WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f1(A,B) -> f2(A,B) [A >= 1 && B >= 1] (1,1) 1. f2(A,B) -> f2(-1 + A,B) [A >= 2 && B >= 1] (?,1) 2. f2(A,B) -> f2(A,-1 + B) [A >= 1 && B >= 2] (?,1) Signature: {(f1,2);(f2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, 1 + A, .+ 1) (<1,0,B>, B, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, 1 + B, .+ 1) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f1(A,B) -> f2(A,B) [A >= 1 && B >= 1] (1,1) 1. f2(A,B) -> f2(-1 + A,B) [A >= 2 && B >= 1] (?,1) 2. f2(A,B) -> f2(A,-1 + B) [A >= 1 && B >= 2] (?,1) Signature: {(f1,2);(f2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f1(A,B) -> f2(A,B) [A >= 1 && B >= 1] (1,1) 1. f2(A,B) -> f2(-1 + A,B) [A >= 2 && B >= 1] (?,1) 2. f2(A,B) -> f2(A,-1 + B) [A >= 1 && B >= 2] (?,1) Signature: {(f1,2);(f2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = x2 p(f2) = -1 + x2 The following rules are strictly oriented: [A >= 1 && B >= 1] ==> f1(A,B) = B > -1 + B = f2(A,B) [A >= 1 && B >= 2] ==> f2(A,B) = -1 + B > -2 + B = f2(A,-1 + B) The following rules are weakly oriented: [A >= 2 && B >= 1] ==> f2(A,B) = -1 + B >= -1 + B = f2(-1 + A,B) * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f1(A,B) -> f2(A,B) [A >= 1 && B >= 1] (1,1) 1. f2(A,B) -> f2(-1 + A,B) [A >= 2 && B >= 1] (?,1) 2. f2(A,B) -> f2(A,-1 + B) [A >= 1 && B >= 2] (B,1) Signature: {(f1,2);(f2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = x1 p(f2) = x1 The following rules are strictly oriented: [A >= 2 && B >= 1] ==> f2(A,B) = A > -1 + A = f2(-1 + A,B) The following rules are weakly oriented: [A >= 1 && B >= 1] ==> f1(A,B) = A >= A = f2(A,B) [A >= 1 && B >= 2] ==> f2(A,B) = A >= A = f2(A,-1 + B) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f1(A,B) -> f2(A,B) [A >= 1 && B >= 1] (1,1) 1. f2(A,B) -> f2(-1 + A,B) [A >= 2 && B >= 1] (A,1) 2. f2(A,B) -> f2(A,-1 + B) [A >= 1 && B >= 2] (B,1) Signature: {(f1,2);(f2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))