WORST_CASE(?,O(1))
* Step 1: RestrictVarsProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,B,C,D,E,F,G)  -> f15(0,H,I,0,E,F,G)     True      (1,1)
          1.  f15(A,B,C,D,E,F,G) -> f15(A,B,C,1 + D,E,F,G) [49 >= D] (?,1)
          2.  f25(A,B,C,D,E,F,G) -> f25(A,B,C,D,1 + E,F,G) [49 >= E] (?,1)
          3.  f33(A,B,C,D,E,F,G) -> f33(1 + A,B,C,D,E,F,G) [49 >= A] (?,1)
          4.  f42(A,B,C,D,E,F,G) -> f42(A,B,C,D,E,1 + F,G) [49 >= F] (?,1)
          5.  f52(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,1 + G) [49 >= G] (?,1)
          6.  f60(A,B,C,D,E,F,G) -> f60(1 + A,B,C,D,E,F,G) [49 >= A] (?,1)
          7.  f60(A,B,C,D,E,F,G) -> f69(A,B,C,D,E,F,G)     [A >= 50] (?,1)
          8.  f52(A,B,C,D,E,F,G) -> f60(0,B,C,D,E,F,G)     [G >= 50] (?,1)
          9.  f42(A,B,C,D,E,F,G) -> f52(A,B,C,D,E,F,0)     [F >= 50] (?,1)
          10. f33(A,B,C,D,E,F,G) -> f42(A,B,C,D,E,0,G)     [A >= 50] (?,1)
          11. f25(A,B,C,D,E,F,G) -> f33(0,B,C,D,E,F,G)     [E >= 50] (?,1)
          12. f15(A,B,C,D,E,F,G) -> f25(A,B,C,D,0,F,G)     [D >= 50] (?,1)
        Signature:
          {(f0,7);(f15,7);(f25,7);(f33,7);(f42,7);(f52,7);(f60,7);(f69,7)}
        Flow Graph:
          [0->{1,12},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6,7},9->{5,8},10->{4,9}
          ,11->{3,10},12->{2,11}]
        
    + Applied Processor:
        RestrictVarsProcessor
    + Details:
        We removed the arguments [B,C] .
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1)
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1)
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1)
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1)
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1)
          7.  f60(A,D,E,F,G) -> f69(A,D,E,F,G)     [A >= 50] (?,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (?,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (?,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1)
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (?,1)
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1,12},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6,7},9->{5,8},10->{4,9}
          ,11->{3,10},12->{2,11}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     0, .= 0) (< 0,0,D>,     0, .= 0) (< 0,0,E>,     E, .= 0) (< 0,0,F>,     F, .= 0) (< 0,0,G>,     G, .= 0) 
          (< 1,0,A>,     A, .= 0) (< 1,0,D>, 1 + D, .+ 1) (< 1,0,E>,     E, .= 0) (< 1,0,F>,     F, .= 0) (< 1,0,G>,     G, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,D>,     D, .= 0) (< 2,0,E>, 1 + E, .+ 1) (< 2,0,F>,     F, .= 0) (< 2,0,G>,     G, .= 0) 
          (< 3,0,A>, 1 + A, .+ 1) (< 3,0,D>,     D, .= 0) (< 3,0,E>,     E, .= 0) (< 3,0,F>,     F, .= 0) (< 3,0,G>,     G, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,D>,     D, .= 0) (< 4,0,E>,     E, .= 0) (< 4,0,F>, 1 + F, .+ 1) (< 4,0,G>,     G, .= 0) 
          (< 5,0,A>,     A, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>,     E, .= 0) (< 5,0,F>,     F, .= 0) (< 5,0,G>, 1 + G, .+ 1) 
          (< 6,0,A>, 1 + A, .+ 1) (< 6,0,D>,     D, .= 0) (< 6,0,E>,     E, .= 0) (< 6,0,F>,     F, .= 0) (< 6,0,G>,     G, .= 0) 
          (< 7,0,A>,     A, .= 0) (< 7,0,D>,     D, .= 0) (< 7,0,E>,     E, .= 0) (< 7,0,F>,     F, .= 0) (< 7,0,G>,     G, .= 0) 
          (< 8,0,A>,     0, .= 0) (< 8,0,D>,     D, .= 0) (< 8,0,E>,     E, .= 0) (< 8,0,F>,     F, .= 0) (< 8,0,G>,     G, .= 0) 
          (< 9,0,A>,     A, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>,     E, .= 0) (< 9,0,F>,     F, .= 0) (< 9,0,G>,     0, .= 0) 
          (<10,0,A>,     A, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>,     E, .= 0) (<10,0,F>,     0, .= 0) (<10,0,G>,     G, .= 0) 
          (<11,0,A>,     0, .= 0) (<11,0,D>,     D, .= 0) (<11,0,E>,     E, .= 0) (<11,0,F>,     F, .= 0) (<11,0,G>,     G, .= 0) 
          (<12,0,A>,     A, .= 0) (<12,0,D>,     D, .= 0) (<12,0,E>,     0, .= 0) (<12,0,F>,     F, .= 0) (<12,0,G>,     G, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1)
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1)
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1)
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1)
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1)
          7.  f60(A,D,E,F,G) -> f69(A,D,E,F,G)     [A >= 50] (?,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (?,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (?,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1)
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (?,1)
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1,12},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6,7},9->{5,8},10->{4,9}
          ,11->{3,10},12->{2,11}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) 
          (< 1,0,A>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) 
          (< 2,0,A>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) 
          (< 3,0,A>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) 
          (< 4,0,A>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) 
          (< 5,0,A>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) 
          (< 6,0,A>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) 
          (< 7,0,A>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) 
          (< 8,0,A>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) 
          (< 9,0,A>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) 
          (<10,0,A>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) 
          (<11,0,A>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) 
          (<12,0,A>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
* Step 4: UnsatPaths WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1)
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1)
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1)
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1)
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1)
          7.  f60(A,D,E,F,G) -> f69(A,D,E,F,G)     [A >= 50] (?,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (?,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (?,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1)
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (?,1)
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1,12},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6,7},9->{5,8},10->{4,9}
          ,11->{3,10},12->{2,11}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,12),(8,7),(9,8),(10,9),(11,10),(12,11)]
* Step 5: LeafRules WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1)
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1)
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1)
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1)
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1)
          7.  f60(A,D,E,F,G) -> f69(A,D,E,F,G)     [A >= 50] (?,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (?,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (?,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1)
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (?,1)
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6,7},7->{},8->{6},9->{5},10->{4},11->{3}
          ,12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 7,0,A>, 50) (< 7,0,D>, 50) (< 7,0,E>, 50) (< 7,0,F>, 50) (< 7,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [7]
* Step 6: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1)
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1)
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1)
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1)
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (?,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (?,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1)
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (?,1)
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 1
          p(f15) = 1
          p(f25) = 0
          p(f33) = 0
          p(f42) = 0
          p(f52) = 0
          p(f60) = 0
        
        The following rules are strictly oriented:
               [D >= 50] ==>               
          f15(A,D,E,F,G)   = 1             
                           > 0             
                           = f25(A,D,0,F,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(A,D,E,F,G)   = 1                 
                          >= 1                 
                           = f15(0,0,E,F,G)    
        
               [49 >= D] ==>                   
          f15(A,D,E,F,G)   = 1                 
                          >= 1                 
                           = f15(A,1 + D,E,F,G)
        
               [49 >= E] ==>                   
          f25(A,D,E,F,G)   = 0                 
                          >= 0                 
                           = f25(A,D,1 + E,F,G)
        
               [49 >= A] ==>                   
          f33(A,D,E,F,G)   = 0                 
                          >= 0                 
                           = f33(1 + A,D,E,F,G)
        
               [49 >= F] ==>                   
          f42(A,D,E,F,G)   = 0                 
                          >= 0                 
                           = f42(A,D,E,1 + F,G)
        
               [49 >= G] ==>                   
          f52(A,D,E,F,G)   = 0                 
                          >= 0                 
                           = f52(A,D,E,F,1 + G)
        
               [49 >= A] ==>                   
          f60(A,D,E,F,G)   = 0                 
                          >= 0                 
                           = f60(1 + A,D,E,F,G)
        
               [G >= 50] ==>                   
          f52(A,D,E,F,G)   = 0                 
                          >= 0                 
                           = f60(0,D,E,F,G)    
        
               [F >= 50] ==>                   
          f42(A,D,E,F,G)   = 0                 
                          >= 0                 
                           = f52(A,D,E,F,0)    
        
               [A >= 50] ==>                   
          f33(A,D,E,F,G)   = 0                 
                          >= 0                 
                           = f42(A,D,E,0,G)    
        
               [E >= 50] ==>                   
          f25(A,D,E,F,G)   = 0                 
                          >= 0                 
                           = f33(0,D,E,F,G)    
        
        
* Step 7: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1)
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1)
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1)
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1)
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (?,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (?,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (?,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1)
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1)
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f15) = 50        
          p(f25) = 50        
          p(f33) = 50        
          p(f42) = 50        
          p(f52) = 50 + -1*x5
          p(f60) = 50 + -1*x5
        
        The following rules are strictly oriented:
               [49 >= G] ==>                   
          f52(A,D,E,F,G)   = 50 + -1*G         
                           > 49 + -1*G         
                           = f52(A,D,E,F,1 + G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(0,0,E,F,G)    
        
               [49 >= D] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(A,1 + D,E,F,G)
        
               [49 >= E] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,1 + E,F,G)
        
               [49 >= A] ==>                   
          f33(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(1 + A,D,E,F,G)
        
               [49 >= F] ==>                   
          f42(A,D,E,F,G)   = 50                
                          >= 50                
                           = f42(A,D,E,1 + F,G)
        
               [49 >= A] ==>                   
          f60(A,D,E,F,G)   = 50 + -1*G         
                          >= 50 + -1*G         
                           = f60(1 + A,D,E,F,G)
        
               [G >= 50] ==>                   
          f52(A,D,E,F,G)   = 50 + -1*G         
                          >= 50 + -1*G         
                           = f60(0,D,E,F,G)    
        
               [F >= 50] ==>                   
          f42(A,D,E,F,G)   = 50                
                          >= 50                
                           = f52(A,D,E,F,0)    
        
               [A >= 50] ==>                   
          f33(A,D,E,F,G)   = 50                
                          >= 50                
                           = f42(A,D,E,0,G)    
        
               [E >= 50] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(0,D,E,F,G)    
        
               [D >= 50] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,0,F,G)    
        
        
* Step 8: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1) 
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (?,1) 
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (?,1) 
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1) 
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1) 
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1) 
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 9: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1) 
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (?,1) 
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (50,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (?,1) 
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1) 
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1) 
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1) 
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f15) = 50        
          p(f25) = 50        
          p(f33) = 50        
          p(f42) = 50        
          p(f52) = 50        
          p(f60) = 50 + -1*x1
        
        The following rules are strictly oriented:
               [49 >= A] ==>                   
          f60(A,D,E,F,G)   = 50 + -1*A         
                           > 49 + -1*A         
                           = f60(1 + A,D,E,F,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(0,0,E,F,G)    
        
               [49 >= D] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(A,1 + D,E,F,G)
        
               [49 >= E] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,1 + E,F,G)
        
               [49 >= A] ==>                   
          f33(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(1 + A,D,E,F,G)
        
               [49 >= F] ==>                   
          f42(A,D,E,F,G)   = 50                
                          >= 50                
                           = f42(A,D,E,1 + F,G)
        
               [49 >= G] ==>                   
          f52(A,D,E,F,G)   = 50                
                          >= 50                
                           = f52(A,D,E,F,1 + G)
        
               [G >= 50] ==>                   
          f52(A,D,E,F,G)   = 50                
                          >= 50                
                           = f60(0,D,E,F,G)    
        
               [F >= 50] ==>                   
          f42(A,D,E,F,G)   = 50                
                          >= 50                
                           = f52(A,D,E,F,0)    
        
               [A >= 50] ==>                   
          f33(A,D,E,F,G)   = 50                
                          >= 50                
                           = f42(A,D,E,0,G)    
        
               [E >= 50] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(0,D,E,F,G)    
        
               [D >= 50] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,0,F,G)    
        
        
* Step 10: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1) 
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (50,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (?,1) 
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1) 
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1) 
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1) 
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50
          p(f15) = 50
          p(f25) = 50
          p(f33) = 50
          p(f42) = 50
          p(f52) = 49
          p(f60) = 49
        
        The following rules are strictly oriented:
               [F >= 50] ==>               
          f42(A,D,E,F,G)   = 50            
                           > 49            
                           = f52(A,D,E,F,0)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(0,0,E,F,G)    
        
               [49 >= D] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(A,1 + D,E,F,G)
        
               [49 >= E] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,1 + E,F,G)
        
               [49 >= A] ==>                   
          f33(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(1 + A,D,E,F,G)
        
               [49 >= F] ==>                   
          f42(A,D,E,F,G)   = 50                
                          >= 50                
                           = f42(A,D,E,1 + F,G)
        
               [49 >= G] ==>                   
          f52(A,D,E,F,G)   = 49                
                          >= 49                
                           = f52(A,D,E,F,1 + G)
        
               [49 >= A] ==>                   
          f60(A,D,E,F,G)   = 49                
                          >= 49                
                           = f60(1 + A,D,E,F,G)
        
               [G >= 50] ==>                   
          f52(A,D,E,F,G)   = 49                
                          >= 49                
                           = f60(0,D,E,F,G)    
        
               [A >= 50] ==>                   
          f33(A,D,E,F,G)   = 50                
                          >= 50                
                           = f42(A,D,E,0,G)    
        
               [E >= 50] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(0,D,E,F,G)    
        
               [D >= 50] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,0,F,G)    
        
        
* Step 11: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1) 
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (?,1) 
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (50,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (50,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1) 
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1) 
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1) 
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f15) = 50        
          p(f25) = 50        
          p(f33) = 50        
          p(f42) = 50 + -1*x4
          p(f52) = 50 + -1*x4
          p(f60) = 50 + -1*x4
        
        The following rules are strictly oriented:
               [49 >= F] ==>                   
          f42(A,D,E,F,G)   = 50 + -1*F         
                           > 49 + -1*F         
                           = f42(A,D,E,1 + F,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(0,0,E,F,G)    
        
               [49 >= D] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(A,1 + D,E,F,G)
        
               [49 >= E] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,1 + E,F,G)
        
               [49 >= A] ==>                   
          f33(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(1 + A,D,E,F,G)
        
               [49 >= G] ==>                   
          f52(A,D,E,F,G)   = 50 + -1*F         
                          >= 50 + -1*F         
                           = f52(A,D,E,F,1 + G)
        
               [49 >= A] ==>                   
          f60(A,D,E,F,G)   = 50 + -1*F         
                          >= 50 + -1*F         
                           = f60(1 + A,D,E,F,G)
        
               [G >= 50] ==>                   
          f52(A,D,E,F,G)   = 50 + -1*F         
                          >= 50 + -1*F         
                           = f60(0,D,E,F,G)    
        
               [F >= 50] ==>                   
          f42(A,D,E,F,G)   = 50 + -1*F         
                          >= 50 + -1*F         
                           = f52(A,D,E,F,0)    
        
               [A >= 50] ==>                   
          f33(A,D,E,F,G)   = 50                
                          >= 50                
                           = f42(A,D,E,0,G)    
        
               [E >= 50] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(0,D,E,F,G)    
        
               [D >= 50] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,0,F,G)    
        
        
* Step 12: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1) 
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (50,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (50,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (?,1) 
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1) 
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1) 
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 51
          p(f15) = 51
          p(f25) = 50
          p(f33) = 50
          p(f42) = 49
          p(f52) = 49
          p(f60) = 49
        
        The following rules are strictly oriented:
               [A >= 50] ==>               
          f33(A,D,E,F,G)   = 50            
                           > 49            
                           = f42(A,D,E,0,G)
        
               [D >= 50] ==>               
          f15(A,D,E,F,G)   = 51            
                           > 50            
                           = f25(A,D,0,F,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(A,D,E,F,G)   = 51                
                          >= 51                
                           = f15(0,0,E,F,G)    
        
               [49 >= D] ==>                   
          f15(A,D,E,F,G)   = 51                
                          >= 51                
                           = f15(A,1 + D,E,F,G)
        
               [49 >= E] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,1 + E,F,G)
        
               [49 >= A] ==>                   
          f33(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(1 + A,D,E,F,G)
        
               [49 >= F] ==>                   
          f42(A,D,E,F,G)   = 49                
                          >= 49                
                           = f42(A,D,E,1 + F,G)
        
               [49 >= G] ==>                   
          f52(A,D,E,F,G)   = 49                
                          >= 49                
                           = f52(A,D,E,F,1 + G)
        
               [49 >= A] ==>                   
          f60(A,D,E,F,G)   = 49                
                          >= 49                
                           = f60(1 + A,D,E,F,G)
        
               [G >= 50] ==>                   
          f52(A,D,E,F,G)   = 49                
                          >= 49                
                           = f60(0,D,E,F,G)    
        
               [F >= 50] ==>                   
          f42(A,D,E,F,G)   = 49                
                          >= 49                
                           = f52(A,D,E,F,0)    
        
               [E >= 50] ==>                   
          f25(A,D,E,F,G)   = 50                
                          >= 50                
                           = f33(0,D,E,F,G)    
        
        
* Step 13: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1) 
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (?,1) 
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (50,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (50,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (51,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1) 
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1) 
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f15) = 50        
          p(f25) = 50 + -1*x3
          p(f33) = 50 + -1*x3
          p(f42) = 50 + -1*x3
          p(f52) = 50 + -1*x3
          p(f60) = 50 + -1*x3
        
        The following rules are strictly oriented:
               [49 >= E] ==>                   
          f25(A,D,E,F,G)   = 50 + -1*E         
                           > 49 + -1*E         
                           = f25(A,D,1 + E,F,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(0,0,E,F,G)    
        
               [49 >= D] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(A,1 + D,E,F,G)
        
               [49 >= A] ==>                   
          f33(A,D,E,F,G)   = 50 + -1*E         
                          >= 50 + -1*E         
                           = f33(1 + A,D,E,F,G)
        
               [49 >= F] ==>                   
          f42(A,D,E,F,G)   = 50 + -1*E         
                          >= 50 + -1*E         
                           = f42(A,D,E,1 + F,G)
        
               [49 >= G] ==>                   
          f52(A,D,E,F,G)   = 50 + -1*E         
                          >= 50 + -1*E         
                           = f52(A,D,E,F,1 + G)
        
               [49 >= A] ==>                   
          f60(A,D,E,F,G)   = 50 + -1*E         
                          >= 50 + -1*E         
                           = f60(1 + A,D,E,F,G)
        
               [G >= 50] ==>                   
          f52(A,D,E,F,G)   = 50 + -1*E         
                          >= 50 + -1*E         
                           = f60(0,D,E,F,G)    
        
               [F >= 50] ==>                   
          f42(A,D,E,F,G)   = 50 + -1*E         
                          >= 50 + -1*E         
                           = f52(A,D,E,F,0)    
        
               [A >= 50] ==>                   
          f33(A,D,E,F,G)   = 50 + -1*E         
                          >= 50 + -1*E         
                           = f42(A,D,E,0,G)    
        
               [E >= 50] ==>                   
          f25(A,D,E,F,G)   = 50 + -1*E         
                          >= 50 + -1*E         
                           = f33(0,D,E,F,G)    
        
               [D >= 50] ==>                   
          f15(A,D,E,F,G)   = 50                
                          >= 50                
                           = f25(A,D,0,F,G)    
        
        
* Step 14: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1) 
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (50,1)
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (50,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (50,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (51,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (?,1) 
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1) 
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 15: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1) 
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (?,1) 
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (50,1)
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (50,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (50,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (51,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (50,1)
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1) 
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(f0) = 50        
          p(f15) = 50 + -1*x2
          p(f25) = -1*x2     
          p(f33) = -1*x2     
          p(f42) = -1*x2     
          p(f52) = -1*x2     
          p(f60) = -1*x2     
        
        The following rules are strictly oriented:
               [49 >= D] ==>                   
          f15(A,D,E,F,G)   = 50 + -1*D         
                           > 49 + -1*D         
                           = f15(A,1 + D,E,F,G)
        
        
        The following rules are weakly oriented:
                    True ==>                   
           f0(A,D,E,F,G)   = 50                
                          >= 50                
                           = f15(0,0,E,F,G)    
        
               [49 >= E] ==>                   
          f25(A,D,E,F,G)   = -1*D              
                          >= -1*D              
                           = f25(A,D,1 + E,F,G)
        
               [49 >= A] ==>                   
          f33(A,D,E,F,G)   = -1*D              
                          >= -1*D              
                           = f33(1 + A,D,E,F,G)
        
               [49 >= F] ==>                   
          f42(A,D,E,F,G)   = -1*D              
                          >= -1*D              
                           = f42(A,D,E,1 + F,G)
        
               [49 >= G] ==>                   
          f52(A,D,E,F,G)   = -1*D              
                          >= -1*D              
                           = f52(A,D,E,F,1 + G)
        
               [49 >= A] ==>                   
          f60(A,D,E,F,G)   = -1*D              
                          >= -1*D              
                           = f60(1 + A,D,E,F,G)
        
               [G >= 50] ==>                   
          f52(A,D,E,F,G)   = -1*D              
                          >= -1*D              
                           = f60(0,D,E,F,G)    
        
               [F >= 50] ==>                   
          f42(A,D,E,F,G)   = -1*D              
                          >= -1*D              
                           = f52(A,D,E,F,0)    
        
               [A >= 50] ==>                   
          f33(A,D,E,F,G)   = -1*D              
                          >= -1*D              
                           = f42(A,D,E,0,G)    
        
               [E >= 50] ==>                   
          f25(A,D,E,F,G)   = -1*D              
                          >= -1*D              
                           = f33(0,D,E,F,G)    
        
               [D >= 50] ==>                   
          f15(A,D,E,F,G)   = 50 + -1*D         
                          >= -1*D              
                           = f25(A,D,0,F,G)    
        
        
* Step 16: PolyRank WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1) 
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (50,1)
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (50,1)
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (?,1) 
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1)
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1)
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (50,1)
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (50,1)
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (51,1)
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (50,1)
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1) 
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(f33) = 50 + -1*x1
        
        The following rules are strictly oriented:
               [49 >= A] ==>                   
          f33(A,D,E,F,G)   = 50 + -1*A         
                           > 49 + -1*A         
                           = f33(1 + A,D,E,F,G)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
        (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
        (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
        (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
        (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
        (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
        (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
        (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
        (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
        (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
        (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
        (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
* Step 17: KnowledgePropagation WORST_CASE(?,O(1))
    + Considered Problem:
        Rules:
          0.  f0(A,D,E,F,G)  -> f15(0,0,E,F,G)     True      (1,1)   
          1.  f15(A,D,E,F,G) -> f15(A,1 + D,E,F,G) [49 >= D] (50,1)  
          2.  f25(A,D,E,F,G) -> f25(A,D,1 + E,F,G) [49 >= E] (50,1)  
          3.  f33(A,D,E,F,G) -> f33(1 + A,D,E,F,G) [49 >= A] (2500,1)
          4.  f42(A,D,E,F,G) -> f42(A,D,E,1 + F,G) [49 >= F] (50,1)  
          5.  f52(A,D,E,F,G) -> f52(A,D,E,F,1 + G) [49 >= G] (50,1)  
          6.  f60(A,D,E,F,G) -> f60(1 + A,D,E,F,G) [49 >= A] (50,1)  
          8.  f52(A,D,E,F,G) -> f60(0,D,E,F,G)     [G >= 50] (50,1)  
          9.  f42(A,D,E,F,G) -> f52(A,D,E,F,0)     [F >= 50] (50,1)  
          10. f33(A,D,E,F,G) -> f42(A,D,E,0,G)     [A >= 50] (51,1)  
          11. f25(A,D,E,F,G) -> f33(0,D,E,F,G)     [E >= 50] (50,1)  
          12. f15(A,D,E,F,G) -> f25(A,D,0,F,G)     [D >= 50] (1,1)   
        Signature:
          {(f0,5);(f15,5);(f25,5);(f33,5);(f42,5);(f52,5);(f60,5);(f69,5)}
        Flow Graph:
          [0->{1},1->{1,12},2->{2,11},3->{3,10},4->{4,9},5->{5,8},6->{6},8->{6},9->{5},10->{4},11->{3},12->{2}]
        Sizebounds:
          (< 0,0,A>,  0) (< 0,0,D>,  0) (< 0,0,E>,  E) (< 0,0,F>,  F) (< 0,0,G>,  G) 
          (< 1,0,A>,  0) (< 1,0,D>, 50) (< 1,0,E>,  E) (< 1,0,F>,  F) (< 1,0,G>,  G) 
          (< 2,0,A>,  0) (< 2,0,D>, 50) (< 2,0,E>, 50) (< 2,0,F>,  F) (< 2,0,G>,  G) 
          (< 3,0,A>, 50) (< 3,0,D>, 50) (< 3,0,E>, 50) (< 3,0,F>,  F) (< 3,0,G>,  G) 
          (< 4,0,A>, 50) (< 4,0,D>, 50) (< 4,0,E>, 50) (< 4,0,F>, 50) (< 4,0,G>,  G) 
          (< 5,0,A>, 50) (< 5,0,D>, 50) (< 5,0,E>, 50) (< 5,0,F>, 50) (< 5,0,G>, 50) 
          (< 6,0,A>, 50) (< 6,0,D>, 50) (< 6,0,E>, 50) (< 6,0,F>, 50) (< 6,0,G>, 50) 
          (< 8,0,A>,  0) (< 8,0,D>, 50) (< 8,0,E>, 50) (< 8,0,F>, 50) (< 8,0,G>, 50) 
          (< 9,0,A>, 50) (< 9,0,D>, 50) (< 9,0,E>, 50) (< 9,0,F>, 50) (< 9,0,G>,  0) 
          (<10,0,A>, 50) (<10,0,D>, 50) (<10,0,E>, 50) (<10,0,F>,  0) (<10,0,G>,  G) 
          (<11,0,A>,  0) (<11,0,D>, 50) (<11,0,E>, 50) (<11,0,F>,  F) (<11,0,G>,  G) 
          (<12,0,A>,  0) (<12,0,D>, 50) (<12,0,E>,  0) (<12,0,F>,  F) (<12,0,G>,  G) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(1))