7 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= 7 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= 7 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= 7 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -29 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= 7 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= 7 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= 7 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= 7 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -29 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -29 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -11 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -29 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -29 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -29 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -18*E + 18*M >= -47 + -18*E + 18*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -47 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -47 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -29 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -11 + -18*E + 18*M >= -47 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) * Step 39: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -6*x2 + 6*x4 p(f6) = 6 + -6*x2 + 6*x4 p(f8) = 12 + -6*x2 + 6*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M > -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -12 + -6*E + 6*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) * Step 40: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -18*x2 + 18*x4 p(f6) = 6 + -18*x2 + 18*x4 p(f8) = 12 + -18*x2 + 18*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -18*E + 18*M > -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 6 + -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -18*E + 18*M >= -18*E + 18*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -18*E + 18*M >= -18*E + 18*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 6 + -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -48 + -18*E + 18*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -36 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -36 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -36 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -36 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) * Step 41: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -5 + -12*x2 + 12*x4 p(f6) = 7 + -12*x2 + 12*x4 p(f8) = 7 + -12*x2 + 12*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M > -29 + -12*E + 12*M = f2(2 + C,2 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -17 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 7 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 7 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 7 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 7 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 7 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 7 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -17 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 7 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 7 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 7 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= 7 + -12*E + 12*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -17 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -17 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -5 + -12*E + 12*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -17 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -17 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -17 + -12*E + 12*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 7 + -12*E + 12*M >= -29 + -12*E + 12*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -29 + -12*E + 12*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -29 + -12*E + 12*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -17 + -12*E + 12*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -5 + -12*E + 12*M >= -29 + -12*E + 12*M = f2(2 + C,2 + E,0,M,N) * Step 42: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -6*x2 + 6*x4 p(f6) = 6 + -6*x2 + 6*x4 p(f8) = 12 + -6*x2 + 6*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M > -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6*E + 6*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 6 + -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= 6 + -6*E + 6*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6*E + 6*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -6 + -6*E + 6*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -6*E + 6*M >= -12 + -6*E + 6*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6*E + 6*M >= -6 + -6*E + 6*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6*E + 6*M >= -12 + -6*E + 6*M = f2(2 + C,2 + E,0,M,N) * Step 43: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -18*x2 + 18*x4 p(f6) = 6 + -18*x2 + 18*x4 p(f8) = 12 + -18*x2 + 18*x4 The following rules are strictly oriented: [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M > -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = 6 + -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -18*E + 18*M >= -18*E + 18*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = 6 + -18*E + 18*M >= -18*E + 18*M = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = 6 + -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= 6 + -18*E + 18*M = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -12 + -18*E + 18*M = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -30 + -18*E + 18*M = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = 12 + -18*E + 18*M >= -48 + -18*E + 18*M = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -36 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -36 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -36 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -18*E + 18*M >= -18 + -18*E + 18*M = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -18*E + 18*M >= -36 + -18*E + 18*M = f2(2 + C,2 + E,0,M,N) * Step 44: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -30 + -12*x1 + 13*x5 p(f6) = -24 + -12*x1 + 13*x5 p(f8) = -12*x1 + 13*x5 The following rules are strictly oriented: [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = -24 + -12*C + 13*N > -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -48 + -12*C + 13*N = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = -24 + -12*C + 13*N >= -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = -24 + -12*C + 13*N >= -30 + -12*C + 13*N = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = -24 + -12*C + 13*N >= -30 + -12*C + 13*N = f2(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -24 + -12*C + 13*N = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -24 + -12*C + 13*N = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -24 + -12*C + 13*N = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -24 + -12*C + 13*N = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -48 + -12*C + 13*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -24 + -12*C + 13*N = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -24 + -12*C + 13*N = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -24 + -12*C + 13*N = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -24 + -12*C + 13*N = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -48 + -12*C + 13*N = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -48 + -12*C + 13*N = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -36 + -12*C + 13*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -48 + -12*C + 13*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -48 + -12*C + 13*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -48 + -12*C + 13*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = -12*C + 13*N >= -60 + -12*C + 13*N = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -54 + -12*C + 13*N = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -54 + -12*C + 13*N = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -54 + -12*C + 13*N = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -42 + -12*C + 13*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -30 + -12*C + 13*N >= -54 + -12*C + 13*N = f2(2 + C,2 + E,0,M,N) * Step 45: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -20 + -19*x1 + 19*x5 p(f6) = -13 + -19*x1 + 19*x5 p(f8) = -19*x1 + 19*x5 The following rules are strictly oriented: [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = -13 + -19*C + 19*N > -20 + -19*C + 19*N = f2(C,E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -51 + -19*C + 19*N = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = -13 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = -13 + -19*C + 19*N >= -20 + -19*C + 19*N = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = -13 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -13 + -19*C + 19*N = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -13 + -19*C + 19*N = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -13 + -19*C + 19*N = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -13 + -19*C + 19*N = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -51 + -19*C + 19*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -13 + -19*C + 19*N = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -13 + -19*C + 19*N = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -13 + -19*C + 19*N = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -13 + -19*C + 19*N = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -51 + -19*C + 19*N = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -51 + -19*C + 19*N = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -32 + -19*C + 19*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -51 + -19*C + 19*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -51 + -19*C + 19*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -51 + -19*C + 19*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = -19*C + 19*N >= -70 + -19*C + 19*N = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -58 + -19*C + 19*N = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -58 + -19*C + 19*N = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -58 + -19*C + 19*N = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -39 + -19*C + 19*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -20 + -19*C + 19*N >= -58 + -19*C + 19*N = f2(2 + C,2 + E,0,M,N) * Step 46: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (?,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (19*C + 19*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = -6 + -6*x1 + 6*x5 p(f6) = -6*x1 + 6*x5 p(f8) = -6*x1 + 6*x5 The following rules are strictly oriented: [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = -6*C + 6*N > -6 + -6*C + 6*N = f2(C,E,0,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -12 + -6*C + 6*N = f6(2 + C,2 + E,1,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] ==> f6(C,E,H,M,N) = -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] f6(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f2(C,E,0,M,N) [7 >= O ==> && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] f6(C,E,H,M,N) = -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6*C + 6*N = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6*C + 6*N = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6*C + 6*N = f6(C,E,0,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6*C + 6*N = f6(C,E,0,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -12 + -6*C + 6*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6*C + 6*N = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6*C + 6*N = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6*C + 6*N = f6(C,E,0,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6*C + 6*N = f6(C,E,0,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ ==> && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -12 + -6*C + 6*N = f6(2 + C,2 + E,1,M,N) [7 >= O$ ==> && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -12 + -6*C + 6*N = f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -6 + -6*C + 6*N = f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -12 + -6*C + 6*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -12 + -6*C + 6*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -12 + -6*C + 6*N = f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] ==> f8(C,E,H,M,N) = -6*C + 6*N >= -18 + -6*C + 6*N = f6(3 + C,3 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -18 + -6*C + 6*N = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -18 + -6*C + 6*N = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -18 + -6*C + 6*N = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -12 + -6*C + 6*N = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = -6 + -6*C + 6*N >= -18 + -6*C + 6*N = f2(2 + C,2 + E,0,M,N) * Step 47: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (?,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (6*C + 6*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (19*C + 19*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [30,31,32,68,74,80,81,82,83,86,92,98,99,100,101], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = 1 p(f6) = -11*x3 The following rules are strictly oriented: [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] ==> f2(C,E,H,M,N) = 1 > -11 = f6(2 + C,2 + E,1,M,N) The following rules are weakly oriented: [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] ==> f2(C,E,H,M,N) = 1 >= -11 = f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] ==> f2(C,E,H,M,N) = 1 >= -11 = f6(1 + C,1 + E,1,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = 1 >= 1 = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = 1 >= 1 = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = 1 >= 1 = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = 1 >= 1 = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = 1 >= 1 = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = 1 >= 1 = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = 1 >= 1 = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = 1 >= 1 = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = 1 >= 1 = f2(2 + C,2 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = 1 >= 1 = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] f2(C,E,H,M,N) = 1 >= 1 = f2(1 + C,1 + E,0,M,N) [7 >= O ==> && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] f2(C,E,H,M,N) = 1 >= 1 = f2(2 + C,2 + E,0,M,N) We use the following global sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) * Step 48: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (?,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (?,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (3 + 50*C + 51*N,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (6*C + 6*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (19*C + 19*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 49: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 30. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1] (127 + 50*C + 129*E + 129*M + 51*N,2) 31. f2(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1] (127 + 50*C + 129*E + 129*M + 51*N,2) 32. f2(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P && P >= 1 && 7 >= P$ && P$ >= 1] (3 + 50*C + 51*N,2) 35. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O && 1 >= P && P >= 0 && O >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] (3 + 13*C + 13*N,2) 36. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (6*C + 6*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 1 = 1] 37. f6(C,E,H,M,N) -> f2(C,E,0,M,N) [7 >= O (19*C + 19*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 1 && M >= 1 + E && N >= 1 && N >= 1 + C && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 1 = 1] 38. f6(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12*C + 13*N,2) && 1 >= P && P >= 0 && O >= 1 && H = 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$ && P$ >= 1] 39. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 40. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 41. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] 42. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 43. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 44. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 45. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 46. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 47. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && 3 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 48. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 49. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 50. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 51. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 52. f8(C,E,H,M,N) -> f6(C,E,0,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] 53. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 54. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ (1,4) && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1] 55. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1] (1,4) 56. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 5 && 7 >= P$$ && P$$ >= 1 && 7 >= P$$$ && P$$$ >= 1] (1,4) 57. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ (1,4) && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] 58. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 59. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 60. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 61. f8(C,E,H,M,N) -> f6(1 + C,1 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 62. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 63. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && 3 >= O$$ && O$$ >= 1 && P$$ >= 1] (1,4) 64. f8(C,E,H,M,N) -> f6(2 + C,2 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= O$$ && 7 >= P$$ && O$$ >= 5 && P$$ >= 1] (1,4) 65. f8(C,E,H,M,N) -> f6(3 + C,3 + E,1,M,N) [7 >= P$ && P$ >= 1 && 7 >= P$$ && P$$ >= 1] (1,4) 68. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 74. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 80. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 81. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 82. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 83. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 18*E + 18*M,4) && 7 >= P && 3 >= O && O >= 1 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 86. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && 3 >= O$ && O$ >= 1 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 92. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= O$ && 7 >= P$ && O$ >= 5 && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 2 + E && N >= 2 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 98. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 15*E + 15*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] 99. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && 3 >= O$$$ && O$$$ >= 1 && P$$$ >= 1 && 1 = 1] 100. f2(C,E,H,M,N) -> f2(1 + C,1 + E,0,M,N) [7 >= O (12 + 6*E + 6*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 1 && M >= 2 + E && N >= 1 && N >= 2 + C && 7 >= O$$$ && 7 >= P$$$ && O$$$ >= 5 && P$$$ >= 1 && 1 = 1] 101. f2(C,E,H,M,N) -> f2(2 + C,2 + E,0,M,N) [7 >= O (7 + 12*E + 12*M,4) && 7 >= P && O >= 5 && P >= 1 && 7 >= P$ && P$ >= 1 && 7 >= O$$ && 1 >= P$$ && P$$ >= 0 && O$$ >= 1 && 1 = 1 && M >= 3 + E && N >= 3 + C && M >= 1 && N >= 1 && 7 >= P$$$ && P$$$ >= 1] Signature: {(f1,5);(f2,5);(f3,5);(f4,5);(f6,5);(f7,5);(f8,5)} Flow Graph: [30->{35,36,37,38},31->{35,36,37,38},32->{35,36,37,38},35->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},36->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},37->{30,31,32,68,74,80,81,82,83,86,92,98,99,100 ,101},38->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},39->{35},40->{35},41->{35,36,37,38},42->{35} ,43->{35},44->{35,36,37,38},45->{35,36,37,38},46->{35,36,37,38},47->{35,36,37,38},48->{35},49->{35},50->{35 ,36,37,38},51->{35},52->{35},53->{35,36,37,38},54->{35,36,37,38},55->{35,36,37,38},56->{35,36,37,38},57->{35 ,36,37,38},58->{35,36,37,38},59->{35,36,37,38},60->{35,36,37,38},61->{35,36,37,38},62->{35,36,37,38},63->{35 ,36,37,38},64->{35,36,37,38},65->{35,36,37,38},68->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},74->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},80->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},81->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},82->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},83->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},86->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},92->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},98->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},99->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101},100->{30,31,32,68,74,80,81,82,83,86,92,98,99,100,101},101->{30 ,31,32,68,74,80,81,82,83,86,92,98,99,100,101}] Sizebounds: (< 30,0,C>, N) (< 30,0,E>, M) (< 30,0,H>, 1) (< 30,0,M>, M) (< 30,0,N>, N) (< 31,0,C>, N) (< 31,0,E>, M) (< 31,0,H>, 1) (< 31,0,M>, M) (< 31,0,N>, N) (< 32,0,C>, N) (< 32,0,E>, M) (< 32,0,H>, 1) (< 32,0,M>, M) (< 32,0,N>, N) (< 35,0,C>, N) (< 35,0,E>, M) (< 35,0,H>, 0) (< 35,0,M>, M) (< 35,0,N>, N) (< 36,0,C>, N) (< 36,0,E>, M) (< 36,0,H>, 0) (< 36,0,M>, M) (< 36,0,N>, N) (< 37,0,C>, N) (< 37,0,E>, M) (< 37,0,H>, 0) (< 37,0,M>, M) (< 37,0,N>, N) (< 38,0,C>, N) (< 38,0,E>, M) (< 38,0,H>, 0) (< 38,0,M>, M) (< 38,0,N>, N) (< 39,0,C>, C) (< 39,0,E>, E) (< 39,0,H>, 0) (< 39,0,M>, M) (< 39,0,N>, N) (< 40,0,C>, C) (< 40,0,E>, E) (< 40,0,H>, 0) (< 40,0,M>, M) (< 40,0,N>, N) (< 41,0,C>, 1 + C) (< 41,0,E>, 1 + E) (< 41,0,H>, 1) (< 41,0,M>, M) (< 41,0,N>, N) (< 42,0,C>, C) (< 42,0,E>, E) (< 42,0,H>, 0) (< 42,0,M>, M) (< 42,0,N>, N) (< 43,0,C>, C) (< 43,0,E>, E) (< 43,0,H>, 0) (< 43,0,M>, M) (< 43,0,N>, N) (< 44,0,C>, 1 + C) (< 44,0,E>, 1 + E) (< 44,0,H>, 1) (< 44,0,M>, M) (< 44,0,N>, N) (< 45,0,C>, 1 + C) (< 45,0,E>, 1 + E) (< 45,0,H>, 1) (< 45,0,M>, M) (< 45,0,N>, N) (< 46,0,C>, 1 + C) (< 46,0,E>, 1 + E) (< 46,0,H>, 1) (< 46,0,M>, M) (< 46,0,N>, N) (< 47,0,C>, 2 + C) (< 47,0,E>, 2 + E) (< 47,0,H>, 1) (< 47,0,M>, M) (< 47,0,N>, N) (< 48,0,C>, C) (< 48,0,E>, E) (< 48,0,H>, 0) (< 48,0,M>, M) (< 48,0,N>, N) (< 49,0,C>, C) (< 49,0,E>, E) (< 49,0,H>, 0) (< 49,0,M>, M) (< 49,0,N>, N) (< 50,0,C>, 1 + C) (< 50,0,E>, 1 + E) (< 50,0,H>, 1) (< 50,0,M>, M) (< 50,0,N>, N) (< 51,0,C>, C) (< 51,0,E>, E) (< 51,0,H>, 0) (< 51,0,M>, M) (< 51,0,N>, N) (< 52,0,C>, C) (< 52,0,E>, E) (< 52,0,H>, 0) (< 52,0,M>, M) (< 52,0,N>, N) (< 53,0,C>, 1 + C) (< 53,0,E>, 1 + E) (< 53,0,H>, 1) (< 53,0,M>, M) (< 53,0,N>, N) (< 54,0,C>, 1 + C) (< 54,0,E>, 1 + E) (< 54,0,H>, 1) (< 54,0,M>, M) (< 54,0,N>, N) (< 55,0,C>, 1 + C) (< 55,0,E>, 1 + E) (< 55,0,H>, 1) (< 55,0,M>, M) (< 55,0,N>, N) (< 56,0,C>, 2 + C) (< 56,0,E>, 2 + E) (< 56,0,H>, 1) (< 56,0,M>, M) (< 56,0,N>, N) (< 57,0,C>, 1 + C) (< 57,0,E>, 1 + E) (< 57,0,H>, 1) (< 57,0,M>, M) (< 57,0,N>, N) (< 58,0,C>, 1 + C) (< 58,0,E>, 1 + E) (< 58,0,H>, 1) (< 58,0,M>, M) (< 58,0,N>, N) (< 59,0,C>, 2 + C) (< 59,0,E>, 2 + E) (< 59,0,H>, 1) (< 59,0,M>, M) (< 59,0,N>, N) (< 60,0,C>, 1 + C) (< 60,0,E>, 1 + E) (< 60,0,H>, 1) (< 60,0,M>, M) (< 60,0,N>, N) (< 61,0,C>, 1 + C) (< 61,0,E>, 1 + E) (< 61,0,H>, 1) (< 61,0,M>, M) (< 61,0,N>, N) (< 62,0,C>, 2 + C) (< 62,0,E>, 2 + E) (< 62,0,H>, 1) (< 62,0,M>, M) (< 62,0,N>, N) (< 63,0,C>, 2 + C) (< 63,0,E>, 2 + E) (< 63,0,H>, 1) (< 63,0,M>, M) (< 63,0,N>, N) (< 64,0,C>, 2 + C) (< 64,0,E>, 2 + E) (< 64,0,H>, 1) (< 64,0,M>, M) (< 64,0,N>, N) (< 65,0,C>, 3 + C) (< 65,0,E>, 3 + E) (< 65,0,H>, 1) (< 65,0,M>, M) (< 65,0,N>, N) (< 68,0,C>, N) (< 68,0,E>, M) (< 68,0,H>, 0) (< 68,0,M>, M) (< 68,0,N>, N) (< 74,0,C>, N) (< 74,0,E>, M) (< 74,0,H>, 0) (< 74,0,M>, M) (< 74,0,N>, N) (< 80,0,C>, N) (< 80,0,E>, M) (< 80,0,H>, 0) (< 80,0,M>, M) (< 80,0,N>, N) (< 81,0,C>, N) (< 81,0,E>, M) (< 81,0,H>, 0) (< 81,0,M>, M) (< 81,0,N>, N) (< 82,0,C>, N) (< 82,0,E>, M) (< 82,0,H>, 0) (< 82,0,M>, M) (< 82,0,N>, N) (< 83,0,C>, N) (< 83,0,E>, M) (< 83,0,H>, 0) (< 83,0,M>, M) (< 83,0,N>, N) (< 86,0,C>, N) (< 86,0,E>, M) (< 86,0,H>, 0) (< 86,0,M>, M) (< 86,0,N>, N) (< 92,0,C>, N) (< 92,0,E>, M) (< 92,0,H>, 0) (< 92,0,M>, M) (< 92,0,N>, N) (< 98,0,C>, N) (< 98,0,E>, M) (< 98,0,H>, 0) (< 98,0,M>, M) (< 98,0,N>, N) (< 99,0,C>, N) (< 99,0,E>, M) (< 99,0,H>, 0) (< 99,0,M>, M) (< 99,0,N>, N) (<100,0,C>, N) (<100,0,E>, M) (<100,0,H>, 0) (<100,0,M>, M) (<100,0,N>, N) (<101,0,C>, N) (<101,0,E>, M) (<101,0,H>, 0) (<101,0,M>, M) (<101,0,N>, N) + Applied Processor: SizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))