WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C) -> f9(0,D,0) True (1,1) 1. f9(A,B,C) -> f9(A,B,1 + C) [49 >= C] (?,1) 2. f17(A,B,C) -> f17(1 + A,B,C) [49 >= A] (?,1) 3. f17(A,B,C) -> f24(A,B,C) [A >= 50] (?,1) 4. f9(A,B,C) -> f17(0,B,C) [C >= 50] (?,1) Signature: {(f0,3);(f17,3);(f24,3);(f9,3)} Flow Graph: [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,0) True (1,1) 1. f9(A,C) -> f9(A,1 + C) [49 >= C] (?,1) 2. f17(A,C) -> f17(1 + A,C) [49 >= A] (?,1) 3. f17(A,C) -> f24(A,C) [A >= 50] (?,1) 4. f9(A,C) -> f17(0,C) [C >= 50] (?,1) Signature: {(f0,2);(f17,2);(f24,2);(f9,2)} Flow Graph: [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 0, .= 0) (<0,0,C>, 0, .= 0) (<1,0,A>, A, .= 0) (<1,0,C>, 1 + C, .+ 1) (<2,0,A>, 1 + A, .+ 1) (<2,0,C>, C, .= 0) (<3,0,A>, A, .= 0) (<3,0,C>, C, .= 0) (<4,0,A>, 0, .= 0) (<4,0,C>, C, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,0) True (1,1) 1. f9(A,C) -> f9(A,1 + C) [49 >= C] (?,1) 2. f17(A,C) -> f17(1 + A,C) [49 >= A] (?,1) 3. f17(A,C) -> f24(A,C) [A >= 50] (?,1) 4. f9(A,C) -> f17(0,C) [C >= 50] (?,1) Signature: {(f0,2);(f17,2);(f24,2);(f9,2)} Flow Graph: [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}] Sizebounds: (<0,0,A>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 0) (<0,0,C>, 0) (<1,0,A>, 0) (<1,0,C>, 50) (<2,0,A>, 50) (<2,0,C>, 50) (<3,0,A>, 50) (<3,0,C>, 50) (<4,0,A>, 0) (<4,0,C>, 50) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,0) True (1,1) 1. f9(A,C) -> f9(A,1 + C) [49 >= C] (?,1) 2. f17(A,C) -> f17(1 + A,C) [49 >= A] (?,1) 3. f17(A,C) -> f24(A,C) [A >= 50] (?,1) 4. f9(A,C) -> f17(0,C) [C >= 50] (?,1) Signature: {(f0,2);(f17,2);(f24,2);(f9,2)} Flow Graph: [0->{1,4},1->{1,4},2->{2,3},3->{},4->{2,3}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, 0) (<1,0,A>, 0) (<1,0,C>, 50) (<2,0,A>, 50) (<2,0,C>, 50) (<3,0,A>, 50) (<3,0,C>, 50) (<4,0,A>, 0) (<4,0,C>, 50) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,4),(4,3)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,0) True (1,1) 1. f9(A,C) -> f9(A,1 + C) [49 >= C] (?,1) 2. f17(A,C) -> f17(1 + A,C) [49 >= A] (?,1) 3. f17(A,C) -> f24(A,C) [A >= 50] (?,1) 4. f9(A,C) -> f17(0,C) [C >= 50] (?,1) Signature: {(f0,2);(f17,2);(f24,2);(f9,2)} Flow Graph: [0->{1},1->{1,4},2->{2,3},3->{},4->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, 0) (<1,0,A>, 0) (<1,0,C>, 50) (<2,0,A>, 50) (<2,0,C>, 50) (<3,0,A>, 50) (<3,0,C>, 50) (<4,0,A>, 0) (<4,0,C>, 50) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,0) True (1,1) 1. f9(A,C) -> f9(A,1 + C) [49 >= C] (?,1) 2. f17(A,C) -> f17(1 + A,C) [49 >= A] (?,1) 4. f9(A,C) -> f17(0,C) [C >= 50] (?,1) Signature: {(f0,2);(f17,2);(f24,2);(f9,2)} Flow Graph: [0->{1},1->{1,4},2->{2},4->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, 0) (<1,0,A>, 0) (<1,0,C>, 50) (<2,0,A>, 50) (<2,0,C>, 50) (<4,0,A>, 0) (<4,0,C>, 50) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f17) = 0 p(f9) = 1 The following rules are strictly oriented: [C >= 50] ==> f9(A,C) = 1 > 0 = f17(0,C) The following rules are weakly oriented: True ==> f0(A,C) = 1 >= 1 = f9(0,0) [49 >= C] ==> f9(A,C) = 1 >= 1 = f9(A,1 + C) [49 >= A] ==> f17(A,C) = 0 >= 0 = f17(1 + A,C) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,0) True (1,1) 1. f9(A,C) -> f9(A,1 + C) [49 >= C] (?,1) 2. f17(A,C) -> f17(1 + A,C) [49 >= A] (?,1) 4. f9(A,C) -> f17(0,C) [C >= 50] (1,1) Signature: {(f0,2);(f17,2);(f24,2);(f9,2)} Flow Graph: [0->{1},1->{1,4},2->{2},4->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, 0) (<1,0,A>, 0) (<1,0,C>, 50) (<2,0,A>, 50) (<2,0,C>, 50) (<4,0,A>, 0) (<4,0,C>, 50) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = 50 + -1*x1 p(f9) = 50 The following rules are strictly oriented: [49 >= A] ==> f17(A,C) = 50 + -1*A > 49 + -1*A = f17(1 + A,C) The following rules are weakly oriented: True ==> f0(A,C) = 50 >= 50 = f9(0,0) [49 >= C] ==> f9(A,C) = 50 >= 50 = f9(A,1 + C) [C >= 50] ==> f9(A,C) = 50 >= 50 = f17(0,C) * Step 8: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,0) True (1,1) 1. f9(A,C) -> f9(A,1 + C) [49 >= C] (?,1) 2. f17(A,C) -> f17(1 + A,C) [49 >= A] (50,1) 4. f9(A,C) -> f17(0,C) [C >= 50] (1,1) Signature: {(f0,2);(f17,2);(f24,2);(f9,2)} Flow Graph: [0->{1},1->{1,4},2->{2},4->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, 0) (<1,0,A>, 0) (<1,0,C>, 50) (<2,0,A>, 50) (<2,0,C>, 50) (<4,0,A>, 0) (<4,0,C>, 50) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f17) = -1*x2 p(f9) = 50 + -1*x2 The following rules are strictly oriented: [49 >= C] ==> f9(A,C) = 50 + -1*C > 49 + -1*C = f9(A,1 + C) The following rules are weakly oriented: True ==> f0(A,C) = 50 >= 50 = f9(0,0) [49 >= A] ==> f17(A,C) = -1*C >= -1*C = f17(1 + A,C) [C >= 50] ==> f9(A,C) = 50 + -1*C >= -1*C = f17(0,C) * Step 9: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,C) -> f9(0,0) True (1,1) 1. f9(A,C) -> f9(A,1 + C) [49 >= C] (50,1) 2. f17(A,C) -> f17(1 + A,C) [49 >= A] (50,1) 4. f9(A,C) -> f17(0,C) [C >= 50] (1,1) Signature: {(f0,2);(f17,2);(f24,2);(f9,2)} Flow Graph: [0->{1},1->{1,4},2->{2},4->{2}] Sizebounds: (<0,0,A>, 0) (<0,0,C>, 0) (<1,0,A>, 0) (<1,0,C>, 50) (<2,0,A>, 50) (<2,0,C>, 50) (<4,0,A>, 0) (<4,0,C>, 50) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))