WORST_CASE(?,O(1))
* Step 1: TrivialSCCs WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f12(A,B,C,D,E,F) -> f5(400,0,0,D,E,F)   True                  (1,1)
          1. f5(A,B,C,D,E,F)  -> f11(A,B,0,0,0,F)    [B >= A && C = 0]     (?,1)
          2. f5(A,B,C,D,E,F)  -> f10(A,B,C,C,C,F)    [C >= 1]              (?,1)
          3. f5(A,B,C,D,E,F)  -> f10(A,B,C,C,C,F)    [0 >= 1 + C]          (?,1)
          4. f7(A,B,C,D,E,F)  -> f5(A,1 + B,G,H,E,G) True                  (?,1)
          5. f8(A,B,C,D,E,F)  -> f5(A,1 + B,G,H,E,G) True                  (?,1)
          6. f5(A,B,C,D,E,F)  -> f5(A,1 + B,G,H,E,G) [A >= 1 + B && C = 0] (?,1)
        Signature:
          {(f10,6);(f11,6);(f12,6);(f5,6);(f7,6);(f8,6)}
        Flow Graph:
          [0->{1,2,3,6},1->{},2->{},3->{},4->{1,2,3,6},5->{1,2,3,6},6->{1,2,3,6}]
        
    + Applied Processor:
        TrivialSCCs
    + Details:
        All trivial SCCs of the transition graph admit timebound 1.
* Step 2: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f12(A,B,C,D,E,F) -> f5(400,0,0,D,E,F)   True                  (1,1)
          1. f5(A,B,C,D,E,F)  -> f11(A,B,0,0,0,F)    [B >= A && C = 0]     (?,1)
          2. f5(A,B,C,D,E,F)  -> f10(A,B,C,C,C,F)    [C >= 1]              (?,1)
          3. f5(A,B,C,D,E,F)  -> f10(A,B,C,C,C,F)    [0 >= 1 + C]          (?,1)
          4. f7(A,B,C,D,E,F)  -> f5(A,1 + B,G,H,E,G) True                  (1,1)
          5. f8(A,B,C,D,E,F)  -> f5(A,1 + B,G,H,E,G) True                  (1,1)
          6. f5(A,B,C,D,E,F)  -> f5(A,1 + B,G,H,E,G) [A >= 1 + B && C = 0] (?,1)
        Signature:
          {(f10,6);(f11,6);(f12,6);(f5,6);(f7,6);(f8,6)}
        Flow Graph:
          [0->{1,2,3,6},1->{},2->{},3->{},4->{1,2,3,6},5->{1,2,3,6},6->{1,2,3,6}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [D,E,F] .
* Step 3: UnreachableRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f12(A,B,C) -> f5(400,0,0)   True                  (1,1)
          1. f5(A,B,C)  -> f11(A,B,0)    [B >= A && C = 0]     (?,1)
          2. f5(A,B,C)  -> f10(A,B,C)    [C >= 1]              (?,1)
          3. f5(A,B,C)  -> f10(A,B,C)    [0 >= 1 + C]          (?,1)
          4. f7(A,B,C)  -> f5(A,1 + B,G) True                  (?,1)
          5. f8(A,B,C)  -> f5(A,1 + B,G) True                  (?,1)
          6. f5(A,B,C)  -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1)
        Signature:
          {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)}
        Flow Graph:
          [0->{1,2,3,6},1->{},2->{},3->{},4->{1,2,3,6},5->{1,2,3,6},6->{1,2,3,6}]
        
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [4,5]
* Step 4: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f12(A,B,C) -> f5(400,0,0)   True                  (1,1)
          1. f5(A,B,C)  -> f11(A,B,0)    [B >= A && C = 0]     (?,1)
          2. f5(A,B,C)  -> f10(A,B,C)    [C >= 1]              (?,1)
          3. f5(A,B,C)  -> f10(A,B,C)    [0 >= 1 + C]          (?,1)
          6. f5(A,B,C)  -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1)
        Signature:
          {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)}
        Flow Graph:
          [0->{1,2,3,6},1->{},2->{},3->{},6->{1,2,3,6}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, 400, .= 400) (<0,0,B>,     0, .= 0) (<0,0,C>, 0, .= 0) 
          (<1,0,A>,   A,   .= 0) (<1,0,B>,     B, .= 0) (<1,0,C>, 0, .= 0) 
          (<2,0,A>,   A,   .= 0) (<2,0,B>,     B, .= 0) (<2,0,C>, C, .= 0) 
          (<3,0,A>,   A,   .= 0) (<3,0,B>,     B, .= 0) (<3,0,C>, C, .= 0) 
          (<6,0,A>,   A,   .= 0) (<6,0,B>, 1 + B, .+ 1) (<6,0,C>, ?,   .?) 
* Step 5: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f12(A,B,C) -> f5(400,0,0)   True                  (1,1)
          1. f5(A,B,C)  -> f11(A,B,0)    [B >= A && C = 0]     (?,1)
          2. f5(A,B,C)  -> f10(A,B,C)    [C >= 1]              (?,1)
          3. f5(A,B,C)  -> f10(A,B,C)    [0 >= 1 + C]          (?,1)
          6. f5(A,B,C)  -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1)
        Signature:
          {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)}
        Flow Graph:
          [0->{1,2,3,6},1->{},2->{},3->{},6->{1,2,3,6}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, 400) (<0,0,B>,   0) (<0,0,C>, 0) 
          (<1,0,A>, 400) (<1,0,B>, 400) (<1,0,C>, 0) 
          (<2,0,A>, 400) (<2,0,B>, 400) (<2,0,C>, ?) 
          (<3,0,A>, 400) (<3,0,B>, 400) (<3,0,C>, ?) 
          (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) 
* Step 6: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f12(A,B,C) -> f5(400,0,0)   True                  (1,1)
          1. f5(A,B,C)  -> f11(A,B,0)    [B >= A && C = 0]     (?,1)
          2. f5(A,B,C)  -> f10(A,B,C)    [C >= 1]              (?,1)
          3. f5(A,B,C)  -> f10(A,B,C)    [0 >= 1 + C]          (?,1)
          6. f5(A,B,C)  -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1)
        Signature:
          {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)}
        Flow Graph:
          [0->{1,2,3,6},1->{},2->{},3->{},6->{1,2,3,6}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>,   0) (<0,0,C>, 0) 
          (<1,0,A>, 400) (<1,0,B>, 400) (<1,0,C>, 0) 
          (<2,0,A>, 400) (<2,0,B>, 400) (<2,0,C>, ?) 
          (<3,0,A>, 400) (<3,0,B>, 400) (<3,0,C>, ?) 
          (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,1),(0,2),(0,3)]
* Step 7: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f12(A,B,C) -> f5(400,0,0)   True                  (1,1)
          1. f5(A,B,C)  -> f11(A,B,0)    [B >= A && C = 0]     (?,1)
          2. f5(A,B,C)  -> f10(A,B,C)    [C >= 1]              (?,1)
          3. f5(A,B,C)  -> f10(A,B,C)    [0 >= 1 + C]          (?,1)
          6. f5(A,B,C)  -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1)
        Signature:
          {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)}
        Flow Graph:
          [0->{6},1->{},2->{},3->{},6->{1,2,3,6}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>,   0) (<0,0,C>, 0) 
          (<1,0,A>, 400) (<1,0,B>, 400) (<1,0,C>, 0) 
          (<2,0,A>, 400) (<2,0,B>, 400) (<2,0,C>, ?) 
          (<3,0,A>, 400) (<3,0,B>, 400) (<3,0,C>, ?) 
          (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [1,2,3]
* Step 8: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f12(A,B,C) -> f5(400,0,0)   True                  (1,1)
          6. f5(A,B,C)  -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (?,1)
        Signature:
          {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)}
        Flow Graph:
          [0->{6},6->{6}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>,   0) (<0,0,C>, 0) 
          (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f12) = 400       
           p(f5) = x1 + -1*x2
        
        The following rules are strictly oriented:
        [A >= 1 + B && C = 0] ==>              
                    f5(A,B,C)   = A + -1*B     
                                > -1 + A + -1*B
                                = f5(A,1 + B,G)
        
        
        The following rules are weakly oriented:
                True ==>            
          f12(A,B,C)   = 400        
                      >= 400        
                       = f5(400,0,0)
        
        
* Step 9: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0. f12(A,B,C) -> f5(400,0,0)   True                  (1,1)  
          6. f5(A,B,C)  -> f5(A,1 + B,G) [A >= 1 + B && C = 0] (400,1)
        Signature:
          {(f10,3);(f11,3);(f12,3);(f5,3);(f7,3);(f8,3)}
        Flow Graph:
          [0->{6},6->{6}]
        Sizebounds:
          (<0,0,A>, 400) (<0,0,B>,   0) (<0,0,C>, 0) 
          (<6,0,A>, 400) (<6,0,B>, 400) (<6,0,C>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))