WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [A >= 2] (1,1) 1. f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f9(A,B,0,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [A >= 1 + B] (?,1) 2. f9(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f9(A,B,C,1 + D,C,S,S,H,I,J,K,L,M,N,O,P,Q,R) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f9(A,B,S,1 + D,C,S,S,H,I,J,K,L,M,N,O,P,Q,R) [S >= C && A >= D] (?,1) 4. f26(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f26(A,B,C,1 + D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [A >= D] (?,1) 5. f32(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f32(A,B,C,1 + D,E,F,G,0,0,J,K,L,M,N,O,P,Q,R) [A >= D] (?,1) 6. f32(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f32(A,B,C,1 + D,E,F,G,S,T,J + T,K,L,M,N,O,P,Q,R) [0 >= 1 + S && A >= D] (?,1) 7. f32(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f32(A,B,C,1 + D,E,F,G,S,T,J + T,K,L,M,N,O,P,Q,R) [S >= 1 && A >= D] (?,1) 8. f52(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f55(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [A >= K] (?,1) 9. f55(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f55(A,B,C,1 + D,E,F,G,H,I,S,K,L,M,N,O,P,Q,R) [A >= D] (?,1) 10. f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f62(A,B,C,1 + D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [A >= D] (?,1) 11. f62(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f52(A,B,C,D,E,F,G,H,I,J,1 + K,L,M,N,O,P,Q,R) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f62(A,B,C,D,E,F,G,H,I,J,K,S,M,N,O,P,Q,R) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f5(A,1 + B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f52(A,B,C,D,E,F,G,H,I,J,K,L,S,T,T,P,Q,R) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f52(A,B,C,D,E,F,G,H,I,J,K,L,M,N,-1*S,T,S,R) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f32(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f5(A,1 + B,0,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,0) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f26(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f26(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [C >= 1 && D >= 1 + A] (?,1) 20. f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [B >= A && 0 >= 1 + S] (?,1) 21. f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [B >= A && S >= 1] (?,1) 22. f5(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) -> f1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R) [B >= A] (?,1) Signature: {(f1,18);(f2,18);(f26,18);(f32,18);(f5,18);(f52,18);(f55,18);(f62,18);(f9,18)} Flow Graph: [0->{1,20,21,22},1->{2,3,17,18,19},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6 ,7,14,15},7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{10,11},13->{1,20,21,22},14->{8 ,13},15->{8,13},16->{5,6,7,14,15},17->{1,20,21,22},18->{4,16},19->{4,16},20->{},21->{},22->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [E,F,G,H,I,J,L,M,N,O,P,Q,R] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (?,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (?,1) 4. f26(A,B,C,D,K) -> f26(A,B,C,1 + D,K) [A >= D] (?,1) 5. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [A >= D] (?,1) 6. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [0 >= 1 + S && A >= D] (?,1) 7. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [S >= 1 && A >= D] (?,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (?,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 10. f62(A,B,C,D,K) -> f62(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) 20. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && 0 >= 1 + S] (?,1) 21. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && S >= 1] (?,1) 22. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1,20,21,22},1->{2,3,17,18,19},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6 ,7,14,15},7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{10,11},13->{1,20,21,22},14->{8 ,13},15->{8,13},16->{5,6,7,14,15},17->{1,20,21,22},18->{4,16},19->{4,16},20->{},21->{},22->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,K>, K, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, 0, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,K>, K, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, 1 + D, .+ 1) (< 2,0,K>, K, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, ?, .?) (< 3,0,D>, 1 + D, .+ 1) (< 3,0,K>, K, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, 1 + D, .+ 1) (< 4,0,K>, K, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, 1 + D, .+ 1) (< 5,0,K>, K, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, 1 + D, .+ 1) (< 6,0,K>, K, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, 1 + D, .+ 1) (< 7,0,K>, K, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,K>, K, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, 1 + D, .+ 1) (< 9,0,K>, K, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, 1 + D, .+ 1) (<10,0,K>, K, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,K>, 1 + K, .+ 1) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<12,0,K>, K, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, 1 + B, .+ 1) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<13,0,K>, K, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) (<14,0,K>, K, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<15,0,K>, K, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<16,0,K>, K, .= 0) (<17,0,A>, A, .= 0) (<17,0,B>, 1 + B, .+ 1) (<17,0,C>, 0, .= 0) (<17,0,D>, D, .= 0) (<17,0,K>, K, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, C, .= 0) (<18,0,D>, D, .= 0) (<18,0,K>, K, .= 0) (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, C, .= 0) (<19,0,D>, D, .= 0) (<19,0,K>, K, .= 0) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, C, .= 0) (<20,0,D>, D, .= 0) (<20,0,K>, K, .= 0) (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>, C, .= 0) (<21,0,D>, D, .= 0) (<21,0,K>, K, .= 0) (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, C, .= 0) (<22,0,D>, D, .= 0) (<22,0,K>, K, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (?,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (?,1) 4. f26(A,B,C,D,K) -> f26(A,B,C,1 + D,K) [A >= D] (?,1) 5. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [A >= D] (?,1) 6. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [0 >= 1 + S && A >= D] (?,1) 7. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [S >= 1 && A >= D] (?,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (?,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 10. f62(A,B,C,D,K) -> f62(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) 20. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && 0 >= 1 + S] (?,1) 21. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && S >= 1] (?,1) 22. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1,20,21,22},1->{2,3,17,18,19},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6 ,7,14,15},7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{10,11},13->{1,20,21,22},14->{8 ,13},15->{8,13},16->{5,6,7,14,15},17->{1,20,21,22},18->{4,16},19->{4,16},20->{},21->{},22->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,K>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,K>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,K>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,K>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,K>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,K>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,K>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,K>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,K>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,K>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,K>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,K>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, 1 + A) (< 4,0,K>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, 1 + A) (< 5,0,K>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, 1 + A) (< 6,0,K>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, 1 + A) (< 7,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, 1 + A) (<10,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,K>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,K>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,K>, ?) * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (?,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (?,1) 4. f26(A,B,C,D,K) -> f26(A,B,C,1 + D,K) [A >= D] (?,1) 5. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [A >= D] (?,1) 6. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [0 >= 1 + S && A >= D] (?,1) 7. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [S >= 1 && A >= D] (?,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (?,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 10. f62(A,B,C,D,K) -> f62(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) 20. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && 0 >= 1 + S] (?,1) 21. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && S >= 1] (?,1) 22. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1,20,21,22},1->{2,3,17,18,19},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6 ,7,14,15},7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{10,11},13->{1,20,21,22},14->{8 ,13},15->{8,13},16->{5,6,7,14,15},17->{1,20,21,22},18->{4,16},19->{4,16},20->{},21->{},22->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, 1 + A) (< 4,0,K>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, 1 + A) (< 5,0,K>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, 1 + A) (< 6,0,K>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, 1 + A) (< 7,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, 1 + A) (<10,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,K>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,K>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,K>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,18) ,(1,19) ,(12,10) ,(16,5) ,(16,6) ,(16,7) ,(18,4) ,(19,4)] * Step 5: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (?,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (?,1) 4. f26(A,B,C,D,K) -> f26(A,B,C,1 + D,K) [A >= D] (?,1) 5. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [A >= D] (?,1) 6. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [0 >= 1 + S && A >= D] (?,1) 7. f32(A,B,C,D,K) -> f32(A,B,C,1 + D,K) [S >= 1 && A >= D] (?,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (?,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 10. f62(A,B,C,D,K) -> f62(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) 20. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && 0 >= 1 + S] (?,1) 21. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && S >= 1] (?,1) 22. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1,20,21,22},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},4->{4,16},5->{5,6,7,14,15},6->{5,6,7,14 ,15},7->{5,6,7,14,15},8->{9,12},9->{9,12},10->{10,11},11->{8,13},12->{11},13->{1,20,21,22},14->{8,13},15->{8 ,13},16->{14,15},17->{1,20,21,22},18->{16},19->{16},20->{},21->{},22->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, 1 + A) (< 4,0,K>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, 1 + A) (< 5,0,K>, ?) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, 1 + A) (< 6,0,K>, ?) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, 1 + A) (< 7,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, 1 + A) (<10,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,K>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,K>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,K>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [4,5,6,7,10] * Step 6: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (?,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (?,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (?,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) 20. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && 0 >= 1 + S] (?,1) 21. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A && S >= 1] (?,1) 22. f5(A,B,C,D,K) -> f1(A,B,C,D,K) [B >= A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1,20,21,22},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11} ,13->{1,20,21,22},14->{8,13},15->{8,13},16->{14,15},17->{1,20,21,22},18->{16},19->{16},20->{},21->{},22->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) (<20,0,A>, A) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,K>, ?) (<21,0,A>, A) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,K>, ?) (<22,0,A>, A) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,K>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [20,21,22] * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (?,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (?,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (?,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1} ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = 2 + x1 + -1*x2 p(f26) = 1 + x1 + -1*x2 p(f32) = 1 + x1 + -1*x2 p(f5) = 2 + x1 + -1*x2 p(f52) = 1 + x1 + -1*x2 p(f55) = 1 + x1 + -1*x2 p(f62) = 1 + x1 + -1*x2 p(f9) = 1 + x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + B] ==> f5(A,B,C,D,K) = 2 + A + -1*B > 1 + A + -1*B = f9(A,B,0,D,K) The following rules are weakly oriented: [A >= 2] ==> f2(A,B,C,D,K) = 2 + A + -1*B >= 2 + A + -1*B = f5(A,B,C,D,K) [C >= 1 + S && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f9(A,B,C,1 + D,K) [S >= C && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f9(A,B,S,1 + D,K) [A >= K] ==> f52(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f55(A,B,C,D,K) [A >= D] ==> f55(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f55(A,B,C,1 + D,K) [D >= 1 + A] ==> f62(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f52(A,B,C,D,1 + K) [D >= 1 + A] ==> f55(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f62(A,B,C,D,K) [K >= 1 + A] ==> f52(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f5(A,1 + B,C,D,K) [U >= 0 && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f52(A,B,C,D,K) [D >= 1 + A] ==> f26(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f32(A,B,C,D,K) [D >= 1 + A && C = 0] ==> f9(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f5(A,1 + B,0,D,K) [0 >= 1 + C && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*B >= 1 + A + -1*B = f26(A,B,C,D,K) * Step 8: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (2 + A + B,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (?,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (?,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1} ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = 1 + x1 + -1*x5 p(f26) = 1 + x1 + -1*x5 p(f32) = 1 + x1 + -1*x5 p(f5) = 1 + x1 + -1*x5 p(f52) = 1 + x1 + -1*x5 p(f55) = x1 + -1*x5 p(f62) = x1 + -1*x5 p(f9) = 1 + x1 + -1*x5 The following rules are strictly oriented: [A >= K] ==> f52(A,B,C,D,K) = 1 + A + -1*K > A + -1*K = f55(A,B,C,D,K) The following rules are weakly oriented: [A >= 2] ==> f2(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f5(A,B,C,D,K) [A >= 1 + B] ==> f5(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f9(A,B,0,D,K) [C >= 1 + S && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f9(A,B,C,1 + D,K) [S >= C && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f9(A,B,S,1 + D,K) [A >= D] ==> f55(A,B,C,D,K) = A + -1*K >= A + -1*K = f55(A,B,C,1 + D,K) [D >= 1 + A] ==> f62(A,B,C,D,K) = A + -1*K >= A + -1*K = f52(A,B,C,D,1 + K) [D >= 1 + A] ==> f55(A,B,C,D,K) = A + -1*K >= A + -1*K = f62(A,B,C,D,K) [K >= 1 + A] ==> f52(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f5(A,1 + B,C,D,K) [U >= 0 && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f52(A,B,C,D,K) [D >= 1 + A] ==> f26(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f32(A,B,C,D,K) [D >= 1 + A && C = 0] ==> f9(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f5(A,1 + B,0,D,K) [0 >= 1 + C && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*K >= 1 + A + -1*K = f26(A,B,C,D,K) * Step 9: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (2 + A + B,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (?,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (1 + A + K,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1} ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = 1 + x1 + -1*x4 p(f26) = 1 + x1 + -1*x4 p(f32) = 1 + x1 + -1*x4 p(f5) = 1 + x1 + -1*x4 p(f52) = 1 + x1 + -1*x4 p(f55) = 1 + x1 + -1*x4 p(f62) = 1 + x1 + -1*x4 p(f9) = 1 + x1 + -1*x4 The following rules are strictly oriented: [S >= C && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*D > A + -1*D = f9(A,B,S,1 + D,K) The following rules are weakly oriented: [A >= 2] ==> f2(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f5(A,B,C,D,K) [A >= 1 + B] ==> f5(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f9(A,B,0,D,K) [C >= 1 + S && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= A + -1*D = f9(A,B,C,1 + D,K) [A >= K] ==> f52(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f55(A,B,C,D,K) [A >= D] ==> f55(A,B,C,D,K) = 1 + A + -1*D >= A + -1*D = f55(A,B,C,1 + D,K) [D >= 1 + A] ==> f62(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f52(A,B,C,D,1 + K) [D >= 1 + A] ==> f55(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f62(A,B,C,D,K) [K >= 1 + A] ==> f52(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f5(A,1 + B,C,D,K) [U >= 0 && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f52(A,B,C,D,K) [D >= 1 + A] ==> f26(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f32(A,B,C,D,K) [D >= 1 + A && C = 0] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f5(A,1 + B,0,D,K) [0 >= 1 + C && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f26(A,B,C,D,K) * Step 10: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (2 + A + B,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (?,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (1 + A + D,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (1 + A + K,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1} ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = 1 + x1 + -1*x4 p(f26) = 1 + x1 + -1*x4 p(f32) = 1 + x1 + -1*x4 p(f5) = 1 + x1 + -1*x4 p(f52) = 1 + x1 + -1*x4 p(f55) = 1 + x1 + -1*x4 p(f62) = 1 + x1 + -1*x4 p(f9) = 1 + x1 + -1*x4 The following rules are strictly oriented: [C >= 1 + S && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*D > A + -1*D = f9(A,B,C,1 + D,K) [S >= C && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*D > A + -1*D = f9(A,B,S,1 + D,K) The following rules are weakly oriented: [A >= 2] ==> f2(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f5(A,B,C,D,K) [A >= 1 + B] ==> f5(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f9(A,B,0,D,K) [A >= K] ==> f52(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f55(A,B,C,D,K) [A >= D] ==> f55(A,B,C,D,K) = 1 + A + -1*D >= A + -1*D = f55(A,B,C,1 + D,K) [D >= 1 + A] ==> f62(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f52(A,B,C,D,1 + K) [D >= 1 + A] ==> f55(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f62(A,B,C,D,K) [K >= 1 + A] ==> f52(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f5(A,1 + B,C,D,K) [U >= 0 && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f52(A,B,C,D,K) [D >= 1 + A] ==> f26(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f32(A,B,C,D,K) [D >= 1 + A && C = 0] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f5(A,1 + B,0,D,K) [0 >= 1 + C && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f26(A,B,C,D,K) * Step 11: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (2 + A + B,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (1 + A + D,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (1 + A + D,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (1 + A + K,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (?,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (?,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (?,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (?,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (?,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (?,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1} ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 12: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (2 + A + B,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (1 + A + D,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (1 + A + D,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (1 + A + K,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (?,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (4 + 4*A + 4*D,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (4 + 4*A + 4*D,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (4 + 4*A + 4*D,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (4 + 3*A + B + 2*D,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (2 + 2*A + 2*D,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (2 + 2*A + 2*D,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1} ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = 1 + x1 + -1*x4 p(f26) = 1 + x1 + -1*x4 p(f32) = 1 + x1 + -1*x4 p(f5) = 1 + x1 + -1*x4 p(f52) = 1 + x1 + -1*x4 p(f55) = 1 + x1 + -1*x4 p(f62) = 1 + x1 + -1*x4 p(f9) = 1 + x1 + -1*x4 The following rules are strictly oriented: [C >= 1 + S && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*D > A + -1*D = f9(A,B,C,1 + D,K) [S >= C && A >= D] ==> f9(A,B,C,D,K) = 1 + A + -1*D > A + -1*D = f9(A,B,S,1 + D,K) [A >= D] ==> f55(A,B,C,D,K) = 1 + A + -1*D > A + -1*D = f55(A,B,C,1 + D,K) The following rules are weakly oriented: [A >= 2] ==> f2(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f5(A,B,C,D,K) [A >= 1 + B] ==> f5(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f9(A,B,0,D,K) [A >= K] ==> f52(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f55(A,B,C,D,K) [D >= 1 + A] ==> f62(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f52(A,B,C,D,1 + K) [D >= 1 + A] ==> f55(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f62(A,B,C,D,K) [K >= 1 + A] ==> f52(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f5(A,1 + B,C,D,K) [U >= 0 && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] ==> f32(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f52(A,B,C,D,K) [D >= 1 + A] ==> f26(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f32(A,B,C,D,K) [D >= 1 + A && C = 0] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f5(A,1 + B,0,D,K) [0 >= 1 + C && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] ==> f9(A,B,C,D,K) = 1 + A + -1*D >= 1 + A + -1*D = f26(A,B,C,D,K) * Step 13: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (2 + A + B,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (1 + A + D,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (1 + A + D,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (1 + A + K,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (1 + A + D,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (?,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (?,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (?,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (4 + 4*A + 4*D,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (4 + 4*A + 4*D,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (4 + 4*A + 4*D,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (4 + 3*A + B + 2*D,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (2 + 2*A + 2*D,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (2 + 2*A + 2*D,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1} ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 14: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,K) -> f5(A,B,C,D,K) [A >= 2] (1,1) 1. f5(A,B,C,D,K) -> f9(A,B,0,D,K) [A >= 1 + B] (2 + A + B,1) 2. f9(A,B,C,D,K) -> f9(A,B,C,1 + D,K) [C >= 1 + S && A >= D] (1 + A + D,1) 3. f9(A,B,C,D,K) -> f9(A,B,S,1 + D,K) [S >= C && A >= D] (1 + A + D,1) 8. f52(A,B,C,D,K) -> f55(A,B,C,D,K) [A >= K] (1 + A + K,1) 9. f55(A,B,C,D,K) -> f55(A,B,C,1 + D,K) [A >= D] (1 + A + D,1) 11. f62(A,B,C,D,K) -> f52(A,B,C,D,1 + K) [D >= 1 + A] (2 + 2*A + D + K,1) 12. f55(A,B,C,D,K) -> f62(A,B,C,D,K) [D >= 1 + A] (2 + 2*A + D + K,1) 13. f52(A,B,C,D,K) -> f5(A,1 + B,C,D,K) [K >= 1 + A] (10 + 10*A + 9*D + K,1) 14. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [U >= 0 && D >= 1 + A] (4 + 4*A + 4*D,1) 15. f32(A,B,C,D,K) -> f52(A,B,C,D,K) [0 >= 1 + U && D >= 1 + A] (4 + 4*A + 4*D,1) 16. f26(A,B,C,D,K) -> f32(A,B,C,D,K) [D >= 1 + A] (4 + 4*A + 4*D,1) 17. f9(A,B,C,D,K) -> f5(A,1 + B,0,D,K) [D >= 1 + A && C = 0] (4 + 3*A + B + 2*D,1) 18. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [0 >= 1 + C && D >= 1 + A] (2 + 2*A + 2*D,1) 19. f9(A,B,C,D,K) -> f26(A,B,C,D,K) [C >= 1 && D >= 1 + A] (2 + 2*A + 2*D,1) Signature: {(f1,5);(f2,5);(f26,5);(f32,5);(f5,5);(f52,5);(f55,5);(f62,5);(f9,5)} Flow Graph: [0->{1},1->{2,3,17},2->{2,3,17,18,19},3->{2,3,17,18,19},8->{9,12},9->{9,12},11->{8,13},12->{11},13->{1} ,14->{8,13},15->{8,13},16->{14,15},17->{1},18->{16},19->{16}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,K>, K) (< 1,0,A>, A) (< 1,0,B>, A) (< 1,0,C>, 0) (< 1,0,D>, ?) (< 1,0,K>, ?) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, 1 + A) (< 2,0,K>, ?) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, 1 + A) (< 3,0,K>, ?) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,K>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, 1 + A) (< 9,0,K>, A) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,K>, A) (<12,0,A>, A) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,K>, A) (<13,0,A>, A) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,K>, ?) (<14,0,A>, A) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,K>, ?) (<15,0,A>, A) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,K>, ?) (<16,0,A>, A) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,K>, ?) (<17,0,A>, A) (<17,0,B>, ?) (<17,0,C>, 0) (<17,0,D>, ?) (<17,0,K>, ?) (<18,0,A>, A) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,K>, ?) (<19,0,A>, A) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,K>, ?) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))