WORST_CASE(?,O(1)) * Step 1: TrivialSCCs WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f12(A,B,C,D,E,F) -> f5(400,0,0,D,E,F) True (1,1) 1. f5(A,B,C,D,E,F) -> f11(A,B,0,0,0,F) [B >= A && C = 0] (?,1) 2. f5(A,B,C,D,E,F) -> f10(A,B,C,C,C,F) [C >= 1] (?,1) 3. f5(A,B,C,D,E,F) -> f10(A,B,C,C,C,F) [0 >= 1 + C] (?,1) 4. f7(A,B,C,D,E,F) -> f5(A,1 + B,G,H,E,G) True (?,1) 5. f8(A,B,C,D,E,F) -> f5(A,1 + B,G,H,E,G) True (?,1) 6. f5(A,B,C,D,E,F) -> f5(A,1 + B,G,H,E,G) [A >= 1 + B && C = 0] (?,1) Signature: {(f10,6);(f11,6);(f12,6);(f5,6);(f7,6);(f8,6)} Flow Graph: [0->{1,2,3,6},1->{},2->{},3->{},4->{1,2,3,6},5->{1,2,3,6},6->{1,2,3,6}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f12(A,B,C,D,E,F) -> f5(400,0,0,D,E,F) True (1,1) 1. f5(A,B,C,D,E,F) -> f11(A,B,0,0,0,F) [B >= A && C = 0] (?,1) 2. f5(A,B,C,D,E,F) -> f10(A,B,C,C,C,F) [C >= 1] (?,1) 3. f5(A,B,C,D,E,F) -> f10(A,B,C,C,C,F) [0 >= 1 + C] (?,1) 4. f7(A,B,C,D,E,F) -> f5(A,1 + B,G,H,E,G) True (1,1) 5. f8(A,B,C,D,E,F) -> f5(A,1 + B,G,H,E,G) True (1,1) 6. f5(A,B,C,D,E,F) -> f5(A,1 + B,G,H,E,G) [A >= 1 + B && C = 0] (?,1) Signature: {(f10,6);(f11,6);(f12,6);(f5,6);(f7,6);(f8,6)} Flow Graph: [0->{1,2,3,6},1->{},2->{},3->{},4->{1,2,3,6},5->{1,2,3,6},6->{1,2,3,6}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [D,E,F] . * Step 3: UnreachableRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f12(A,B,C) -> f5(400,0,0) True (1,1) 1. f5(A,B,C) -> f11(A,B,0) [B >= A && C = 0] (?,1) 2. f5(A,B,C) -> f10(A,B,C) [C >= 1] (?,1) 3. f5(A,B,C) -> f10(A,B,C) [0 >= 1 + C] (?,1) 4. f7(A,B,C) -> f5(A,1 + B,G) True (?,1) 5. f8(A,B,C) -> f5(A,1 + B,G) True (?,1) 6. f5(A,B,C) -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1) Signature: {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)} Flow Graph: [0->{1,2,3,6},1->{},2->{},3->{},4->{1,2,3,6},5->{1,2,3,6},6->{1,2,3,6}] + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [4,5] * Step 4: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f12(A,B,C) -> f5(400,0,0) True (1,1) 1. f5(A,B,C) -> f11(A,B,0) [B >= A && C = 0] (?,1) 2. f5(A,B,C) -> f10(A,B,C) [C >= 1] (?,1) 3. f5(A,B,C) -> f10(A,B,C) [0 >= 1 + C] (?,1) 6. f5(A,B,C) -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1) Signature: {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)} Flow Graph: [0->{1,2,3,6},1->{},2->{},3->{},6->{1,2,3,6}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 400, .= 400) (<0,0,B>, 0, .= 0) (<0,0,C>, 0, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>, 0, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<6,0,A>, A, .= 0) (<6,0,B>, 1 + B, .+ 1) (<6,0,C>, ?, .?) * Step 5: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f12(A,B,C) -> f5(400,0,0) True (1,1) 1. f5(A,B,C) -> f11(A,B,0) [B >= A && C = 0] (?,1) 2. f5(A,B,C) -> f10(A,B,C) [C >= 1] (?,1) 3. f5(A,B,C) -> f10(A,B,C) [0 >= 1 + C] (?,1) 6. f5(A,B,C) -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1) Signature: {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)} Flow Graph: [0->{1,2,3,6},1->{},2->{},3->{},6->{1,2,3,6}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, 0) (<1,0,A>, 400) (<1,0,B>, 400) (<1,0,C>, 0) (<2,0,A>, 400) (<2,0,B>, 400) (<2,0,C>, ?) (<3,0,A>, 400) (<3,0,B>, 400) (<3,0,C>, ?) (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) * Step 6: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f12(A,B,C) -> f5(400,0,0) True (1,1) 1. f5(A,B,C) -> f11(A,B,0) [B >= A && C = 0] (?,1) 2. f5(A,B,C) -> f10(A,B,C) [C >= 1] (?,1) 3. f5(A,B,C) -> f10(A,B,C) [0 >= 1 + C] (?,1) 6. f5(A,B,C) -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1) Signature: {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)} Flow Graph: [0->{1,2,3,6},1->{},2->{},3->{},6->{1,2,3,6}] Sizebounds: (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, 0) (<1,0,A>, 400) (<1,0,B>, 400) (<1,0,C>, 0) (<2,0,A>, 400) (<2,0,B>, 400) (<2,0,C>, ?) (<3,0,A>, 400) (<3,0,B>, 400) (<3,0,C>, ?) (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,1),(0,2),(0,3)] * Step 7: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f12(A,B,C) -> f5(400,0,0) True (1,1) 1. f5(A,B,C) -> f11(A,B,0) [B >= A && C = 0] (?,1) 2. f5(A,B,C) -> f10(A,B,C) [C >= 1] (?,1) 3. f5(A,B,C) -> f10(A,B,C) [0 >= 1 + C] (?,1) 6. f5(A,B,C) -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1) Signature: {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)} Flow Graph: [0->{6},1->{},2->{},3->{},6->{1,2,3,6}] Sizebounds: (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, 0) (<1,0,A>, 400) (<1,0,B>, 400) (<1,0,C>, 0) (<2,0,A>, 400) (<2,0,B>, 400) (<2,0,C>, ?) (<3,0,A>, 400) (<3,0,B>, 400) (<3,0,C>, ?) (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [1,2,3] * Step 8: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f12(A,B,C) -> f5(400,0,0) True (1,1) 6. f5(A,B,C) -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1) Signature: {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)} Flow Graph: [0->{6},6->{6}] Sizebounds: (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, 0) (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f12) = 400 p(f5) = x1 + -1*x2 The following rules are strictly oriented: [A >= 1 + B && C = 0] ==> f5(A,B,C) = A + -1*B > -1 + A + -1*B = f5(A,1 + B,G) The following rules are weakly oriented: True ==> f12(A,B,C) = 400 >= 400 = f5(400,0,0) * Step 9: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f12(A,B,C) -> f5(400,0,0) True (1,1) 6. f5(A,B,C) -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (400,1) Signature: {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)} Flow Graph: [0->{6},6->{6}] Sizebounds: (<0,0,A>, 400) (<0,0,B>, 0) (<0,0,C>, 0) (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))