WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,1,J) [1 >= A && B = C && D = E && F = A && G = H && I = J] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,1,J) [A >= 2 && B = C && D = E && F = A && G = H && I = J] (?,1) 2. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 3. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 4. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 5. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 6. lbl13(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [A + G >= 2 && 1 + G >= 0 && A >= 2 + G && F = A && I = A && 1 + D = A] (?,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,I,J) [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (?,1) 8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J) True (1,1) Signature: {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)} Flow Graph: [0->{},1->{4,5},2->{2,3},3->{6,7},4->{2,3},5->{6,7},6->{},7->{4,5},8->{0,1}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>, E, .= 0) (<0,0,F>, F, .= 0) (<0,0,G>, G, .= 0) (<0,0,H>, H, .= 0) (<0,0,I>, 1, .= 1) (<0,0,J>, J, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, ?, .?) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<1,0,E>, E, .= 0) (<1,0,F>, F, .= 0) (<1,0,G>, G, .= 0) (<1,0,H>, H, .= 0) (<1,0,I>, 1, .= 1) (<1,0,J>, J, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>, E, .= 0) (<2,0,F>, F, .= 0) (<2,0,G>, 2 + G, .+ 2) (<2,0,H>, H, .= 0) (<2,0,I>, I, .= 0) (<2,0,J>, J, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, I, .= 0) (<3,0,E>, E, .= 0) (<3,0,F>, F, .= 0) (<3,0,G>, G, .= 0) (<3,0,H>, H, .= 0) (<3,0,I>, 1 + I, .+ 1) (<3,0,J>, J, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>, E, .= 0) (<4,0,F>, F, .= 0) (<4,0,G>, 2 + I, .+ 2) (<4,0,H>, H, .= 0) (<4,0,I>, I, .= 0) (<4,0,J>, J, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, I, .= 0) (<5,0,E>, E, .= 0) (<5,0,F>, F, .= 0) (<5,0,G>, 1 + I, .+ 1) (<5,0,H>, H, .= 0) (<5,0,I>, 2 + I, .+ 2) (<5,0,J>, J, .= 0) (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>, E, .= 0) (<6,0,F>, F, .= 0) (<6,0,G>, G, .= 0) (<6,0,H>, H, .= 0) (<6,0,I>, I, .= 0) (<6,0,J>, J, .= 0) (<7,0,A>, A, .= 0) (<7,0,B>, ?, .?) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<7,0,E>, E, .= 0) (<7,0,F>, F, .= 0) (<7,0,G>, G, .= 0) (<7,0,H>, H, .= 0) (<7,0,I>, I, .= 0) (<7,0,J>, J, .= 0) (<8,0,A>, A, .= 0) (<8,0,B>, C, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, E, .= 0) (<8,0,E>, E, .= 0) (<8,0,F>, A, .= 0) (<8,0,G>, H, .= 0) (<8,0,H>, H, .= 0) (<8,0,I>, J, .= 0) (<8,0,J>, J, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,1,J) [1 >= A && B = C && D = E && F = A && G = H && I = J] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,1,J) [A >= 2 && B = C && D = E && F = A && G = H && I = J] (?,1) 2. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 3. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 4. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 5. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 6. lbl13(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [A + G >= 2 && 1 + G >= 0 && A >= 2 + G && F = A && I = A && 1 + D = A] (?,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,I,J) [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (?,1) 8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J) True (1,1) Signature: {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)} Flow Graph: [0->{},1->{4,5},2->{2,3},3->{6,7},4->{2,3},5->{6,7},6->{},7->{4,5},8->{0,1}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<0,0,G>, ?) (<0,0,H>, ?) (<0,0,I>, ?) (<0,0,J>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) (<1,0,I>, ?) (<1,0,J>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) (<2,0,I>, ?) (<2,0,J>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) (<3,0,I>, ?) (<3,0,J>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) (<4,0,I>, ?) (<4,0,J>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) (<5,0,I>, ?) (<5,0,J>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) (<6,0,G>, ?) (<6,0,H>, ?) (<6,0,I>, ?) (<6,0,J>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) (<7,0,G>, ?) (<7,0,H>, ?) (<7,0,I>, ?) (<7,0,J>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) (<8,0,G>, ?) (<8,0,H>, ?) (<8,0,I>, ?) (<8,0,J>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>, E) (<0,0,E>, E) (<0,0,F>, A) (<0,0,G>, H) (<0,0,H>, H) (<0,0,I>, 1) (<0,0,J>, J) (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>, H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>, A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, 1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) (<6,0,A>, A) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, 1 + A) (<6,0,E>, E) (<6,0,F>, A) (<6,0,G>, 3 + A) (<6,0,H>, H) (<6,0,I>, A) (<6,0,J>, J) (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, 1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>, H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) * Step 3: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,1,J) [1 >= A && B = C && D = E && F = A && G = H && I = J] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,1,J) [A >= 2 && B = C && D = E && F = A && G = H && I = J] (?,1) 2. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 3. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 4. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 5. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 6. lbl13(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [A + G >= 2 && 1 + G >= 0 && A >= 2 + G && F = A && I = A && 1 + D = A] (?,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,I,J) [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (?,1) 8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J) True (1,1) Signature: {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)} Flow Graph: [0->{},1->{4,5},2->{2,3},3->{6,7},4->{2,3},5->{6,7},6->{},7->{4,5},8->{0,1}] Sizebounds: (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>, E) (<0,0,E>, E) (<0,0,F>, A) (<0,0,G>, H) (<0,0,H>, H) (<0,0,I>, 1) (<0,0,J>, J) (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>, H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>, A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, 1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) (<6,0,A>, A) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>, 1 + A) (<6,0,E>, E) (<6,0,F>, A) (<6,0,G>, 3 + A) (<6,0,H>, H) (<6,0,I>, A) (<6,0,J>, J) (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, 1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>, H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0,6] * Step 4: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,1,J) [A >= 2 && B = C && D = E && F = A && G = H && I = J] (?,1) 2. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 3. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 4. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 5. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,I,J) [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (?,1) 8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J) True (1,1) Signature: {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)} Flow Graph: [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>, H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>, A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, 1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, 1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>, H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl13) = x1 + -1*x4 p(lbl31) = x1 + -1*x9 p(lbl43) = x1 + -1*x9 p(start) = -1 + x1 p(start0) = -1 + x1 The following rules are strictly oriented: [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] ==> lbl13(A,B,C,D,E,F,G,H,I,J) = A + -1*D > A + -1*I = lbl31(A,K,C,D,E,F,G,H,I,J) The following rules are weakly oriented: [A >= 2 && B = C && D = E && F = A && G = H && I = J] ==> start(A,B,C,D,E,F,G,H,I,J) = -1 + A >= -1 + A = lbl31(A,K,C,D,E,F,G,H,1,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==> lbl43(A,B,C,D,E,F,G,H,I,J) = A + -1*I >= A + -1*I = lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==> lbl43(A,B,C,D,E,F,G,H,I,J) = A + -1*I >= A + -1*I = lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] ==> lbl31(A,B,C,D,E,F,G,H,I,J) = A + -1*I >= A + -1*I = lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [I >= 1 && A >= 1 + I && F = A] ==> lbl31(A,B,C,D,E,F,G,H,I,J) = A + -1*I >= A + -1*I = lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) True ==> start0(A,B,C,D,E,F,G,H,I,J) = -1 + A >= -1 + A = start(A,C,C,E,E,A,H,H,J,J) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,1,J) [A >= 2 && B = C && D = E && F = A && G = H && I = J] (?,1) 2. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 3. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 4. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 5. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] (?,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,I,J) [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (1 + A,1) 8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J) True (1,1) Signature: {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)} Flow Graph: [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>, H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>, A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, 1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, 1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>, H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,1,J) [A >= 2 && B = C && D = E && F = A && G = H && I = J] (1,1) 2. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 3. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 4. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [I >= 1 && A >= 1 + I && F = A] (2 + A,1) 5. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] (2 + A,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,I,J) [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (1 + A,1) 8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J) True (1,1) Signature: {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)} Flow Graph: [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>, H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>, A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, 1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, 1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>, H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl13) = x1 + -1*x9 p(lbl31) = x1 + -1*x9 p(lbl43) = x1 + -1*x9 p(start) = -1 + x1 p(start0) = -1 + x1 The following rules are strictly oriented: [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==> lbl43(A,B,C,D,E,F,G,H,I,J) = A + -1*I > -1 + A + -1*I = lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] ==> lbl31(A,B,C,D,E,F,G,H,I,J) = A + -1*I > -1 + A + -1*I = lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) The following rules are weakly oriented: [A >= 2 && B = C && D = E && F = A && G = H && I = J] ==> start(A,B,C,D,E,F,G,H,I,J) = -1 + A >= -1 + A = lbl31(A,K,C,D,E,F,G,H,1,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==> lbl43(A,B,C,D,E,F,G,H,I,J) = A + -1*I >= A + -1*I = lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [I >= 1 && A >= 1 + I && F = A] ==> lbl31(A,B,C,D,E,F,G,H,I,J) = A + -1*I >= A + -1*I = lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] ==> lbl13(A,B,C,D,E,F,G,H,I,J) = A + -1*I >= A + -1*I = lbl31(A,K,C,D,E,F,G,H,I,J) True ==> start0(A,B,C,D,E,F,G,H,I,J) = -1 + A >= -1 + A = start(A,C,C,E,E,A,H,H,J,J) * Step 7: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,1,J) [A >= 2 && B = C && D = E && F = A && G = H && I = J] (1,1) 2. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (?,1) 3. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (1 + A,1) 4. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [I >= 1 && A >= 1 + I && F = A] (2 + A,1) 5. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] (1 + A,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,I,J) [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (1 + A,1) 8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J) True (1,1) Signature: {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)} Flow Graph: [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>, H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>, A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, 1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, 1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>, H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [4,3,2,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl13) = 1 + x7 p(lbl31) = x9 p(lbl43) = 1 + x7 The following rules are strictly oriented: [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==> lbl43(A,B,C,D,E,F,G,H,I,J) = 1 + G > G = lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [I >= 1 && A >= 1 + I && F = A] ==> lbl31(A,B,C,D,E,F,G,H,I,J) = I > -1 + I = lbl43(A,B,C,D,E,F,-2 + I,H,I,J) The following rules are weakly oriented: [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==> lbl43(A,B,C,D,E,F,G,H,I,J) = 1 + G >= 1 + G = lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] ==> lbl31(A,B,C,D,E,F,G,H,I,J) = I >= I = lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) We use the following global sizebounds: (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>, H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>, A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, 1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, 1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>, H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,1,J) [A >= 2 && B = C && D = E && F = A && G = H && I = J] (1,1) 2. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J) [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (1 + A + A^2,1) 3. lbl43(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,G,H,1 + I,J) [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] (1 + A,1) 4. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J) [I >= 1 && A >= 1 + I && F = A] (2 + A,1) 5. lbl31(A,B,C,D,E,F,G,H,I,J) -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A] (1 + A,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J) -> lbl31(A,K,C,D,E,F,G,H,I,J) [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (1 + A,1) 8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J) True (1,1) Signature: {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)} Flow Graph: [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>, E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>, H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>, A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>, 1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>, 1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>, H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))