WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)    -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)
          1.  evalNestedMultipleentryin(A,B,C,D,E)  -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (?,1)
          2.  evalNestedMultiplebb5in(A,B,C,D,E)    -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (?,1)
          3.  evalNestedMultiplebb5in(A,B,C,D,E)    -> evalNestedMultiplereturnin(A,B,C,D,E)  [B >= A]     (?,1)
          4.  evalNestedMultiplebb2in(A,B,C,D,E)    -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (?,1)
          5.  evalNestedMultiplebb2in(A,B,C,D,E)    -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (?,1)
          6.  evalNestedMultiplebb3in(A,B,C,D,E)    -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)
          7.  evalNestedMultiplebb3in(A,B,C,D,E)    -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)
          8.  evalNestedMultiplebb3in(A,B,C,D,E)    -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (?,1)
          9.  evalNestedMultiplebb1in(A,B,C,D,E)    -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)
          10. evalNestedMultiplebb4in(A,B,C,D,E)    -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (?,1)
          11. evalNestedMultiplereturnin(A,B,C,D,E) -> evalNestedMultiplestop(A,B,C,D,E)      True         (?,1)
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{11},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2,3},11->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>,     B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>,     E, .= 0) 
          (< 1,0,A>, B, .= 0) (< 1,0,B>,     A, .= 0) (< 1,0,C>, D, .= 0) (< 1,0,D>, C, .= 0) (< 1,0,E>,     E, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>,     B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>,     D, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>,     B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>,     E, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>,     B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>,     E, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>,     B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>,     E, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>,     B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>,     E, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>,     B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>,     E, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>,     B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>,     E, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>,     B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, 1 + E, .+ 1) 
          (<10,0,A>, A, .= 0) (<10,0,B>, 1 + B, .+ 1) (<10,0,C>, C, .= 0) (<10,0,D>, E, .= 0) (<10,0,E>,     E, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>,     B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>,     E, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)    -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)
          1.  evalNestedMultipleentryin(A,B,C,D,E)  -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (?,1)
          2.  evalNestedMultiplebb5in(A,B,C,D,E)    -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (?,1)
          3.  evalNestedMultiplebb5in(A,B,C,D,E)    -> evalNestedMultiplereturnin(A,B,C,D,E)  [B >= A]     (?,1)
          4.  evalNestedMultiplebb2in(A,B,C,D,E)    -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (?,1)
          5.  evalNestedMultiplebb2in(A,B,C,D,E)    -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (?,1)
          6.  evalNestedMultiplebb3in(A,B,C,D,E)    -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)
          7.  evalNestedMultiplebb3in(A,B,C,D,E)    -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)
          8.  evalNestedMultiplebb3in(A,B,C,D,E)    -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (?,1)
          9.  evalNestedMultiplebb1in(A,B,C,D,E)    -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)
          10. evalNestedMultiplebb4in(A,B,C,D,E)    -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (?,1)
          11. evalNestedMultiplereturnin(A,B,C,D,E) -> evalNestedMultiplestop(A,B,C,D,E)      True         (?,1)
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{11},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, B) (< 3,0,B>, ?) (< 3,0,C>, D) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, D) (<11,0,D>, ?) (<11,0,E>, ?) 
* Step 3: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)    -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)
          1.  evalNestedMultipleentryin(A,B,C,D,E)  -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (?,1)
          2.  evalNestedMultiplebb5in(A,B,C,D,E)    -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (?,1)
          3.  evalNestedMultiplebb5in(A,B,C,D,E)    -> evalNestedMultiplereturnin(A,B,C,D,E)  [B >= A]     (?,1)
          4.  evalNestedMultiplebb2in(A,B,C,D,E)    -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (?,1)
          5.  evalNestedMultiplebb2in(A,B,C,D,E)    -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (?,1)
          6.  evalNestedMultiplebb3in(A,B,C,D,E)    -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)
          7.  evalNestedMultiplebb3in(A,B,C,D,E)    -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)
          8.  evalNestedMultiplebb3in(A,B,C,D,E)    -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (?,1)
          9.  evalNestedMultiplebb1in(A,B,C,D,E)    -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)
          10. evalNestedMultiplebb4in(A,B,C,D,E)    -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (?,1)
          11. evalNestedMultiplereturnin(A,B,C,D,E) -> evalNestedMultiplestop(A,B,C,D,E)      True         (?,1)
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{11},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, B) (< 3,0,B>, ?) (< 3,0,C>, D) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, B) (<11,0,B>, ?) (<11,0,C>, D) (<11,0,D>, ?) (<11,0,E>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,11]
* Step 4: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)   -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)
          1.  evalNestedMultipleentryin(A,B,C,D,E) -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (?,1)
          2.  evalNestedMultiplebb5in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (?,1)
          4.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (?,1)
          5.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (?,1)
          6.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)
          7.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)
          8.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (?,1)
          9.  evalNestedMultiplebb1in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)
          10. evalNestedMultiplebb4in(A,B,C,D,E)   -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (?,1)
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalNestedMultiplebb1in) = 1 + x1 + -1*x2
            p(evalNestedMultiplebb2in) = 1 + x1 + -1*x2
            p(evalNestedMultiplebb3in) = 1 + x1 + -1*x2
            p(evalNestedMultiplebb4in) = 1 + x1 + -1*x2
            p(evalNestedMultiplebb5in) = 2 + x1 + -1*x2
          p(evalNestedMultipleentryin) = 2 + -1*x1 + x2
            p(evalNestedMultiplestart) = 2 + -1*x1 + x2
        
        The following rules are strictly oriented:
                                [A >= 1 + B] ==>                                   
          evalNestedMultiplebb5in(A,B,C,D,E)   = 2 + A + -1*B                      
                                               > 1 + A + -1*B                      
                                               = evalNestedMultiplebb2in(A,B,C,D,D)
        
        
        The following rules are weakly oriented:
                                          True ==>                                       
            evalNestedMultiplestart(A,B,C,D,E)   = 2 + -1*A + B                          
                                                >= 2 + -1*A + B                          
                                                 = evalNestedMultipleentryin(A,B,C,D,E)  
        
                                          True ==>                                       
          evalNestedMultipleentryin(A,B,C,D,E)   = 2 + -1*A + B                          
                                                >= 2 + -1*A + B                          
                                                 = evalNestedMultiplebb5in(B,A,D,C,E)    
        
                                      [E >= C] ==>                                       
            evalNestedMultiplebb2in(A,B,C,D,E)   = 1 + A + -1*B                          
                                                >= 1 + A + -1*B                          
                                                 = evalNestedMultiplebb4in(A,B,C,D,E)    
        
                                  [C >= 1 + E] ==>                                       
            evalNestedMultiplebb2in(A,B,C,D,E)   = 1 + A + -1*B                          
                                                >= 1 + A + -1*B                          
                                                 = evalNestedMultiplebb3in(A,B,C,D,E)    
        
                                  [0 >= 1 + F] ==>                                       
            evalNestedMultiplebb3in(A,B,C,D,E)   = 1 + A + -1*B                          
                                                >= 1 + A + -1*B                          
                                                 = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                      [F >= 1] ==>                                       
            evalNestedMultiplebb3in(A,B,C,D,E)   = 1 + A + -1*B                          
                                                >= 1 + A + -1*B                          
                                                 = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                          True ==>                                       
            evalNestedMultiplebb3in(A,B,C,D,E)   = 1 + A + -1*B                          
                                                >= 1 + A + -1*B                          
                                                 = evalNestedMultiplebb4in(A,B,C,D,E)    
        
                                          True ==>                                       
            evalNestedMultiplebb1in(A,B,C,D,E)   = 1 + A + -1*B                          
                                                >= 1 + A + -1*B                          
                                                 = evalNestedMultiplebb2in(A,B,C,D,1 + E)
        
                                          True ==>                                       
            evalNestedMultiplebb4in(A,B,C,D,E)   = 1 + A + -1*B                          
                                                >= 1 + A + -1*B                          
                                                 = evalNestedMultiplebb5in(A,1 + B,C,E,E)
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)   -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)        
          1.  evalNestedMultipleentryin(A,B,C,D,E) -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (?,1)        
          2.  evalNestedMultiplebb5in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (2 + A + B,1)
          4.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (?,1)        
          5.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (?,1)        
          6.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)        
          7.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)        
          8.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (?,1)        
          9.  evalNestedMultiplebb1in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)        
          10. evalNestedMultiplebb4in(A,B,C,D,E)   -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (?,1)        
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)   -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)        
          1.  evalNestedMultipleentryin(A,B,C,D,E) -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (1,1)        
          2.  evalNestedMultiplebb5in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (2 + A + B,1)
          4.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (?,1)        
          5.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (?,1)        
          6.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)        
          7.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)        
          8.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (?,1)        
          9.  evalNestedMultiplebb1in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)        
          10. evalNestedMultiplebb4in(A,B,C,D,E)   -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (?,1)        
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [10,4,9,6,5,7,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalNestedMultiplebb1in) = 1
          p(evalNestedMultiplebb2in) = 1
          p(evalNestedMultiplebb3in) = 1
          p(evalNestedMultiplebb4in) = 1
          p(evalNestedMultiplebb5in) = 0
        
        The following rules are strictly oriented:
                                        True ==>                                       
          evalNestedMultiplebb4in(A,B,C,D,E)   = 1                                     
                                               > 0                                     
                                               = evalNestedMultiplebb5in(A,1 + B,C,E,E)
        
        
        The following rules are weakly oriented:
                                    [E >= C] ==>                                       
          evalNestedMultiplebb2in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb4in(A,B,C,D,E)    
        
                                [C >= 1 + E] ==>                                       
          evalNestedMultiplebb2in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb3in(A,B,C,D,E)    
        
                                [0 >= 1 + F] ==>                                       
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                    [F >= 1] ==>                                       
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                        True ==>                                       
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb4in(A,B,C,D,E)    
        
                                        True ==>                                       
          evalNestedMultiplebb1in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb2in(A,B,C,D,1 + E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
* Step 7: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)   -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)        
          1.  evalNestedMultipleentryin(A,B,C,D,E) -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (1,1)        
          2.  evalNestedMultiplebb5in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (2 + A + B,1)
          4.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (?,1)        
          5.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (?,1)        
          6.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)        
          7.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)        
          8.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (?,1)        
          9.  evalNestedMultiplebb1in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)        
          10. evalNestedMultiplebb4in(A,B,C,D,E)   -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (2 + A + B,1)
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,4,9,6,5,7,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalNestedMultiplebb1in) = 1
          p(evalNestedMultiplebb2in) = 1
          p(evalNestedMultiplebb3in) = 1
          p(evalNestedMultiplebb4in) = 0
          p(evalNestedMultiplebb5in) = 1
        
        The following rules are strictly oriented:
                                        True ==>                                   
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1                                 
                                               > 0                                 
                                               = evalNestedMultiplebb4in(A,B,C,D,E)
        
        
        The following rules are weakly oriented:
                                [A >= 1 + B] ==>                                       
          evalNestedMultiplebb5in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb2in(A,B,C,D,D)    
        
                                    [E >= C] ==>                                       
          evalNestedMultiplebb2in(A,B,C,D,E)   = 1                                     
                                              >= 0                                     
                                               = evalNestedMultiplebb4in(A,B,C,D,E)    
        
                                [C >= 1 + E] ==>                                       
          evalNestedMultiplebb2in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb3in(A,B,C,D,E)    
        
                                [0 >= 1 + F] ==>                                       
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                    [F >= 1] ==>                                       
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                        True ==>                                       
          evalNestedMultiplebb1in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb2in(A,B,C,D,1 + E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
* Step 8: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)   -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)        
          1.  evalNestedMultipleentryin(A,B,C,D,E) -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (1,1)        
          2.  evalNestedMultiplebb5in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (2 + A + B,1)
          4.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (?,1)        
          5.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (?,1)        
          6.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)        
          7.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)        
          8.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (3 + A + B,1)
          9.  evalNestedMultiplebb1in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)        
          10. evalNestedMultiplebb4in(A,B,C,D,E)   -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (2 + A + B,1)
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [10,4,9,6,5,7,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalNestedMultiplebb1in) = 1
          p(evalNestedMultiplebb2in) = 1
          p(evalNestedMultiplebb3in) = 1
          p(evalNestedMultiplebb4in) = 0
          p(evalNestedMultiplebb5in) = 0
        
        The following rules are strictly oriented:
                                    [E >= C] ==>                                   
          evalNestedMultiplebb2in(A,B,C,D,E)   = 1                                 
                                               > 0                                 
                                               = evalNestedMultiplebb4in(A,B,C,D,E)
        
                                        True ==>                                   
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1                                 
                                               > 0                                 
                                               = evalNestedMultiplebb4in(A,B,C,D,E)
        
        
        The following rules are weakly oriented:
                                [C >= 1 + E] ==>                                       
          evalNestedMultiplebb2in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb3in(A,B,C,D,E)    
        
                                [0 >= 1 + F] ==>                                       
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                    [F >= 1] ==>                                       
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                        True ==>                                       
          evalNestedMultiplebb1in(A,B,C,D,E)   = 1                                     
                                              >= 1                                     
                                               = evalNestedMultiplebb2in(A,B,C,D,1 + E)
        
                                        True ==>                                       
          evalNestedMultiplebb4in(A,B,C,D,E)   = 0                                     
                                              >= 0                                     
                                               = evalNestedMultiplebb5in(A,1 + B,C,E,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
* Step 9: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)   -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)        
          1.  evalNestedMultipleentryin(A,B,C,D,E) -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (1,1)        
          2.  evalNestedMultiplebb5in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (2 + A + B,1)
          4.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (2 + A + B,1)
          5.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (?,1)        
          6.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)        
          7.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)        
          8.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (2 + A + B,1)
          9.  evalNestedMultiplebb1in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)        
          10. evalNestedMultiplebb4in(A,B,C,D,E)   -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (2 + A + B,1)
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,10,4,9,6,5,7], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalNestedMultiplebb1in) = 1 + x3 + -1*x5
          p(evalNestedMultiplebb2in) = 2 + x3 + -1*x5
          p(evalNestedMultiplebb3in) = 1 + x3 + -1*x5
          p(evalNestedMultiplebb4in) = 2 + x3 + -1*x5
          p(evalNestedMultiplebb5in) = 2 + x3 + -1*x4
        
        The following rules are strictly oriented:
                                [C >= 1 + E] ==>                                   
          evalNestedMultiplebb2in(A,B,C,D,E)   = 2 + C + -1*E                      
                                               > 1 + C + -1*E                      
                                               = evalNestedMultiplebb3in(A,B,C,D,E)
        
        
        The following rules are weakly oriented:
                                [A >= 1 + B] ==>                                       
          evalNestedMultiplebb5in(A,B,C,D,E)   = 2 + C + -1*D                          
                                              >= 2 + C + -1*D                          
                                               = evalNestedMultiplebb2in(A,B,C,D,D)    
        
                                    [E >= C] ==>                                       
          evalNestedMultiplebb2in(A,B,C,D,E)   = 2 + C + -1*E                          
                                              >= 2 + C + -1*E                          
                                               = evalNestedMultiplebb4in(A,B,C,D,E)    
        
                                [0 >= 1 + F] ==>                                       
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1 + C + -1*E                          
                                              >= 1 + C + -1*E                          
                                               = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                    [F >= 1] ==>                                       
          evalNestedMultiplebb3in(A,B,C,D,E)   = 1 + C + -1*E                          
                                              >= 1 + C + -1*E                          
                                               = evalNestedMultiplebb1in(A,B,C,D,E)    
        
                                        True ==>                                       
          evalNestedMultiplebb1in(A,B,C,D,E)   = 1 + C + -1*E                          
                                              >= 1 + C + -1*E                          
                                               = evalNestedMultiplebb2in(A,B,C,D,1 + E)
        
                                        True ==>                                       
          evalNestedMultiplebb4in(A,B,C,D,E)   = 2 + C + -1*E                          
                                              >= 2 + C + -1*E                          
                                               = evalNestedMultiplebb5in(A,1 + B,C,E,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
        (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
        (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
        (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
        (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
        (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
* Step 10: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)   -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)                                      
          1.  evalNestedMultipleentryin(A,B,C,D,E) -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (1,1)                                      
          2.  evalNestedMultiplebb5in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (2 + A + B,1)                              
          4.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (2 + A + B,1)                              
          5.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (6 + 2*A + 2*A*D + 2*B + 2*B*D + C + 5*D,1)
          6.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (?,1)                                      
          7.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (?,1)                                      
          8.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (2 + A + B,1)                              
          9.  evalNestedMultiplebb1in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (?,1)                                      
          10. evalNestedMultiplebb4in(A,B,C,D,E)   -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (2 + A + B,1)                              
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 11: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  evalNestedMultiplestart(A,B,C,D,E)   -> evalNestedMultipleentryin(A,B,C,D,E)   True         (1,1)                                          
          1.  evalNestedMultipleentryin(A,B,C,D,E) -> evalNestedMultiplebb5in(B,A,D,C,E)     True         (1,1)                                          
          2.  evalNestedMultiplebb5in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,D)     [A >= 1 + B] (2 + A + B,1)                                  
          4.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     [E >= C]     (2 + A + B,1)                                  
          5.  evalNestedMultiplebb2in(A,B,C,D,E)   -> evalNestedMultiplebb3in(A,B,C,D,E)     [C >= 1 + E] (6 + 2*A + 2*A*D + 2*B + 2*B*D + C + 5*D,1)    
          6.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [0 >= 1 + F] (6 + 2*A + 2*A*D + 2*B + 2*B*D + C + 5*D,1)    
          7.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb1in(A,B,C,D,E)     [F >= 1]     (6 + 2*A + 2*A*D + 2*B + 2*B*D + C + 5*D,1)    
          8.  evalNestedMultiplebb3in(A,B,C,D,E)   -> evalNestedMultiplebb4in(A,B,C,D,E)     True         (2 + A + B,1)                                  
          9.  evalNestedMultiplebb1in(A,B,C,D,E)   -> evalNestedMultiplebb2in(A,B,C,D,1 + E) True         (12 + 4*A + 4*A*D + 4*B + 4*B*D + 2*C + 10*D,1)
          10. evalNestedMultiplebb4in(A,B,C,D,E)   -> evalNestedMultiplebb5in(A,1 + B,C,E,E) True         (2 + A + B,1)                                  
        Signature:
          {(evalNestedMultiplebb1in,5)
          ;(evalNestedMultiplebb2in,5)
          ;(evalNestedMultiplebb3in,5)
          ;(evalNestedMultiplebb4in,5)
          ;(evalNestedMultiplebb5in,5)
          ;(evalNestedMultipleentryin,5)
          ;(evalNestedMultiplereturnin,5)
          ;(evalNestedMultiplestart,5)
          ;(evalNestedMultiplestop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{10},5->{6,7,8},6->{9},7->{9},8->{10},9->{4,5},10->{2}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, B) (< 1,0,B>, A) (< 1,0,C>, D) (< 1,0,D>, C) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, D) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, B) (< 4,0,B>, ?) (< 4,0,C>, D) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, B) (< 5,0,B>, ?) (< 5,0,C>, D) (< 5,0,D>, ?) (< 5,0,E>, D) 
          (< 6,0,A>, B) (< 6,0,B>, ?) (< 6,0,C>, D) (< 6,0,D>, ?) (< 6,0,E>, D) 
          (< 7,0,A>, B) (< 7,0,B>, ?) (< 7,0,C>, D) (< 7,0,D>, ?) (< 7,0,E>, D) 
          (< 8,0,A>, B) (< 8,0,B>, ?) (< 8,0,C>, D) (< 8,0,D>, ?) (< 8,0,E>, D) 
          (< 9,0,A>, B) (< 9,0,B>, ?) (< 9,0,C>, D) (< 9,0,D>, ?) (< 9,0,E>, D) 
          (<10,0,A>, B) (<10,0,B>, ?) (<10,0,C>, D) (<10,0,D>, ?) (<10,0,E>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))