WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalNestedSinglestart(A,B,C)    -> evalNestedSingleentryin(A,B,C)   True         (1,1)
          1.  evalNestedSingleentryin(A,B,C)  -> evalNestedSinglebb5in(0,B,C)     True         (?,1)
          2.  evalNestedSinglebb5in(A,B,C)    -> evalNestedSinglebb2in(A,B,A)     [B >= 1 + A] (?,1)
          3.  evalNestedSinglebb5in(A,B,C)    -> evalNestedSinglereturnin(A,B,C)  [A >= B]     (?,1)
          4.  evalNestedSinglebb2in(A,B,C)    -> evalNestedSinglebb4in(A,B,C)     [C >= B]     (?,1)
          5.  evalNestedSinglebb2in(A,B,C)    -> evalNestedSinglebb3in(A,B,C)     [B >= 1 + C] (?,1)
          6.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb1in(A,B,C)     [0 >= 1 + D] (?,1)
          7.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb1in(A,B,C)     [D >= 1]     (?,1)
          8.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb4in(A,B,C)     True         (?,1)
          9.  evalNestedSinglebb1in(A,B,C)    -> evalNestedSinglebb2in(A,B,1 + C) True         (?,1)
          10. evalNestedSinglebb4in(A,B,C)    -> evalNestedSinglebb5in(1 + C,B,C) True         (?,1)
          11. evalNestedSinglereturnin(A,B,C) -> evalNestedSinglestop(A,B,C)      True         (?,1)
        Signature:
          {(evalNestedSinglebb1in,3)
          ;(evalNestedSinglebb2in,3)
          ;(evalNestedSinglebb3in,3)
          ;(evalNestedSinglebb4in,3)
          ;(evalNestedSinglebb5in,3)
          ;(evalNestedSingleentryin,3)
          ;(evalNestedSinglereturnin,3)
          ;(evalNestedSinglestart,3)
          ;(evalNestedSinglestop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{11},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2,3},11->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>,     C, .= 0) 
          (< 1,0,A>,     0, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>,     C, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>,     A, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>,     C, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>,     C, .= 0) 
          (< 5,0,A>,     A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>,     C, .= 0) 
          (< 6,0,A>,     A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>,     C, .= 0) 
          (< 7,0,A>,     A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>,     C, .= 0) 
          (< 8,0,A>,     A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>,     C, .= 0) 
          (< 9,0,A>,     A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, 1 + C, .+ 1) 
          (<10,0,A>, 1 + C, .+ 1) (<10,0,B>, B, .= 0) (<10,0,C>,     C, .= 0) 
          (<11,0,A>,     A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>,     C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalNestedSinglestart(A,B,C)    -> evalNestedSingleentryin(A,B,C)   True         (1,1)
          1.  evalNestedSingleentryin(A,B,C)  -> evalNestedSinglebb5in(0,B,C)     True         (?,1)
          2.  evalNestedSinglebb5in(A,B,C)    -> evalNestedSinglebb2in(A,B,A)     [B >= 1 + A] (?,1)
          3.  evalNestedSinglebb5in(A,B,C)    -> evalNestedSinglereturnin(A,B,C)  [A >= B]     (?,1)
          4.  evalNestedSinglebb2in(A,B,C)    -> evalNestedSinglebb4in(A,B,C)     [C >= B]     (?,1)
          5.  evalNestedSinglebb2in(A,B,C)    -> evalNestedSinglebb3in(A,B,C)     [B >= 1 + C] (?,1)
          6.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb1in(A,B,C)     [0 >= 1 + D] (?,1)
          7.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb1in(A,B,C)     [D >= 1]     (?,1)
          8.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb4in(A,B,C)     True         (?,1)
          9.  evalNestedSinglebb1in(A,B,C)    -> evalNestedSinglebb2in(A,B,1 + C) True         (?,1)
          10. evalNestedSinglebb4in(A,B,C)    -> evalNestedSinglebb5in(1 + C,B,C) True         (?,1)
          11. evalNestedSinglereturnin(A,B,C) -> evalNestedSinglestop(A,B,C)      True         (?,1)
        Signature:
          {(evalNestedSinglebb1in,3)
          ;(evalNestedSinglebb2in,3)
          ;(evalNestedSinglebb3in,3)
          ;(evalNestedSinglebb4in,3)
          ;(evalNestedSinglebb5in,3)
          ;(evalNestedSingleentryin,3)
          ;(evalNestedSinglereturnin,3)
          ;(evalNestedSinglestart,3)
          ;(evalNestedSinglestop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{11},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, B) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, B) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalNestedSinglestart(A,B,C)    -> evalNestedSingleentryin(A,B,C)   True         (1,1)
          1.  evalNestedSingleentryin(A,B,C)  -> evalNestedSinglebb5in(0,B,C)     True         (?,1)
          2.  evalNestedSinglebb5in(A,B,C)    -> evalNestedSinglebb2in(A,B,A)     [B >= 1 + A] (?,1)
          3.  evalNestedSinglebb5in(A,B,C)    -> evalNestedSinglereturnin(A,B,C)  [A >= B]     (?,1)
          4.  evalNestedSinglebb2in(A,B,C)    -> evalNestedSinglebb4in(A,B,C)     [C >= B]     (?,1)
          5.  evalNestedSinglebb2in(A,B,C)    -> evalNestedSinglebb3in(A,B,C)     [B >= 1 + C] (?,1)
          6.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb1in(A,B,C)     [0 >= 1 + D] (?,1)
          7.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb1in(A,B,C)     [D >= 1]     (?,1)
          8.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb4in(A,B,C)     True         (?,1)
          9.  evalNestedSinglebb1in(A,B,C)    -> evalNestedSinglebb2in(A,B,1 + C) True         (?,1)
          10. evalNestedSinglebb4in(A,B,C)    -> evalNestedSinglebb5in(1 + C,B,C) True         (?,1)
          11. evalNestedSinglereturnin(A,B,C) -> evalNestedSinglestop(A,B,C)      True         (?,1)
        Signature:
          {(evalNestedSinglebb1in,3)
          ;(evalNestedSinglebb2in,3)
          ;(evalNestedSinglebb3in,3)
          ;(evalNestedSinglebb4in,3)
          ;(evalNestedSinglebb5in,3)
          ;(evalNestedSingleentryin,3)
          ;(evalNestedSinglereturnin,3)
          ;(evalNestedSinglestart,3)
          ;(evalNestedSinglestop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{11},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, B) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, B) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,4)]
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalNestedSinglestart(A,B,C)    -> evalNestedSingleentryin(A,B,C)   True         (1,1)
          1.  evalNestedSingleentryin(A,B,C)  -> evalNestedSinglebb5in(0,B,C)     True         (?,1)
          2.  evalNestedSinglebb5in(A,B,C)    -> evalNestedSinglebb2in(A,B,A)     [B >= 1 + A] (?,1)
          3.  evalNestedSinglebb5in(A,B,C)    -> evalNestedSinglereturnin(A,B,C)  [A >= B]     (?,1)
          4.  evalNestedSinglebb2in(A,B,C)    -> evalNestedSinglebb4in(A,B,C)     [C >= B]     (?,1)
          5.  evalNestedSinglebb2in(A,B,C)    -> evalNestedSinglebb3in(A,B,C)     [B >= 1 + C] (?,1)
          6.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb1in(A,B,C)     [0 >= 1 + D] (?,1)
          7.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb1in(A,B,C)     [D >= 1]     (?,1)
          8.  evalNestedSinglebb3in(A,B,C)    -> evalNestedSinglebb4in(A,B,C)     True         (?,1)
          9.  evalNestedSinglebb1in(A,B,C)    -> evalNestedSinglebb2in(A,B,1 + C) True         (?,1)
          10. evalNestedSinglebb4in(A,B,C)    -> evalNestedSinglebb5in(1 + C,B,C) True         (?,1)
          11. evalNestedSinglereturnin(A,B,C) -> evalNestedSinglestop(A,B,C)      True         (?,1)
        Signature:
          {(evalNestedSinglebb1in,3)
          ;(evalNestedSinglebb2in,3)
          ;(evalNestedSinglebb3in,3)
          ;(evalNestedSinglebb4in,3)
          ;(evalNestedSinglebb5in,3)
          ;(evalNestedSingleentryin,3)
          ;(evalNestedSinglereturnin,3)
          ;(evalNestedSinglestart,3)
          ;(evalNestedSinglestop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{5},3->{11},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, B) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, B) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,11]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalNestedSinglestart(A,B,C)   -> evalNestedSingleentryin(A,B,C)   True         (1,1)
          1.  evalNestedSingleentryin(A,B,C) -> evalNestedSinglebb5in(0,B,C)     True         (?,1)
          2.  evalNestedSinglebb5in(A,B,C)   -> evalNestedSinglebb2in(A,B,A)     [B >= 1 + A] (?,1)
          4.  evalNestedSinglebb2in(A,B,C)   -> evalNestedSinglebb4in(A,B,C)     [C >= B]     (?,1)
          5.  evalNestedSinglebb2in(A,B,C)   -> evalNestedSinglebb3in(A,B,C)     [B >= 1 + C] (?,1)
          6.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb1in(A,B,C)     [0 >= 1 + D] (?,1)
          7.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb1in(A,B,C)     [D >= 1]     (?,1)
          8.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb4in(A,B,C)     True         (?,1)
          9.  evalNestedSinglebb1in(A,B,C)   -> evalNestedSinglebb2in(A,B,1 + C) True         (?,1)
          10. evalNestedSinglebb4in(A,B,C)   -> evalNestedSinglebb5in(1 + C,B,C) True         (?,1)
        Signature:
          {(evalNestedSinglebb1in,3)
          ;(evalNestedSinglebb2in,3)
          ;(evalNestedSinglebb3in,3)
          ;(evalNestedSinglebb4in,3)
          ;(evalNestedSinglebb5in,3)
          ;(evalNestedSingleentryin,3)
          ;(evalNestedSinglereturnin,3)
          ;(evalNestedSinglestart,3)
          ;(evalNestedSinglestop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, B) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, B) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalNestedSinglebb1in) = 1 + x2 + -1*x3
            p(evalNestedSinglebb2in) = 2 + x2 + -1*x3
            p(evalNestedSinglebb3in) = 1 + x2 + -1*x3
            p(evalNestedSinglebb4in) = 1 + x2 + -1*x3
            p(evalNestedSinglebb5in) = 2 + -1*x1 + x2
          p(evalNestedSingleentryin) = 2 + x2        
            p(evalNestedSinglestart) = 2 + x2        
        
        The following rules are strictly oriented:
                          [B >= 1 + C] ==>                             
          evalNestedSinglebb2in(A,B,C)   = 2 + B + -1*C                
                                         > 1 + B + -1*C                
                                         = evalNestedSinglebb3in(A,B,C)
        
        
        The following rules are weakly oriented:
                                    True ==>                                 
            evalNestedSinglestart(A,B,C)   = 2 + B                           
                                          >= 2 + B                           
                                           = evalNestedSingleentryin(A,B,C)  
        
                                    True ==>                                 
          evalNestedSingleentryin(A,B,C)   = 2 + B                           
                                          >= 2 + B                           
                                           = evalNestedSinglebb5in(0,B,C)    
        
                            [B >= 1 + A] ==>                                 
            evalNestedSinglebb5in(A,B,C)   = 2 + -1*A + B                    
                                          >= 2 + -1*A + B                    
                                           = evalNestedSinglebb2in(A,B,A)    
        
                                [C >= B] ==>                                 
            evalNestedSinglebb2in(A,B,C)   = 2 + B + -1*C                    
                                          >= 1 + B + -1*C                    
                                           = evalNestedSinglebb4in(A,B,C)    
        
                            [0 >= 1 + D] ==>                                 
            evalNestedSinglebb3in(A,B,C)   = 1 + B + -1*C                    
                                          >= 1 + B + -1*C                    
                                           = evalNestedSinglebb1in(A,B,C)    
        
                                [D >= 1] ==>                                 
            evalNestedSinglebb3in(A,B,C)   = 1 + B + -1*C                    
                                          >= 1 + B + -1*C                    
                                           = evalNestedSinglebb1in(A,B,C)    
        
                                    True ==>                                 
            evalNestedSinglebb3in(A,B,C)   = 1 + B + -1*C                    
                                          >= 1 + B + -1*C                    
                                           = evalNestedSinglebb4in(A,B,C)    
        
                                    True ==>                                 
            evalNestedSinglebb1in(A,B,C)   = 1 + B + -1*C                    
                                          >= 1 + B + -1*C                    
                                           = evalNestedSinglebb2in(A,B,1 + C)
        
                                    True ==>                                 
            evalNestedSinglebb4in(A,B,C)   = 1 + B + -1*C                    
                                          >= 1 + B + -1*C                    
                                           = evalNestedSinglebb5in(1 + C,B,C)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalNestedSinglestart(A,B,C)   -> evalNestedSingleentryin(A,B,C)   True         (1,1)    
          1.  evalNestedSingleentryin(A,B,C) -> evalNestedSinglebb5in(0,B,C)     True         (?,1)    
          2.  evalNestedSinglebb5in(A,B,C)   -> evalNestedSinglebb2in(A,B,A)     [B >= 1 + A] (?,1)    
          4.  evalNestedSinglebb2in(A,B,C)   -> evalNestedSinglebb4in(A,B,C)     [C >= B]     (?,1)    
          5.  evalNestedSinglebb2in(A,B,C)   -> evalNestedSinglebb3in(A,B,C)     [B >= 1 + C] (2 + B,1)
          6.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb1in(A,B,C)     [0 >= 1 + D] (?,1)    
          7.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb1in(A,B,C)     [D >= 1]     (?,1)    
          8.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb4in(A,B,C)     True         (?,1)    
          9.  evalNestedSinglebb1in(A,B,C)   -> evalNestedSinglebb2in(A,B,1 + C) True         (?,1)    
          10. evalNestedSinglebb4in(A,B,C)   -> evalNestedSinglebb5in(1 + C,B,C) True         (?,1)    
        Signature:
          {(evalNestedSinglebb1in,3)
          ;(evalNestedSinglebb2in,3)
          ;(evalNestedSinglebb3in,3)
          ;(evalNestedSinglebb4in,3)
          ;(evalNestedSinglebb5in,3)
          ;(evalNestedSingleentryin,3)
          ;(evalNestedSinglereturnin,3)
          ;(evalNestedSinglestart,3)
          ;(evalNestedSinglestop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, B) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, B) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalNestedSinglestart(A,B,C)   -> evalNestedSingleentryin(A,B,C)   True         (1,1)      
          1.  evalNestedSingleentryin(A,B,C) -> evalNestedSinglebb5in(0,B,C)     True         (1,1)      
          2.  evalNestedSinglebb5in(A,B,C)   -> evalNestedSinglebb2in(A,B,A)     [B >= 1 + A] (?,1)      
          4.  evalNestedSinglebb2in(A,B,C)   -> evalNestedSinglebb4in(A,B,C)     [C >= B]     (4 + 2*B,1)
          5.  evalNestedSinglebb2in(A,B,C)   -> evalNestedSinglebb3in(A,B,C)     [B >= 1 + C] (2 + B,1)  
          6.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb1in(A,B,C)     [0 >= 1 + D] (2 + B,1)  
          7.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb1in(A,B,C)     [D >= 1]     (2 + B,1)  
          8.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb4in(A,B,C)     True         (2 + B,1)  
          9.  evalNestedSinglebb1in(A,B,C)   -> evalNestedSinglebb2in(A,B,1 + C) True         (4 + 2*B,1)
          10. evalNestedSinglebb4in(A,B,C)   -> evalNestedSinglebb5in(1 + C,B,C) True         (6 + 3*B,1)
        Signature:
          {(evalNestedSinglebb1in,3)
          ;(evalNestedSinglebb2in,3)
          ;(evalNestedSinglebb3in,3)
          ;(evalNestedSinglebb4in,3)
          ;(evalNestedSinglebb5in,3)
          ;(evalNestedSingleentryin,3)
          ;(evalNestedSinglereturnin,3)
          ;(evalNestedSinglestart,3)
          ;(evalNestedSinglestop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, B) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, B) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalNestedSinglebb1in) = x2 + -1*x3    
            p(evalNestedSinglebb2in) = x2 + -1*x3    
            p(evalNestedSinglebb3in) = x2 + -1*x3    
            p(evalNestedSinglebb4in) = x2 + -1*x3    
            p(evalNestedSinglebb5in) = 1 + -1*x1 + x2
          p(evalNestedSingleentryin) = 1 + x2        
            p(evalNestedSinglestart) = 1 + x2        
        
        The following rules are strictly oriented:
                          [B >= 1 + A] ==>                             
          evalNestedSinglebb5in(A,B,C)   = 1 + -1*A + B                
                                         > -1*A + B                    
                                         = evalNestedSinglebb2in(A,B,A)
        
        
        The following rules are weakly oriented:
                                    True ==>                                 
            evalNestedSinglestart(A,B,C)   = 1 + B                           
                                          >= 1 + B                           
                                           = evalNestedSingleentryin(A,B,C)  
        
                                    True ==>                                 
          evalNestedSingleentryin(A,B,C)   = 1 + B                           
                                          >= 1 + B                           
                                           = evalNestedSinglebb5in(0,B,C)    
        
                                [C >= B] ==>                                 
            evalNestedSinglebb2in(A,B,C)   = B + -1*C                        
                                          >= B + -1*C                        
                                           = evalNestedSinglebb4in(A,B,C)    
        
                            [B >= 1 + C] ==>                                 
            evalNestedSinglebb2in(A,B,C)   = B + -1*C                        
                                          >= B + -1*C                        
                                           = evalNestedSinglebb3in(A,B,C)    
        
                            [0 >= 1 + D] ==>                                 
            evalNestedSinglebb3in(A,B,C)   = B + -1*C                        
                                          >= B + -1*C                        
                                           = evalNestedSinglebb1in(A,B,C)    
        
                                [D >= 1] ==>                                 
            evalNestedSinglebb3in(A,B,C)   = B + -1*C                        
                                          >= B + -1*C                        
                                           = evalNestedSinglebb1in(A,B,C)    
        
                                    True ==>                                 
            evalNestedSinglebb3in(A,B,C)   = B + -1*C                        
                                          >= B + -1*C                        
                                           = evalNestedSinglebb4in(A,B,C)    
        
                                    True ==>                                 
            evalNestedSinglebb1in(A,B,C)   = B + -1*C                        
                                          >= -1 + B + -1*C                   
                                           = evalNestedSinglebb2in(A,B,1 + C)
        
                                    True ==>                                 
            evalNestedSinglebb4in(A,B,C)   = B + -1*C                        
                                          >= B + -1*C                        
                                           = evalNestedSinglebb5in(1 + C,B,C)
        
        
* Step 8: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalNestedSinglestart(A,B,C)   -> evalNestedSingleentryin(A,B,C)   True         (1,1)      
          1.  evalNestedSingleentryin(A,B,C) -> evalNestedSinglebb5in(0,B,C)     True         (1,1)      
          2.  evalNestedSinglebb5in(A,B,C)   -> evalNestedSinglebb2in(A,B,A)     [B >= 1 + A] (1 + B,1)  
          4.  evalNestedSinglebb2in(A,B,C)   -> evalNestedSinglebb4in(A,B,C)     [C >= B]     (4 + 2*B,1)
          5.  evalNestedSinglebb2in(A,B,C)   -> evalNestedSinglebb3in(A,B,C)     [B >= 1 + C] (2 + B,1)  
          6.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb1in(A,B,C)     [0 >= 1 + D] (2 + B,1)  
          7.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb1in(A,B,C)     [D >= 1]     (2 + B,1)  
          8.  evalNestedSinglebb3in(A,B,C)   -> evalNestedSinglebb4in(A,B,C)     True         (2 + B,1)  
          9.  evalNestedSinglebb1in(A,B,C)   -> evalNestedSinglebb2in(A,B,1 + C) True         (4 + 2*B,1)
          10. evalNestedSinglebb4in(A,B,C)   -> evalNestedSinglebb5in(1 + C,B,C) True         (6 + 3*B,1)
        Signature:
          {(evalNestedSinglebb1in,3)
          ;(evalNestedSinglebb2in,3)
          ;(evalNestedSinglebb3in,3)
          ;(evalNestedSinglebb4in,3)
          ;(evalNestedSinglebb5in,3)
          ;(evalNestedSingleentryin,3)
          ;(evalNestedSinglereturnin,3)
          ;(evalNestedSinglestart,3)
          ;(evalNestedSinglestop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) 
          (< 1,0,A>, 0) (< 1,0,B>, B) (< 1,0,C>, C) 
          (< 2,0,A>, ?) (< 2,0,B>, B) (< 2,0,C>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, B) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, B) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, B) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))