WORST_CASE(?,O(1)) * Step 1: RestrictVarsProcessor WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G) -> f15(0,H,I,0,E,F,G) True (1,1) 1. f15(A,B,C,D,E,F,G) -> f15(A,B,C,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,B,C,D,E,F,G) -> f25(A,B,C,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,B,C,D,E,F,G) -> f33(1 + A,B,C,D,E,F,G) [49 >= A] (?,1) 4. f42(A,B,C,D,E,F,G) -> f42(A,B,C,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1 + G) [49 >= G] (?,1) 6. f60(A,B,C,D,E,F,G) -> f60(1 + A,B,C,D,E,F,G) [49 >= A] (?,1) 7. f60(A,B,C,D,E,F,G) -> f69(A,B,C,D,E,F,G) [A >= 50] (?,1) 8. f52(A,B,C,D,E,F,G) -> f60(0,B,C,D,E,F,G) [G >= 50] (?,1) 9. f42(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,0) [F >= 50] (?,1) 10. f33(A,B,C,D,E,F,G) -> f42(A,B,C,D,E,0,G) [A >= 50] (?,1) 11. f25(A,B,C,D,E,F,G) -> f33(0,B,C,D,E,F,G) [E >= 50] (?,1) 12. f15(A,B,C,D,E,F,G) -> f25(A,B,C,D,0,F,G) [D >= 50] (?,1) Signature: {(f0,7);(f15,7);(f25,7);(f33,7);(f42,7);(f52,7);(f60,7);(f69,7)} Flow Graph: [0->{1,12},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6,7},9->{5,8},10->{4,9} ,11->{3,10},12->{2,11}] + Applied Processor: RestrictVarsProcessor + Details: We removed the arguments [B,C] . * Step 2: LocalSizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 7. f60(A,D,E,F,G) -> f69(A,D,E,F,G) [A >= 50] (?,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (?,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (?,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (?,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1,12},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6,7},9->{5,8},10->{4,9} ,11->{3,10},12->{2,11}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, 0, .= 0) (< 0,0,D>, 0, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>, G, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,D>, 1 + D, .+ 1) (< 1,0,E>, E, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, G, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, 1 + E, .+ 1) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 3,0,A>, 1 + A, .+ 1) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 3,0,G>, G, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, 1 + F, .+ 1) (< 4,0,G>, G, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>, 1 + G, .+ 1) (< 6,0,A>, 1 + A, .+ 1) (< 6,0,D>, D, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>, G, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 8,0,A>, 0, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, G, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, 0, .= 0) (<10,0,A>, A, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, 0, .= 0) (<10,0,G>, G, .= 0) (<11,0,A>, 0, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>, F, .= 0) (<11,0,G>, G, .= 0) (<12,0,A>, A, .= 0) (<12,0,D>, D, .= 0) (<12,0,E>, 0, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>, G, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 7. f60(A,D,E,F,G) -> f69(A,D,E,F,G) [A >= 50] (?,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (?,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (?,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (?,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1,12},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6,7},9->{5,8},10->{4,9} ,11->{3,10},12->{2,11}] Sizebounds: (< 0,0,A>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 1,0,A>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 2,0,A>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 3,0,A>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 4,0,A>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 5,0,A>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 6,0,A>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 7,0,A>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 8,0,A>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 9,0,A>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (<10,0,A>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<11,0,A>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<12,0,A>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) * Step 4: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 7. f60(A,D,E,F,G) -> f69(A,D,E,F,G) [A >= 50] (?,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (?,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (?,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (?,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1,12},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6,7},9->{5,8},10->{4,9} ,11->{3,10},12->{2,11}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,12),(8,7),(9,8),(10,9),(11,10),(12,11)] * Step 5: LeafRules WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 7. f60(A,D,E,F,G) -> f69(A,D,E,F,G) [A >= 50] (?,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (?,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (?,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (?,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6},9->{5},10->{4},11->{3} ,12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [7] * Step 6: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (?,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (?,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (?,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1 p(f15) = 1 p(f25) = 0 p(f33) = 0 p(f42) = 0 p(f52) = 0 p(f60) = 0 The following rules are strictly oriented: [D >= 50] ==> f15(A,D,E,F,G) = 1 > 0 = f25(A,D,0,F,G) The following rules are weakly oriented: True ==> f0(A,D,E,F,G) = 1 >= 1 = f15(0,0,E,F,G) [49 >= D] ==> f15(A,D,E,F,G) = 1 >= 1 = f15(A,1 + D,E,F,G) [49 >= E] ==> f25(A,D,E,F,G) = 0 >= 0 = f25(A,D,1 + E,F,G) [49 >= A] ==> f33(A,D,E,F,G) = 0 >= 0 = f33(1 + A,D,E,F,G) [49 >= F] ==> f42(A,D,E,F,G) = 0 >= 0 = f42(A,D,E,1 + F,G) [49 >= G] ==> f52(A,D,E,F,G) = 0 >= 0 = f52(A,D,E,F,1 + G) [49 >= A] ==> f60(A,D,E,F,G) = 0 >= 0 = f60(1 + A,D,E,F,G) [G >= 50] ==> f52(A,D,E,F,G) = 0 >= 0 = f60(0,D,E,F,G) [F >= 50] ==> f42(A,D,E,F,G) = 0 >= 0 = f52(A,D,E,F,0) [A >= 50] ==> f33(A,D,E,F,G) = 0 >= 0 = f42(A,D,E,0,G) [E >= 50] ==> f25(A,D,E,F,G) = 0 >= 0 = f33(0,D,E,F,G) * Step 7: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (?,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (?,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f15) = 50 p(f25) = 50 p(f33) = 50 p(f42) = 50 p(f52) = 50 + -1*x5 p(f60) = 50 + -1*x5 The following rules are strictly oriented: [49 >= G] ==> f52(A,D,E,F,G) = 50 + -1*G > 49 + -1*G = f52(A,D,E,F,1 + G) The following rules are weakly oriented: True ==> f0(A,D,E,F,G) = 50 >= 50 = f15(0,0,E,F,G) [49 >= D] ==> f15(A,D,E,F,G) = 50 >= 50 = f15(A,1 + D,E,F,G) [49 >= E] ==> f25(A,D,E,F,G) = 50 >= 50 = f25(A,D,1 + E,F,G) [49 >= A] ==> f33(A,D,E,F,G) = 50 >= 50 = f33(1 + A,D,E,F,G) [49 >= F] ==> f42(A,D,E,F,G) = 50 >= 50 = f42(A,D,E,1 + F,G) [49 >= A] ==> f60(A,D,E,F,G) = 50 + -1*G >= 50 + -1*G = f60(1 + A,D,E,F,G) [G >= 50] ==> f52(A,D,E,F,G) = 50 + -1*G >= 50 + -1*G = f60(0,D,E,F,G) [F >= 50] ==> f42(A,D,E,F,G) = 50 >= 50 = f52(A,D,E,F,0) [A >= 50] ==> f33(A,D,E,F,G) = 50 >= 50 = f42(A,D,E,0,G) [E >= 50] ==> f25(A,D,E,F,G) = 50 >= 50 = f33(0,D,E,F,G) [D >= 50] ==> f15(A,D,E,F,G) = 50 >= 50 = f25(A,D,0,F,G) * Step 8: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (?,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (?,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (50,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (?,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f15) = 50 p(f25) = 50 p(f33) = 50 p(f42) = 50 p(f52) = 50 p(f60) = 50 + -1*x1 The following rules are strictly oriented: [49 >= A] ==> f60(A,D,E,F,G) = 50 + -1*A > 49 + -1*A = f60(1 + A,D,E,F,G) The following rules are weakly oriented: True ==> f0(A,D,E,F,G) = 50 >= 50 = f15(0,0,E,F,G) [49 >= D] ==> f15(A,D,E,F,G) = 50 >= 50 = f15(A,1 + D,E,F,G) [49 >= E] ==> f25(A,D,E,F,G) = 50 >= 50 = f25(A,D,1 + E,F,G) [49 >= A] ==> f33(A,D,E,F,G) = 50 >= 50 = f33(1 + A,D,E,F,G) [49 >= F] ==> f42(A,D,E,F,G) = 50 >= 50 = f42(A,D,E,1 + F,G) [49 >= G] ==> f52(A,D,E,F,G) = 50 >= 50 = f52(A,D,E,F,1 + G) [G >= 50] ==> f52(A,D,E,F,G) = 50 >= 50 = f60(0,D,E,F,G) [F >= 50] ==> f42(A,D,E,F,G) = 50 >= 50 = f52(A,D,E,F,0) [A >= 50] ==> f33(A,D,E,F,G) = 50 >= 50 = f42(A,D,E,0,G) [E >= 50] ==> f25(A,D,E,F,G) = 50 >= 50 = f33(0,D,E,F,G) [D >= 50] ==> f15(A,D,E,F,G) = 50 >= 50 = f25(A,D,0,F,G) * Step 10: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (50,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (?,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f15) = 50 p(f25) = 50 p(f33) = 50 p(f42) = 50 p(f52) = 49 p(f60) = 49 The following rules are strictly oriented: [F >= 50] ==> f42(A,D,E,F,G) = 50 > 49 = f52(A,D,E,F,0) The following rules are weakly oriented: True ==> f0(A,D,E,F,G) = 50 >= 50 = f15(0,0,E,F,G) [49 >= D] ==> f15(A,D,E,F,G) = 50 >= 50 = f15(A,1 + D,E,F,G) [49 >= E] ==> f25(A,D,E,F,G) = 50 >= 50 = f25(A,D,1 + E,F,G) [49 >= A] ==> f33(A,D,E,F,G) = 50 >= 50 = f33(1 + A,D,E,F,G) [49 >= F] ==> f42(A,D,E,F,G) = 50 >= 50 = f42(A,D,E,1 + F,G) [49 >= G] ==> f52(A,D,E,F,G) = 49 >= 49 = f52(A,D,E,F,1 + G) [49 >= A] ==> f60(A,D,E,F,G) = 49 >= 49 = f60(1 + A,D,E,F,G) [G >= 50] ==> f52(A,D,E,F,G) = 49 >= 49 = f60(0,D,E,F,G) [A >= 50] ==> f33(A,D,E,F,G) = 50 >= 50 = f42(A,D,E,0,G) [E >= 50] ==> f25(A,D,E,F,G) = 50 >= 50 = f33(0,D,E,F,G) [D >= 50] ==> f15(A,D,E,F,G) = 50 >= 50 = f25(A,D,0,F,G) * Step 11: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (50,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (50,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f15) = 50 p(f25) = 50 p(f33) = 50 p(f42) = 50 + -1*x4 p(f52) = 50 + -1*x4 p(f60) = 50 + -1*x4 The following rules are strictly oriented: [49 >= F] ==> f42(A,D,E,F,G) = 50 + -1*F > 49 + -1*F = f42(A,D,E,1 + F,G) The following rules are weakly oriented: True ==> f0(A,D,E,F,G) = 50 >= 50 = f15(0,0,E,F,G) [49 >= D] ==> f15(A,D,E,F,G) = 50 >= 50 = f15(A,1 + D,E,F,G) [49 >= E] ==> f25(A,D,E,F,G) = 50 >= 50 = f25(A,D,1 + E,F,G) [49 >= A] ==> f33(A,D,E,F,G) = 50 >= 50 = f33(1 + A,D,E,F,G) [49 >= G] ==> f52(A,D,E,F,G) = 50 + -1*F >= 50 + -1*F = f52(A,D,E,F,1 + G) [49 >= A] ==> f60(A,D,E,F,G) = 50 + -1*F >= 50 + -1*F = f60(1 + A,D,E,F,G) [G >= 50] ==> f52(A,D,E,F,G) = 50 + -1*F >= 50 + -1*F = f60(0,D,E,F,G) [F >= 50] ==> f42(A,D,E,F,G) = 50 + -1*F >= 50 + -1*F = f52(A,D,E,F,0) [A >= 50] ==> f33(A,D,E,F,G) = 50 >= 50 = f42(A,D,E,0,G) [E >= 50] ==> f25(A,D,E,F,G) = 50 >= 50 = f33(0,D,E,F,G) [D >= 50] ==> f15(A,D,E,F,G) = 50 >= 50 = f25(A,D,0,F,G) * Step 12: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (50,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (50,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (?,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 51 p(f15) = 51 p(f25) = 50 p(f33) = 50 p(f42) = 49 p(f52) = 49 p(f60) = 49 The following rules are strictly oriented: [A >= 50] ==> f33(A,D,E,F,G) = 50 > 49 = f42(A,D,E,0,G) [D >= 50] ==> f15(A,D,E,F,G) = 51 > 50 = f25(A,D,0,F,G) The following rules are weakly oriented: True ==> f0(A,D,E,F,G) = 51 >= 51 = f15(0,0,E,F,G) [49 >= D] ==> f15(A,D,E,F,G) = 51 >= 51 = f15(A,1 + D,E,F,G) [49 >= E] ==> f25(A,D,E,F,G) = 50 >= 50 = f25(A,D,1 + E,F,G) [49 >= A] ==> f33(A,D,E,F,G) = 50 >= 50 = f33(1 + A,D,E,F,G) [49 >= F] ==> f42(A,D,E,F,G) = 49 >= 49 = f42(A,D,E,1 + F,G) [49 >= G] ==> f52(A,D,E,F,G) = 49 >= 49 = f52(A,D,E,F,1 + G) [49 >= A] ==> f60(A,D,E,F,G) = 49 >= 49 = f60(1 + A,D,E,F,G) [G >= 50] ==> f52(A,D,E,F,G) = 49 >= 49 = f60(0,D,E,F,G) [F >= 50] ==> f42(A,D,E,F,G) = 49 >= 49 = f52(A,D,E,F,0) [E >= 50] ==> f25(A,D,E,F,G) = 50 >= 50 = f33(0,D,E,F,G) * Step 13: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (50,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (50,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (51,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f15) = 50 p(f25) = 50 + -1*x3 p(f33) = 50 + -1*x3 p(f42) = 50 + -1*x3 p(f52) = 50 + -1*x3 p(f60) = 50 + -1*x3 The following rules are strictly oriented: [49 >= E] ==> f25(A,D,E,F,G) = 50 + -1*E > 49 + -1*E = f25(A,D,1 + E,F,G) The following rules are weakly oriented: True ==> f0(A,D,E,F,G) = 50 >= 50 = f15(0,0,E,F,G) [49 >= D] ==> f15(A,D,E,F,G) = 50 >= 50 = f15(A,1 + D,E,F,G) [49 >= A] ==> f33(A,D,E,F,G) = 50 + -1*E >= 50 + -1*E = f33(1 + A,D,E,F,G) [49 >= F] ==> f42(A,D,E,F,G) = 50 + -1*E >= 50 + -1*E = f42(A,D,E,1 + F,G) [49 >= G] ==> f52(A,D,E,F,G) = 50 + -1*E >= 50 + -1*E = f52(A,D,E,F,1 + G) [49 >= A] ==> f60(A,D,E,F,G) = 50 + -1*E >= 50 + -1*E = f60(1 + A,D,E,F,G) [G >= 50] ==> f52(A,D,E,F,G) = 50 + -1*E >= 50 + -1*E = f60(0,D,E,F,G) [F >= 50] ==> f42(A,D,E,F,G) = 50 + -1*E >= 50 + -1*E = f52(A,D,E,F,0) [A >= 50] ==> f33(A,D,E,F,G) = 50 + -1*E >= 50 + -1*E = f42(A,D,E,0,G) [E >= 50] ==> f25(A,D,E,F,G) = 50 + -1*E >= 50 + -1*E = f33(0,D,E,F,G) [D >= 50] ==> f15(A,D,E,F,G) = 50 >= 50 = f25(A,D,0,F,G) * Step 14: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (50,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (50,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (50,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (51,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (?,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 15: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (50,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (50,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (50,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (51,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (50,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 50 p(f15) = 50 + -1*x2 p(f25) = -1*x2 p(f33) = -1*x2 p(f42) = -1*x2 p(f52) = -1*x2 p(f60) = -1*x2 The following rules are strictly oriented: [49 >= D] ==> f15(A,D,E,F,G) = 50 + -1*D > 49 + -1*D = f15(A,1 + D,E,F,G) The following rules are weakly oriented: True ==> f0(A,D,E,F,G) = 50 >= 50 = f15(0,0,E,F,G) [49 >= E] ==> f25(A,D,E,F,G) = -1*D >= -1*D = f25(A,D,1 + E,F,G) [49 >= A] ==> f33(A,D,E,F,G) = -1*D >= -1*D = f33(1 + A,D,E,F,G) [49 >= F] ==> f42(A,D,E,F,G) = -1*D >= -1*D = f42(A,D,E,1 + F,G) [49 >= G] ==> f52(A,D,E,F,G) = -1*D >= -1*D = f52(A,D,E,F,1 + G) [49 >= A] ==> f60(A,D,E,F,G) = -1*D >= -1*D = f60(1 + A,D,E,F,G) [G >= 50] ==> f52(A,D,E,F,G) = -1*D >= -1*D = f60(0,D,E,F,G) [F >= 50] ==> f42(A,D,E,F,G) = -1*D >= -1*D = f52(A,D,E,F,0) [A >= 50] ==> f33(A,D,E,F,G) = -1*D >= -1*D = f42(A,D,E,0,G) [E >= 50] ==> f25(A,D,E,F,G) = -1*D >= -1*D = f33(0,D,E,F,G) [D >= 50] ==> f15(A,D,E,F,G) = 50 + -1*D >= -1*D = f25(A,D,0,F,G) * Step 16: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (50,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (50,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (50,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (50,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (51,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (50,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f33) = 50 + -1*x1 The following rules are strictly oriented: [49 >= A] ==> f33(A,D,E,F,G) = 50 + -1*A > 49 + -1*A = f33(1 + A,D,E,F,G) The following rules are weakly oriented: We use the following global sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) * Step 17: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,D,E,F,G) -> f15(0,0,E,F,G) True (1,1) 1. f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (50,1) 2. f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (50,1) 3. f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (2500,1) 4. f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1) 5. f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1) 6. f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1) 8. f52(A,D,E,F,G) -> f60(0,D,E,F,G) [G >= 50] (50,1) 9. f42(A,D,E,F,G) -> f52(A,D,E,F,0) [F >= 50] (50,1) 10. f33(A,D,E,F,G) -> f42(A,D,E,0,G) [A >= 50] (51,1) 11. f25(A,D,E,F,G) -> f33(0,D,E,F,G) [E >= 50] (50,1) 12. f15(A,D,E,F,G) -> f25(A,D,0,F,G) [D >= 50] (1,1) Signature: {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)} Flow Graph: [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}] Sizebounds: (< 0,0,A>, 0) (< 0,0,D>, 0) (< 0,0,E>, E) (< 0,0,F>, F) (< 0,0,G>, G) (< 1,0,A>, 0) (< 1,0,D>, 50) (< 1,0,E>, E) (< 1,0,F>, F) (< 1,0,G>, G) (< 2,0,A>, 0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>, F) (< 2,0,G>, G) (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>, F) (< 3,0,G>, G) (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>, G) (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) (< 8,0,A>, 0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>, 0) (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>, 0) (<10,0,G>, G) (<11,0,A>, 0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>, F) (<11,0,G>, G) (<12,0,A>, 0) (<12,0,D>, 50) (<12,0,E>, 0) (<12,0,F>, F) (<12,0,G>, G) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(1))