WORST_CASE(?,O(n^1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,E,F) -> f2(-1 + A,-1 + B,A,B,-2 + A,F) [A >= 1 && B >= 1] (?,1) 1. f3(A,B,C,D,E,F) -> f2(A,B,C,D,E,F) True (1,1) 2. f2(A,B,C,D,E,F) -> f4(A,G,C,D,E,H) [0 >= B && 0 >= G] (?,1) 3. f2(A,B,C,D,E,F) -> f4(A,B,C,D,E,H) [B >= 1 && 0 >= A] (?,1) Signature: {(f2,6);(f3,6);(f4,6)} Flow Graph: [0->{0,2,3},1->{0,2,3},2->{},3->{}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [C,D,E,F] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,-1 + B) [A >= 1 && B >= 1] (?,1) 1. f3(A,B) -> f2(A,B) True (1,1) 2. f2(A,B) -> f4(A,G) [0 >= B && 0 >= G] (?,1) 3. f2(A,B) -> f4(A,B) [B >= 1 && 0 >= A] (?,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0,2,3},1->{0,2,3},2->{},3->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 1 + A, .+ 1) (<0,0,B>, 1 + B, .+ 1) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, ?, .?) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,-1 + B) [A >= 1 && B >= 1] (?,1) 1. f3(A,B) -> f2(A,B) True (1,1) 2. f2(A,B) -> f4(A,G) [0 >= B && 0 >= G] (?,1) 3. f2(A,B) -> f4(A,B) [B >= 1 && 0 >= A] (?,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0,2,3},1->{0,2,3},2->{},3->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,-1 + B) [A >= 1 && B >= 1] (?,1) 1. f3(A,B) -> f2(A,B) True (1,1) 2. f2(A,B) -> f4(A,G) [0 >= B && 0 >= G] (?,1) 3. f2(A,B) -> f4(A,B) [B >= 1 && 0 >= A] (?,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0,2,3},1->{0,2,3},2->{},3->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2,3] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,-1 + B) [A >= 1 && B >= 1] (?,1) 1. f3(A,B) -> f2(A,B) True (1,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0},1->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = x2 p(f3) = x2 The following rules are strictly oriented: [A >= 1 && B >= 1] ==> f2(A,B) = B > -1 + B = f2(-1 + A,-1 + B) The following rules are weakly oriented: True ==> f3(A,B) = B >= B = f2(A,B) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B) -> f2(-1 + A,-1 + B) [A >= 1 && B >= 1] (B,1) 1. f3(A,B) -> f2(A,B) True (1,1) Signature: {(f2,2);(f3,2);(f4,2)} Flow Graph: [0->{0},1->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, A) (<1,0,B>, B) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))