WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. l0(A,B) -> l1(A,B) True (1,1) 1. l1(A,B) -> l1(-1 + A,1 + B) [A >= 1] (?,1) 2. l1(A,B) -> l2(A,B) [0 >= A] (?,1) 3. l2(A,B) -> l2(A,-1 + B) [B >= 1] (?,1) Signature: {(l0,2);(l1,2);(l2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, 1 + A, .+ 1) (<1,0,B>, 1 + B, .+ 1) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, 1 + B, .+ 1) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. l0(A,B) -> l1(A,B) True (1,1) 1. l1(A,B) -> l1(-1 + A,1 + B) [A >= 1] (?,1) 2. l1(A,B) -> l2(A,B) [0 >= A] (?,1) 3. l2(A,B) -> l2(A,-1 + B) [B >= 1] (?,1) Signature: {(l0,2);(l1,2);(l2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{3}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. l0(A,B) -> l1(A,B) True (1,1) 1. l1(A,B) -> l1(-1 + A,1 + B) [A >= 1] (?,1) 2. l1(A,B) -> l2(A,B) [0 >= A] (?,1) 3. l2(A,B) -> l2(A,-1 + B) [B >= 1] (?,1) Signature: {(l0,2);(l1,2);(l2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{3}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(l0) = 2 p(l1) = 2 p(l2) = 1 The following rules are strictly oriented: [0 >= A] ==> l1(A,B) = 2 > 1 = l2(A,B) The following rules are weakly oriented: True ==> l0(A,B) = 2 >= 2 = l1(A,B) [A >= 1] ==> l1(A,B) = 2 >= 2 = l1(-1 + A,1 + B) [B >= 1] ==> l2(A,B) = 1 >= 1 = l2(A,-1 + B) * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. l0(A,B) -> l1(A,B) True (1,1) 1. l1(A,B) -> l1(-1 + A,1 + B) [A >= 1] (?,1) 2. l1(A,B) -> l2(A,B) [0 >= A] (2,1) 3. l2(A,B) -> l2(A,-1 + B) [B >= 1] (?,1) Signature: {(l0,2);(l1,2);(l2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{3}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(l0) = x1 p(l1) = x1 p(l2) = x1 The following rules are strictly oriented: [A >= 1] ==> l1(A,B) = A > -1 + A = l1(-1 + A,1 + B) The following rules are weakly oriented: True ==> l0(A,B) = A >= A = l1(A,B) [0 >= A] ==> l1(A,B) = A >= A = l2(A,B) [B >= 1] ==> l2(A,B) = A >= A = l2(A,-1 + B) * Step 5: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. l0(A,B) -> l1(A,B) True (1,1) 1. l1(A,B) -> l1(-1 + A,1 + B) [A >= 1] (A,1) 2. l1(A,B) -> l2(A,B) [0 >= A] (2,1) 3. l2(A,B) -> l2(A,-1 + B) [B >= 1] (?,1) Signature: {(l0,2);(l1,2);(l2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{3}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, 2*A) (<1,0,B>, A + B) (<2,0,A>, 2*A) (<2,0,B>, A + B) (<3,0,A>, 2*A) (<3,0,B>, ?) * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. l0(A,B) -> l1(A,B) True (1,1) 1. l1(A,B) -> l1(-1 + A,1 + B) [A >= 1] (A,1) 2. l1(A,B) -> l2(A,B) [0 >= A] (2,1) 3. l2(A,B) -> l2(A,-1 + B) [B >= 1] (?,1) Signature: {(l0,2);(l1,2);(l2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{3}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, 2*A) (<1,0,B>, A + B) (<2,0,A>, 2*A) (<2,0,B>, A + B) (<3,0,A>, 2*A) (<3,0,B>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [3], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(l2) = x2 The following rules are strictly oriented: [B >= 1] ==> l2(A,B) = B > -1 + B = l2(A,-1 + B) The following rules are weakly oriented: We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, 2*A) (<1,0,B>, A + B) (<2,0,A>, 2*A) (<2,0,B>, A + B) (<3,0,A>, 2*A) (<3,0,B>, ?) * Step 7: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. l0(A,B) -> l1(A,B) True (1,1) 1. l1(A,B) -> l1(-1 + A,1 + B) [A >= 1] (A,1) 2. l1(A,B) -> l2(A,B) [0 >= A] (2,1) 3. l2(A,B) -> l2(A,-1 + B) [B >= 1] (2*A + 2*B,1) Signature: {(l0,2);(l1,2);(l2,2)} Flow Graph: [0->{1,2},1->{1,2},2->{3},3->{3}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, 2*A) (<1,0,B>, A + B) (<2,0,A>, 2*A) (<2,0,B>, A + B) (<3,0,A>, 2*A) (<3,0,B>, ?) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))