WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (?,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (?,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (?,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (?,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4,5},4->{4,5},5->{3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 0, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<1,0,A>, 1 + A, .+ 1) (<1,0,B>, 1 + B, .+ 1) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, A, .= 0) (<2,0,D>, D, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, C, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, 1 + D, .+ 1) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, 1 + C, .+ 1) (<5,0,D>, D, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (?,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (?,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (?,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (?,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4,5},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, D) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) * Step 3: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (?,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (?,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (?,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (?,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4,5},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, D) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,5)] * Step 4: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (?,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (?,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (?,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (?,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, D) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(l0) = 2 p(l1) = 2 p(l2) = 1 p(l3) = 1 The following rules are strictly oriented: [0 >= B] ==> l1(A,B,C,D) = 2 > 1 = l2(A,B,A,D) The following rules are weakly oriented: True ==> l0(A,B,C,D) = 2 >= 2 = l1(0,B,C,D) [B >= 1] ==> l1(A,B,C,D) = 2 >= 2 = l1(1 + A,-1 + B,C,D) [C >= 1] ==> l2(A,B,C,D) = 1 >= 1 = l3(A,B,C,C) [D >= 1 && C >= 1] ==> l3(A,B,C,D) = 1 >= 1 = l3(A,B,C,-1 + D) [0 >= D && C >= 1] ==> l3(A,B,C,D) = 1 >= 1 = l2(A,B,-1 + C,D) * Step 5: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (?,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (2,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (?,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (?,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, D) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(l0) = x2 p(l1) = x2 p(l2) = x2 p(l3) = x2 The following rules are strictly oriented: [B >= 1] ==> l1(A,B,C,D) = B > -1 + B = l1(1 + A,-1 + B,C,D) The following rules are weakly oriented: True ==> l0(A,B,C,D) = B >= B = l1(0,B,C,D) [0 >= B] ==> l1(A,B,C,D) = B >= B = l2(A,B,A,D) [C >= 1] ==> l2(A,B,C,D) = B >= B = l3(A,B,C,C) [D >= 1 && C >= 1] ==> l3(A,B,C,D) = B >= B = l3(A,B,C,-1 + D) [0 >= D && C >= 1] ==> l3(A,B,C,D) = B >= B = l2(A,B,-1 + C,D) * Step 6: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (B,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (2,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (?,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (?,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, D) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, B) (<1,0,B>, 2*B) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, B) (<2,0,B>, 2*B) (<2,0,C>, B) (<2,0,D>, D) (<3,0,A>, B) (<3,0,B>, 2*B) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, B) (<4,0,B>, 2*B) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, B) (<5,0,B>, 2*B) (<5,0,C>, ?) (<5,0,D>, ?) * Step 7: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (B,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (2,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (?,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (?,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, B) (<1,0,B>, 2*B) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, B) (<2,0,B>, 2*B) (<2,0,C>, B) (<2,0,D>, D) (<3,0,A>, B) (<3,0,B>, 2*B) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, B) (<4,0,B>, 2*B) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, B) (<5,0,B>, 2*B) (<5,0,C>, ?) (<5,0,D>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3,5,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(l2) = x3 p(l3) = x3 The following rules are strictly oriented: [0 >= D && C >= 1] ==> l3(A,B,C,D) = C > -1 + C = l2(A,B,-1 + C,D) The following rules are weakly oriented: [C >= 1] ==> l2(A,B,C,D) = C >= C = l3(A,B,C,C) [D >= 1 && C >= 1] ==> l3(A,B,C,D) = C >= C = l3(A,B,C,-1 + D) We use the following global sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, B) (<1,0,B>, 2*B) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, B) (<2,0,B>, 2*B) (<2,0,C>, B) (<2,0,D>, D) (<3,0,A>, B) (<3,0,B>, 2*B) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, B) (<4,0,B>, 2*B) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, B) (<5,0,B>, 2*B) (<5,0,C>, ?) (<5,0,D>, ?) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (B,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (2,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (?,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (2*B,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, B) (<1,0,B>, 2*B) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, B) (<2,0,B>, 2*B) (<2,0,C>, B) (<2,0,D>, D) (<3,0,A>, B) (<3,0,B>, 2*B) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, B) (<4,0,B>, 2*B) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, B) (<5,0,B>, 2*B) (<5,0,C>, ?) (<5,0,D>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (B,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (2,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (2 + 2*B,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (2*B,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, B) (<1,0,B>, 2*B) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, B) (<2,0,B>, 2*B) (<2,0,C>, B) (<2,0,D>, D) (<3,0,A>, B) (<3,0,B>, 2*B) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, B) (<4,0,B>, 2*B) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, B) (<5,0,B>, 2*B) (<5,0,C>, ?) (<5,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, B) (<1,0,B>, 2*B) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, B) (<2,0,B>, 2*B) (<2,0,C>, B) (<2,0,D>, D) (<3,0,A>, B) (<3,0,B>, 2*B) (<3,0,C>, 3*B) (<3,0,D>, 3*B) (<4,0,A>, B) (<4,0,B>, 2*B) (<4,0,C>, 3*B) (<4,0,D>, ?) (<5,0,A>, B) (<5,0,B>, 2*B) (<5,0,C>, 3*B) (<5,0,D>, ?) * Step 10: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (B,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (2,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (2 + 2*B,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (?,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (2*B,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, B) (<1,0,B>, 2*B) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, B) (<2,0,B>, 2*B) (<2,0,C>, B) (<2,0,D>, D) (<3,0,A>, B) (<3,0,B>, 2*B) (<3,0,C>, 3*B) (<3,0,D>, 3*B) (<4,0,A>, B) (<4,0,B>, 2*B) (<4,0,C>, 3*B) (<4,0,D>, ?) (<5,0,A>, B) (<5,0,B>, 2*B) (<5,0,C>, 3*B) (<5,0,D>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(l3) = x4 The following rules are strictly oriented: [D >= 1 && C >= 1] ==> l3(A,B,C,D) = D > -1 + D = l3(A,B,C,-1 + D) The following rules are weakly oriented: We use the following global sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, B) (<1,0,B>, 2*B) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, B) (<2,0,B>, 2*B) (<2,0,C>, B) (<2,0,D>, D) (<3,0,A>, B) (<3,0,B>, 2*B) (<3,0,C>, 3*B) (<3,0,D>, 3*B) (<4,0,A>, B) (<4,0,B>, 2*B) (<4,0,C>, 3*B) (<4,0,D>, ?) (<5,0,A>, B) (<5,0,B>, 2*B) (<5,0,C>, 3*B) (<5,0,D>, ?) * Step 11: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. l0(A,B,C,D) -> l1(0,B,C,D) True (1,1) 1. l1(A,B,C,D) -> l1(1 + A,-1 + B,C,D) [B >= 1] (B,1) 2. l1(A,B,C,D) -> l2(A,B,A,D) [0 >= B] (2,1) 3. l2(A,B,C,D) -> l3(A,B,C,C) [C >= 1] (2 + 2*B,1) 4. l3(A,B,C,D) -> l3(A,B,C,-1 + D) [D >= 1 && C >= 1] (6*B + 6*B^2,1) 5. l3(A,B,C,D) -> l2(A,B,-1 + C,D) [0 >= D && C >= 1] (2*B,1) Signature: {(l0,4);(l1,4);(l2,4);(l3,4)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{4},4->{4,5},5->{3}] Sizebounds: (<0,0,A>, 0) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, B) (<1,0,B>, 2*B) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, B) (<2,0,B>, 2*B) (<2,0,C>, B) (<2,0,D>, D) (<3,0,A>, B) (<3,0,B>, 2*B) (<3,0,C>, 3*B) (<3,0,D>, 3*B) (<4,0,A>, B) (<4,0,B>, 2*B) (<4,0,C>, 3*B) (<4,0,D>, ?) (<5,0,A>, B) (<5,0,B>, 2*B) (<5,0,C>, 3*B) (<5,0,D>, ?) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))