WORST_CASE(?,O(1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)
          1.  f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (?,1)
          2.  f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (?,1)
          3.  f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (?,1)
          4.  f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)
          5.  f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1)
          6.  f16(A,B,C,D,E) -> f31(A,B,C,D,E)     [4 >= E]               (?,1)
          7.  f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1)
          8.  f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (?,1)
          9.  f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (?,1)
          10. f7(A,B,C,D,E)  -> f31(A,B,C,D,E)     [B >= 5]               (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1,10},1->{2,9},2->{3,8},3->{4,5,6,7},4->{4,5,6,7},5->{4,5,6,7},6->{},7->{3,8},8->{2,9},9->{1,10}
          ,10->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, 400, .= 400) (< 0,0,B>,     0, .= 0) (< 0,0,C>,     C, .= 0) (< 0,0,D>,     D, .= 0) (< 0,0,E>,     E, .= 0) 
          (< 1,0,A>,   A,   .= 0) (< 1,0,B>,     B, .= 0) (< 1,0,C>,     0, .= 0) (< 1,0,D>,     D, .= 0) (< 1,0,E>,     E, .= 0) 
          (< 2,0,A>,   A,   .= 0) (< 2,0,B>,     B, .= 0) (< 2,0,C>,     C, .= 0) (< 2,0,D>,     0, .= 0) (< 2,0,E>,     E, .= 0) 
          (< 3,0,A>,   A,   .= 0) (< 3,0,B>,     B, .= 0) (< 3,0,C>,     C, .= 0) (< 3,0,D>,     D, .= 0) (< 3,0,E>,     0, .= 0) 
          (< 4,0,A>,   A,   .= 0) (< 4,0,B>,     B, .= 0) (< 4,0,C>,     C, .= 0) (< 4,0,D>,     D, .= 0) (< 4,0,E>, 1 + E, .+ 1) 
          (< 5,0,A>,   A,   .= 0) (< 5,0,B>,     B, .= 0) (< 5,0,C>,     C, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>, 1 + E, .+ 1) 
          (< 6,0,A>,   A,   .= 0) (< 6,0,B>,     B, .= 0) (< 6,0,C>,     C, .= 0) (< 6,0,D>,     D, .= 0) (< 6,0,E>,     E, .= 0) 
          (< 7,0,A>,   A,   .= 0) (< 7,0,B>,     B, .= 0) (< 7,0,C>,     C, .= 0) (< 7,0,D>, 1 + D, .+ 1) (< 7,0,E>,     E, .= 0) 
          (< 8,0,A>,   A,   .= 0) (< 8,0,B>,     B, .= 0) (< 8,0,C>, 1 + C, .+ 1) (< 8,0,D>,     D, .= 0) (< 8,0,E>,     E, .= 0) 
          (< 9,0,A>,   A,   .= 0) (< 9,0,B>, 1 + B, .+ 1) (< 9,0,C>,     C, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>,     E, .= 0) 
          (<10,0,A>,   A,   .= 0) (<10,0,B>,     B, .= 0) (<10,0,C>,     C, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>,     E, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)
          1.  f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (?,1)
          2.  f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (?,1)
          3.  f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (?,1)
          4.  f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)
          5.  f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1)
          6.  f16(A,B,C,D,E) -> f31(A,B,C,D,E)     [4 >= E]               (?,1)
          7.  f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1)
          8.  f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (?,1)
          9.  f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (?,1)
          10. f7(A,B,C,D,E)  -> f31(A,B,C,D,E)     [B >= 5]               (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1,10},1->{2,9},2->{3,8},3->{4,5,6,7},4->{4,5,6,7},5->{4,5,6,7},6->{},7->{3,8},8->{2,9},9->{1,10}
          ,10->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, 400) (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 400) (< 1,0,B>, 4) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, 400) (< 2,0,B>, ?) (< 2,0,C>, 4) (< 2,0,D>, 0) (< 2,0,E>, ?) 
          (< 3,0,A>, 400) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 4) (< 3,0,E>, 0) 
          (< 4,0,A>, 400) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, 5) 
          (< 5,0,A>, 400) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, 5) 
          (< 6,0,A>, 400) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 5) 
          (< 7,0,A>, 400) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, 5) 
          (< 8,0,A>, 400) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, 400) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, 400) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
* Step 3: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)
          1.  f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (?,1)
          2.  f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (?,1)
          3.  f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (?,1)
          4.  f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)
          5.  f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1)
          6.  f16(A,B,C,D,E) -> f31(A,B,C,D,E)     [4 >= E]               (?,1)
          7.  f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1)
          8.  f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (?,1)
          9.  f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (?,1)
          10. f7(A,B,C,D,E)  -> f31(A,B,C,D,E)     [B >= 5]               (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1,10},1->{2,9},2->{3,8},3->{4,5,6,7},4->{4,5,6,7},5->{4,5,6,7},6->{},7->{3,8},8->{2,9},9->{1,10}
          ,10->{}]
        Sizebounds:
          (< 0,0,A>, 400) (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 400) (< 1,0,B>, 4) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, 400) (< 2,0,B>, ?) (< 2,0,C>, 4) (< 2,0,D>, 0) (< 2,0,E>, ?) 
          (< 3,0,A>, 400) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 4) (< 3,0,E>, 0) 
          (< 4,0,A>, 400) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, 5) 
          (< 5,0,A>, 400) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, 5) 
          (< 6,0,A>, 400) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 5) 
          (< 7,0,A>, 400) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, 5) 
          (< 8,0,A>, 400) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, 400) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, 400) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,10),(1,9),(2,8),(3,7)]
* Step 4: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)
          1.  f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (?,1)
          2.  f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (?,1)
          3.  f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (?,1)
          4.  f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)
          5.  f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1)
          6.  f16(A,B,C,D,E) -> f31(A,B,C,D,E)     [4 >= E]               (?,1)
          7.  f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1)
          8.  f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (?,1)
          9.  f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (?,1)
          10. f7(A,B,C,D,E)  -> f31(A,B,C,D,E)     [B >= 5]               (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5,6},4->{4,5,6,7},5->{4,5,6,7},6->{},7->{3,8},8->{2,9},9->{1,10},10->{}]
        Sizebounds:
          (< 0,0,A>, 400) (< 0,0,B>, 0) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 400) (< 1,0,B>, 4) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, 400) (< 2,0,B>, ?) (< 2,0,C>, 4) (< 2,0,D>, 0) (< 2,0,E>, ?) 
          (< 3,0,A>, 400) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 4) (< 3,0,E>, 0) 
          (< 4,0,A>, 400) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, 5) 
          (< 5,0,A>, 400) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, 5) 
          (< 6,0,A>, 400) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, 5) 
          (< 7,0,A>, 400) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, 5) 
          (< 8,0,A>, 400) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, 400) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, 400) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [6,10]
* Step 5: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)
          1. f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (?,1)
          2. f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (?,1)
          3. f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (?,1)
          4. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)
          5. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1)
          7. f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1)
          8. f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (?,1)
          9. f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5},4->{4,5,7},5->{4,5,7},7->{3,8},8->{2,9},9->{1}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
          (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
          (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
          (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
          (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
          (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
          (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
          (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
          (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 5        
          p(f10) = 4 + -1*x2
          p(f13) = 4 + -1*x2
          p(f16) = 4 + -1*x2
           p(f7) = 5 + -1*x2
        
        The following rules are strictly oriented:
               [4 >= B] ==>               
          f7(A,B,C,D,E)   = 5 + -1*B      
                          > 4 + -1*B      
                          = f10(A,B,0,D,E)
        
        
        The following rules are weakly oriented:
                          True ==>                   
                 f0(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f7(400,0,C,D,E)   
        
                      [4 >= C] ==>                   
                f10(A,B,C,D,E)   = 4 + -1*B          
                                >= 4 + -1*B          
                                 = f13(A,B,C,0,E)    
        
                      [4 >= D] ==>                   
                f13(A,B,C,D,E)   = 4 + -1*B          
                                >= 4 + -1*B          
                                 = f16(A,B,C,D,0)    
        
        [4 >= E && A >= 1 + F] ==>                   
                f16(A,B,C,D,E)   = 4 + -1*B          
                                >= 4 + -1*B          
                                 = f16(A,B,C,D,1 + E)
        
                      [4 >= E] ==>                   
                f16(A,B,C,D,E)   = 4 + -1*B          
                                >= 4 + -1*B          
                                 = f16(A,B,C,D,1 + E)
        
                      [E >= 5] ==>                   
                f16(A,B,C,D,E)   = 4 + -1*B          
                                >= 4 + -1*B          
                                 = f13(A,B,C,1 + D,E)
        
                      [D >= 5] ==>                   
                f13(A,B,C,D,E)   = 4 + -1*B          
                                >= 4 + -1*B          
                                 = f10(A,B,1 + C,D,E)
        
                      [C >= 5] ==>                   
                f10(A,B,C,D,E)   = 4 + -1*B          
                                >= 4 + -1*B          
                                 = f7(A,1 + B,C,D,E) 
        
        
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)
          1. f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (5,1)
          2. f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (?,1)
          3. f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (?,1)
          4. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)
          5. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1)
          7. f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1)
          8. f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (?,1)
          9. f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (?,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5},4->{4,5,7},5->{4,5,7},7->{3,8},8->{2,9},9->{1}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
          (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
          (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
          (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
          (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
          (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
          (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
          (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
          (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [9,8,7,4,3,2,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f10) = 1
          p(f13) = 1
          p(f16) = 1
           p(f7) = 0
        
        The following rules are strictly oriented:
                [C >= 5] ==>                  
          f10(A,B,C,D,E)   = 1                
                           > 0                
                           = f7(A,1 + B,C,D,E)
        
        
        The following rules are weakly oriented:
                      [4 >= C] ==>                   
                f10(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f13(A,B,C,0,E)    
        
                      [4 >= D] ==>                   
                f13(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f16(A,B,C,D,0)    
        
        [4 >= E && A >= 1 + F] ==>                   
                f16(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f16(A,B,C,D,1 + E)
        
                      [4 >= E] ==>                   
                f16(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f16(A,B,C,D,1 + E)
        
                      [E >= 5] ==>                   
                f16(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f13(A,B,C,1 + D,E)
        
                      [D >= 5] ==>                   
                f13(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f10(A,B,1 + C,D,E)
        
        We use the following global sizebounds:
        (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
        (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
        (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
        (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
        (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
        (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
        (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
        (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
        (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)
          1. f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (5,1)
          2. f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (?,1)
          3. f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (?,1)
          4. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)
          5. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1)
          7. f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1)
          8. f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (?,1)
          9. f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (5,1)
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5},4->{4,5,7},5->{4,5,7},7->{3,8},8->{2,9},9->{1}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
          (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
          (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
          (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
          (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
          (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
          (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
          (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
          (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,8,7,4,3,2,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f10) = 5 + -1*x3
          p(f13) = 4 + -1*x3
          p(f16) = 4 + -1*x3
           p(f7) = 5        
        
        The following rules are strictly oriented:
                [4 >= C] ==>               
          f10(A,B,C,D,E)   = 5 + -1*C      
                           > 4 + -1*C      
                           = f13(A,B,C,0,E)
        
        
        The following rules are weakly oriented:
                      [4 >= B] ==>                   
                 f7(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f10(A,B,0,D,E)    
        
                      [4 >= D] ==>                   
                f13(A,B,C,D,E)   = 4 + -1*C          
                                >= 4 + -1*C          
                                 = f16(A,B,C,D,0)    
        
        [4 >= E && A >= 1 + F] ==>                   
                f16(A,B,C,D,E)   = 4 + -1*C          
                                >= 4 + -1*C          
                                 = f16(A,B,C,D,1 + E)
        
                      [4 >= E] ==>                   
                f16(A,B,C,D,E)   = 4 + -1*C          
                                >= 4 + -1*C          
                                 = f16(A,B,C,D,1 + E)
        
                      [E >= 5] ==>                   
                f16(A,B,C,D,E)   = 4 + -1*C          
                                >= 4 + -1*C          
                                 = f13(A,B,C,1 + D,E)
        
                      [D >= 5] ==>                   
                f13(A,B,C,D,E)   = 4 + -1*C          
                                >= 4 + -1*C          
                                 = f10(A,B,1 + C,D,E)
        
        We use the following global sizebounds:
        (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
        (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
        (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
        (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
        (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
        (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
        (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
        (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
        (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1) 
          1. f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (5,1) 
          2. f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (30,1)
          3. f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (?,1) 
          4. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1) 
          5. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1) 
          7. f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1) 
          8. f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (?,1) 
          9. f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (5,1) 
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5},4->{4,5,7},5->{4,5,7},7->{3,8},8->{2,9},9->{1}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
          (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
          (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
          (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
          (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
          (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
          (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
          (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
          (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,9,8,7,4,3,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f10) = 0
          p(f13) = 1
          p(f16) = 1
           p(f7) = 0
        
        The following rules are strictly oriented:
                [D >= 5] ==>                   
          f13(A,B,C,D,E)   = 1                 
                           > 0                 
                           = f10(A,B,1 + C,D,E)
        
        
        The following rules are weakly oriented:
                      [4 >= B] ==>                   
                 f7(A,B,C,D,E)   = 0                 
                                >= 0                 
                                 = f10(A,B,0,D,E)    
        
                      [4 >= D] ==>                   
                f13(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f16(A,B,C,D,0)    
        
        [4 >= E && A >= 1 + F] ==>                   
                f16(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f16(A,B,C,D,1 + E)
        
                      [4 >= E] ==>                   
                f16(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f16(A,B,C,D,1 + E)
        
                      [E >= 5] ==>                   
                f16(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f13(A,B,C,1 + D,E)
        
                      [C >= 5] ==>                   
                f10(A,B,C,D,E)   = 0                 
                                >= 0                 
                                 = f7(A,1 + B,C,D,E) 
        
        We use the following global sizebounds:
        (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
        (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
        (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
        (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
        (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
        (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
        (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
        (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
        (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1) 
          1. f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (5,1) 
          2. f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (30,1)
          3. f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (?,1) 
          4. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1) 
          5. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1) 
          7. f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1) 
          8. f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (30,1)
          9. f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (5,1) 
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5},4->{4,5,7},5->{4,5,7},7->{3,8},8->{2,9},9->{1}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
          (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
          (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
          (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
          (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
          (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
          (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
          (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
          (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,9,7,4,3,2,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f10) = 5        
          p(f13) = 5 + -1*x4
          p(f16) = 4 + -1*x4
           p(f7) = 5        
        
        The following rules are strictly oriented:
                [4 >= D] ==>               
          f13(A,B,C,D,E)   = 5 + -1*D      
                           > 4 + -1*D      
                           = f16(A,B,C,D,0)
        
        
        The following rules are weakly oriented:
                      [4 >= B] ==>                   
                 f7(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f10(A,B,0,D,E)    
        
                      [4 >= C] ==>                   
                f10(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f13(A,B,C,0,E)    
        
        [4 >= E && A >= 1 + F] ==>                   
                f16(A,B,C,D,E)   = 4 + -1*D          
                                >= 4 + -1*D          
                                 = f16(A,B,C,D,1 + E)
        
                      [4 >= E] ==>                   
                f16(A,B,C,D,E)   = 4 + -1*D          
                                >= 4 + -1*D          
                                 = f16(A,B,C,D,1 + E)
        
                      [E >= 5] ==>                   
                f16(A,B,C,D,E)   = 4 + -1*D          
                                >= 4 + -1*D          
                                 = f13(A,B,C,1 + D,E)
        
                      [C >= 5] ==>                   
                f10(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f7(A,1 + B,C,D,E) 
        
        We use the following global sizebounds:
        (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
        (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
        (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
        (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
        (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
        (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
        (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
        (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
        (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)  
          1. f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (5,1)  
          2. f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (30,1) 
          3. f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (155,1)
          4. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)  
          5. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1)  
          7. f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (?,1)  
          8. f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (30,1) 
          9. f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (5,1)  
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5},4->{4,5,7},5->{4,5,7},7->{3,8},8->{2,9},9->{1}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
          (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
          (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
          (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
          (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
          (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
          (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
          (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
          (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,9,8,7,4,2,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f10) = 0
          p(f13) = 0
          p(f16) = 1
           p(f7) = 0
        
        The following rules are strictly oriented:
                [E >= 5] ==>                   
          f16(A,B,C,D,E)   = 1                 
                           > 0                 
                           = f13(A,B,C,1 + D,E)
        
        
        The following rules are weakly oriented:
                      [4 >= B] ==>                   
                 f7(A,B,C,D,E)   = 0                 
                                >= 0                 
                                 = f10(A,B,0,D,E)    
        
                      [4 >= C] ==>                   
                f10(A,B,C,D,E)   = 0                 
                                >= 0                 
                                 = f13(A,B,C,0,E)    
        
        [4 >= E && A >= 1 + F] ==>                   
                f16(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f16(A,B,C,D,1 + E)
        
                      [4 >= E] ==>                   
                f16(A,B,C,D,E)   = 1                 
                                >= 1                 
                                 = f16(A,B,C,D,1 + E)
        
                      [D >= 5] ==>                   
                f13(A,B,C,D,E)   = 0                 
                                >= 0                 
                                 = f10(A,B,1 + C,D,E)
        
                      [C >= 5] ==>                   
                f10(A,B,C,D,E)   = 0                 
                                >= 0                 
                                 = f7(A,1 + B,C,D,E) 
        
        We use the following global sizebounds:
        (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
        (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
        (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
        (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
        (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
        (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
        (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
        (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
        (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)  
          1. f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (5,1)  
          2. f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (30,1) 
          3. f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (155,1)
          4. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)  
          5. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (?,1)  
          7. f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (155,1)
          8. f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (30,1) 
          9. f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (5,1)  
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5},4->{4,5,7},5->{4,5,7},7->{3,8},8->{2,9},9->{1}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
          (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
          (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
          (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
          (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
          (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
          (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
          (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
          (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,9,8,4,3,2,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f10) = 5        
          p(f13) = 5        
          p(f16) = 5 + -1*x5
           p(f7) = 5        
        
        The following rules are strictly oriented:
                [4 >= E] ==>                   
          f16(A,B,C,D,E)   = 5 + -1*E          
                           > 4 + -1*E          
                           = f16(A,B,C,D,1 + E)
        
        
        The following rules are weakly oriented:
                      [4 >= B] ==>                   
                 f7(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f10(A,B,0,D,E)    
        
                      [4 >= C] ==>                   
                f10(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f13(A,B,C,0,E)    
        
                      [4 >= D] ==>                   
                f13(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f16(A,B,C,D,0)    
        
        [4 >= E && A >= 1 + F] ==>                   
                f16(A,B,C,D,E)   = 5 + -1*E          
                                >= 4 + -1*E          
                                 = f16(A,B,C,D,1 + E)
        
                      [D >= 5] ==>                   
                f13(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f10(A,B,1 + C,D,E)
        
                      [C >= 5] ==>                   
                f10(A,B,C,D,E)   = 5                 
                                >= 5                 
                                 = f7(A,1 + B,C,D,E) 
        
        We use the following global sizebounds:
        (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
        (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
        (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
        (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
        (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
        (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
        (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
        (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
        (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
* Step 12: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)  
          1. f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (5,1)  
          2. f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (30,1) 
          3. f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (155,1)
          4. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (?,1)  
          5. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (780,1)
          7. f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (155,1)
          8. f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (30,1) 
          9. f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (5,1)  
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5},4->{4,5,7},5->{4,5,7},7->{3,8},8->{2,9},9->{1}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
          (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
          (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
          (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
          (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
          (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
          (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
          (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
          (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [1,9,8,4,3,2,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f10) = 5        
          p(f13) = 5        
          p(f16) = 5 + -1*x5
           p(f7) = 5        
        
        The following rules are strictly oriented:
        [4 >= E && A >= 1 + F] ==>                   
                f16(A,B,C,D,E)   = 5 + -1*E          
                                 > 4 + -1*E          
                                 = f16(A,B,C,D,1 + E)
        
                      [4 >= E] ==>                   
                f16(A,B,C,D,E)   = 5 + -1*E          
                                 > 4 + -1*E          
                                 = f16(A,B,C,D,1 + E)
        
        
        The following rules are weakly oriented:
                [4 >= B] ==>                   
           f7(A,B,C,D,E)   = 5                 
                          >= 5                 
                           = f10(A,B,0,D,E)    
        
                [4 >= C] ==>                   
          f10(A,B,C,D,E)   = 5                 
                          >= 5                 
                           = f13(A,B,C,0,E)    
        
                [4 >= D] ==>                   
          f13(A,B,C,D,E)   = 5                 
                          >= 5                 
                           = f16(A,B,C,D,0)    
        
                [D >= 5] ==>                   
          f13(A,B,C,D,E)   = 5                 
                          >= 5                 
                           = f10(A,B,1 + C,D,E)
        
                [C >= 5] ==>                   
          f10(A,B,C,D,E)   = 5                 
                          >= 5                 
                           = f7(A,1 + B,C,D,E) 
        
        We use the following global sizebounds:
        (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
        (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
        (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
        (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
        (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
        (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
        (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
        (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
        (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
* Step 13: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f0(A,B,C,D,E)  -> f7(400,0,C,D,E)    True                   (1,1)  
          1. f7(A,B,C,D,E)  -> f10(A,B,0,D,E)     [4 >= B]               (5,1)  
          2. f10(A,B,C,D,E) -> f13(A,B,C,0,E)     [4 >= C]               (30,1) 
          3. f13(A,B,C,D,E) -> f16(A,B,C,D,0)     [4 >= D]               (155,1)
          4. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E && A >= 1 + F] (780,1)
          5. f16(A,B,C,D,E) -> f16(A,B,C,D,1 + E) [4 >= E]               (780,1)
          7. f16(A,B,C,D,E) -> f13(A,B,C,1 + D,E) [E >= 5]               (155,1)
          8. f13(A,B,C,D,E) -> f10(A,B,1 + C,D,E) [D >= 5]               (30,1) 
          9. f10(A,B,C,D,E) -> f7(A,1 + B,C,D,E)  [C >= 5]               (5,1)  
        Signature:
          {(f0,5);(f10,5);(f13,5);(f16,5);(f31,5);(f7,5)}
        Flow Graph:
          [0->{1},1->{2},2->{3},3->{4,5},4->{4,5,7},5->{4,5,7},7->{3,8},8->{2,9},9->{1}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, C) (<0,0,D>, D) (<0,0,E>, E) 
          (<1,0,A>, 400) (<1,0,B>, 4) (<1,0,C>, 0) (<1,0,D>, ?) (<1,0,E>, ?) 
          (<2,0,A>, 400) (<2,0,B>, ?) (<2,0,C>, 4) (<2,0,D>, 0) (<2,0,E>, ?) 
          (<3,0,A>, 400) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, 4) (<3,0,E>, 0) 
          (<4,0,A>, 400) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, 5) 
          (<5,0,A>, 400) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, 5) 
          (<7,0,A>, 400) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, 5) 
          (<8,0,A>, 400) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) 
          (<9,0,A>, 400) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))