WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H,I,J)  -> stop(A,B,C,D,E,F,G,H,1,J)           [1 >= A && B = C && D = E && F = A && G = H && I = J]                                      (?,1)
          1. start(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,1,J)          [A >= 2 && B = C && D = E && F = A && G = H && I = J]                                      (?,1)
          2. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J)     [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                (?,1)
          3. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,G,H,1 + I,J)      [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                          (?,1)
          4. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J)     [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)
          5. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)
          6. lbl13(A,B,C,D,E,F,G,H,I,J)  -> stop(A,B,C,D,E,F,G,H,I,J)           [A + G >= 2 && 1 + G >= 0 && A >= 2 + G && F = A && I = A && 1 + D = A]                    (?,1)
          7. lbl13(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,I,J)          [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (?,1)
          8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J)          True                                                                                       (1,1)
        Signature:
          {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)}
        Flow Graph:
          [0->{},1->{4,5},2->{2,3},3->{6,7},4->{2,3},5->{6,7},6->{},7->{4,5},8->{0,1}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>, E, .= 0) (<0,0,F>, F, .= 0) (<0,0,G>,     G, .= 0) (<0,0,H>, H, .= 0) (<0,0,I>,     1, .= 1) (<0,0,J>, J, .= 0) 
          (<1,0,A>, A, .= 0) (<1,0,B>, ?,   .?) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<1,0,E>, E, .= 0) (<1,0,F>, F, .= 0) (<1,0,G>,     G, .= 0) (<1,0,H>, H, .= 0) (<1,0,I>,     1, .= 1) (<1,0,J>, J, .= 0) 
          (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>, E, .= 0) (<2,0,F>, F, .= 0) (<2,0,G>, 2 + G, .+ 2) (<2,0,H>, H, .= 0) (<2,0,I>,     I, .= 0) (<2,0,J>, J, .= 0) 
          (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, I, .= 0) (<3,0,E>, E, .= 0) (<3,0,F>, F, .= 0) (<3,0,G>,     G, .= 0) (<3,0,H>, H, .= 0) (<3,0,I>, 1 + I, .+ 1) (<3,0,J>, J, .= 0) 
          (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>, E, .= 0) (<4,0,F>, F, .= 0) (<4,0,G>, 2 + I, .+ 2) (<4,0,H>, H, .= 0) (<4,0,I>,     I, .= 0) (<4,0,J>, J, .= 0) 
          (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, I, .= 0) (<5,0,E>, E, .= 0) (<5,0,F>, F, .= 0) (<5,0,G>, 1 + I, .+ 1) (<5,0,H>, H, .= 0) (<5,0,I>, 2 + I, .+ 2) (<5,0,J>, J, .= 0) 
          (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>, E, .= 0) (<6,0,F>, F, .= 0) (<6,0,G>,     G, .= 0) (<6,0,H>, H, .= 0) (<6,0,I>,     I, .= 0) (<6,0,J>, J, .= 0) 
          (<7,0,A>, A, .= 0) (<7,0,B>, ?,   .?) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<7,0,E>, E, .= 0) (<7,0,F>, F, .= 0) (<7,0,G>,     G, .= 0) (<7,0,H>, H, .= 0) (<7,0,I>,     I, .= 0) (<7,0,J>, J, .= 0) 
          (<8,0,A>, A, .= 0) (<8,0,B>, C, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, E, .= 0) (<8,0,E>, E, .= 0) (<8,0,F>, A, .= 0) (<8,0,G>,     H, .= 0) (<8,0,H>, H, .= 0) (<8,0,I>,     J, .= 0) (<8,0,J>, J, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H,I,J)  -> stop(A,B,C,D,E,F,G,H,1,J)           [1 >= A && B = C && D = E && F = A && G = H && I = J]                                      (?,1)
          1. start(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,1,J)          [A >= 2 && B = C && D = E && F = A && G = H && I = J]                                      (?,1)
          2. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J)     [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                (?,1)
          3. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,G,H,1 + I,J)      [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                          (?,1)
          4. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J)     [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)
          5. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)
          6. lbl13(A,B,C,D,E,F,G,H,I,J)  -> stop(A,B,C,D,E,F,G,H,I,J)           [A + G >= 2 && 1 + G >= 0 && A >= 2 + G && F = A && I = A && 1 + D = A]                    (?,1)
          7. lbl13(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,I,J)          [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (?,1)
          8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J)          True                                                                                       (1,1)
        Signature:
          {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)}
        Flow Graph:
          [0->{},1->{4,5},2->{2,3},3->{6,7},4->{2,3},5->{6,7},6->{},7->{4,5},8->{0,1}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<0,0,G>, ?) (<0,0,H>, ?) (<0,0,I>, ?) (<0,0,J>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) (<1,0,I>, ?) (<1,0,J>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) (<2,0,I>, ?) (<2,0,J>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) (<3,0,I>, ?) (<3,0,J>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) (<4,0,I>, ?) (<4,0,J>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) (<5,0,I>, ?) (<5,0,J>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) (<6,0,G>, ?) (<6,0,H>, ?) (<6,0,I>, ?) (<6,0,J>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) (<7,0,G>, ?) (<7,0,H>, ?) (<7,0,I>, ?) (<7,0,J>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) (<8,0,G>, ?) (<8,0,H>, ?) (<8,0,I>, ?) (<8,0,J>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>,         E) (<0,0,E>, E) (<0,0,F>, A) (<0,0,G>,     H) (<0,0,H>, H) (<0,0,I>, 1) (<0,0,J>, J) 
          (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>,         E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>,     H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) 
          (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>,     A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) 
          (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>,         A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) 
          (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) 
          (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>,     1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) 
          (<6,0,A>, A) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>,     1 + A) (<6,0,E>, E) (<6,0,F>, A) (<6,0,G>, 3 + A) (<6,0,H>, H) (<6,0,I>, A) (<6,0,J>, J) 
          (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>,     1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) 
          (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>,         E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>,     H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) 
* Step 3: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H,I,J)  -> stop(A,B,C,D,E,F,G,H,1,J)           [1 >= A && B = C && D = E && F = A && G = H && I = J]                                      (?,1)
          1. start(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,1,J)          [A >= 2 && B = C && D = E && F = A && G = H && I = J]                                      (?,1)
          2. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J)     [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                (?,1)
          3. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,G,H,1 + I,J)      [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                          (?,1)
          4. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J)     [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)
          5. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)
          6. lbl13(A,B,C,D,E,F,G,H,I,J)  -> stop(A,B,C,D,E,F,G,H,I,J)           [A + G >= 2 && 1 + G >= 0 && A >= 2 + G && F = A && I = A && 1 + D = A]                    (?,1)
          7. lbl13(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,I,J)          [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (?,1)
          8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J)          True                                                                                       (1,1)
        Signature:
          {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)}
        Flow Graph:
          [0->{},1->{4,5},2->{2,3},3->{6,7},4->{2,3},5->{6,7},6->{},7->{4,5},8->{0,1}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>,         E) (<0,0,E>, E) (<0,0,F>, A) (<0,0,G>,     H) (<0,0,H>, H) (<0,0,I>, 1) (<0,0,J>, J) 
          (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>,         E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>,     H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) 
          (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>,     A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) 
          (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>,         A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) 
          (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) 
          (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>,     1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) 
          (<6,0,A>, A) (<6,0,B>, ?) (<6,0,C>, C) (<6,0,D>,     1 + A) (<6,0,E>, E) (<6,0,F>, A) (<6,0,G>, 3 + A) (<6,0,H>, H) (<6,0,I>, A) (<6,0,J>, J) 
          (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>,     1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) 
          (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>,         E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>,     H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [0,6]
* Step 4: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,1,J)          [A >= 2 && B = C && D = E && F = A && G = H && I = J]                                      (?,1)
          2. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J)     [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                (?,1)
          3. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,G,H,1 + I,J)      [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                          (?,1)
          4. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J)     [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)
          5. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)
          7. lbl13(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,I,J)          [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (?,1)
          8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J)          True                                                                                       (1,1)
        Signature:
          {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)}
        Flow Graph:
          [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>,         E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>,     H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) 
          (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>,     A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) 
          (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>,         A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) 
          (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) 
          (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>,     1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) 
          (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>,     1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) 
          (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>,         E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>,     H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(lbl13) = x1 + -1*x4
           p(lbl31) = x1 + -1*x9
           p(lbl43) = x1 + -1*x9
           p(start) = -1 + x1   
          p(start0) = -1 + x1   
        
        The following rules are strictly oriented:
        [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] ==>                           
                                                                        lbl13(A,B,C,D,E,F,G,H,I,J)   = A + -1*D                  
                                                                                                     > A + -1*I                  
                                                                                                     = lbl31(A,K,C,D,E,F,G,H,I,J)
        
        
        The following rules are weakly oriented:
              [A >= 2 && B = C && D = E && F = A && G = H && I = J] ==>                                    
                                         start(A,B,C,D,E,F,G,H,I,J)   = -1 + A                             
                                                                     >= -1 + A                             
                                                                      = lbl31(A,K,C,D,E,F,G,H,1,J)         
        
        [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==>                                    
                                         lbl43(A,B,C,D,E,F,G,H,I,J)   = A + -1*I                           
                                                                     >= A + -1*I                           
                                                                      = lbl43(A,B,C,D,E,F,-1 + G,H,I,J)    
        
                  [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==>                                    
                                         lbl43(A,B,C,D,E,F,G,H,I,J)   = A + -1*I                           
                                                                     >= A + -1*I                           
                                                                      = lbl13(A,B,C,I,E,F,G,H,1 + I,J)     
        
                                    [I >= 1 && A >= 1 + I && F = A] ==>                                    
                                         lbl31(A,B,C,D,E,F,G,H,I,J)   = A + -1*I                           
                                                                     >= A + -1*I                           
                                                                      = lbl43(A,B,C,D,E,F,-2 + I,H,I,J)    
        
                                    [I >= 1 && A >= 1 + I && F = A] ==>                                    
                                         lbl31(A,B,C,D,E,F,G,H,I,J)   = A + -1*I                           
                                                                     >= A + -1*I                           
                                                                      = lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J)
        
                                                               True ==>                                    
                                        start0(A,B,C,D,E,F,G,H,I,J)   = -1 + A                             
                                                                     >= -1 + A                             
                                                                      = start(A,C,C,E,E,A,H,H,J,J)         
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,1,J)          [A >= 2 && B = C && D = E && F = A && G = H && I = J]                                      (?,1)    
          2. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J)     [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                (?,1)    
          3. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,G,H,1 + I,J)      [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                          (?,1)    
          4. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J)     [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)    
          5. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A]                                                            (?,1)    
          7. lbl13(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,I,J)          [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (1 + A,1)
          8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J)          True                                                                                       (1,1)    
        Signature:
          {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)}
        Flow Graph:
          [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>,         E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>,     H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) 
          (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>,     A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) 
          (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>,         A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) 
          (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) 
          (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>,     1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) 
          (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>,     1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) 
          (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>,         E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>,     H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,1,J)          [A >= 2 && B = C && D = E && F = A && G = H && I = J]                                      (1,1)    
          2. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J)     [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                (?,1)    
          3. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,G,H,1 + I,J)      [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                          (?,1)    
          4. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J)     [I >= 1 && A >= 1 + I && F = A]                                                            (2 + A,1)
          5. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A]                                                            (2 + A,1)
          7. lbl13(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,I,J)          [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (1 + A,1)
          8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J)          True                                                                                       (1,1)    
        Signature:
          {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)}
        Flow Graph:
          [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>,         E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>,     H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) 
          (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>,     A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) 
          (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>,         A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) 
          (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) 
          (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>,     1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) 
          (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>,     1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) 
          (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>,         E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>,     H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(lbl13) = x1 + -1*x9
           p(lbl31) = x1 + -1*x9
           p(lbl43) = x1 + -1*x9
           p(start) = -1 + x1   
          p(start0) = -1 + x1   
        
        The following rules are strictly oriented:
        [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==>                                    
                               lbl43(A,B,C,D,E,F,G,H,I,J)   = A + -1*I                           
                                                            > -1 + A + -1*I                      
                                                            = lbl13(A,B,C,I,E,F,G,H,1 + I,J)     
        
                          [I >= 1 && A >= 1 + I && F = A] ==>                                    
                               lbl31(A,B,C,D,E,F,G,H,I,J)   = A + -1*I                           
                                                            > -1 + A + -1*I                      
                                                            = lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J)
        
        
        The following rules are weakly oriented:
                                             [A >= 2 && B = C && D = E && F = A && G = H && I = J] ==>                                
                                                                        start(A,B,C,D,E,F,G,H,I,J)   = -1 + A                         
                                                                                                    >= -1 + A                         
                                                                                                     = lbl31(A,K,C,D,E,F,G,H,1,J)     
        
                                       [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==>                                
                                                                        lbl43(A,B,C,D,E,F,G,H,I,J)   = A + -1*I                       
                                                                                                    >= A + -1*I                       
                                                                                                     = lbl43(A,B,C,D,E,F,-1 + G,H,I,J)
        
                                                                   [I >= 1 && A >= 1 + I && F = A] ==>                                
                                                                        lbl31(A,B,C,D,E,F,G,H,I,J)   = A + -1*I                       
                                                                                                    >= A + -1*I                       
                                                                                                     = lbl43(A,B,C,D,E,F,-2 + I,H,I,J)
        
        [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] ==>                                
                                                                        lbl13(A,B,C,D,E,F,G,H,I,J)   = A + -1*I                       
                                                                                                    >= A + -1*I                       
                                                                                                     = lbl31(A,K,C,D,E,F,G,H,I,J)     
        
                                                                                              True ==>                                
                                                                       start0(A,B,C,D,E,F,G,H,I,J)   = -1 + A                         
                                                                                                    >= -1 + A                         
                                                                                                     = start(A,C,C,E,E,A,H,H,J,J)     
        
        
* Step 7: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,1,J)          [A >= 2 && B = C && D = E && F = A && G = H && I = J]                                      (1,1)    
          2. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J)     [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                (?,1)    
          3. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,G,H,1 + I,J)      [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                          (1 + A,1)
          4. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J)     [I >= 1 && A >= 1 + I && F = A]                                                            (2 + A,1)
          5. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A]                                                            (1 + A,1)
          7. lbl13(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,I,J)          [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (1 + A,1)
          8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J)          True                                                                                       (1,1)    
        Signature:
          {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)}
        Flow Graph:
          [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>,         E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>,     H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) 
          (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>,     A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) 
          (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>,         A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) 
          (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) 
          (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>,     1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) 
          (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>,     1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) 
          (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>,         E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>,     H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [4,3,2,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl13) = 1 + x7
          p(lbl31) = x9    
          p(lbl43) = 1 + x7
        
        The following rules are strictly oriented:
        [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==>                                
                                         lbl43(A,B,C,D,E,F,G,H,I,J)   = 1 + G                          
                                                                      > G                              
                                                                      = lbl43(A,B,C,D,E,F,-1 + G,H,I,J)
        
                                    [I >= 1 && A >= 1 + I && F = A] ==>                                
                                         lbl31(A,B,C,D,E,F,G,H,I,J)   = I                              
                                                                      > -1 + I                         
                                                                      = lbl43(A,B,C,D,E,F,-2 + I,H,I,J)
        
        
        The following rules are weakly oriented:
        [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A] ==>                                    
                               lbl43(A,B,C,D,E,F,G,H,I,J)   = 1 + G                              
                                                           >= 1 + G                              
                                                            = lbl13(A,B,C,I,E,F,G,H,1 + I,J)     
        
                          [I >= 1 && A >= 1 + I && F = A] ==>                                    
                               lbl31(A,B,C,D,E,F,G,H,I,J)   = I                                  
                                                           >= I                                  
                                                            = lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J)
        
        We use the following global sizebounds:
        (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>,         E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>,     H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) 
        (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>,     A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) 
        (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>,         A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) 
        (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) 
        (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>,     1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) 
        (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>,     1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) 
        (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>,         E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>,     H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) 
* Step 8: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,1,J)          [A >= 2 && B = C && D = E && F = A && G = H && I = J]                                      (1,1)          
          2. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-1 + G,H,I,J)     [G >= 0 && I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                (1 + A + A^2,1)
          3. lbl43(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,G,H,1 + I,J)      [I >= 2 + G && 1 + G >= 0 && A >= 1 + I && F = A]                                          (1 + A,1)      
          4. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl43(A,B,C,D,E,F,-2 + I,H,I,J)     [I >= 1 && A >= 1 + I && F = A]                                                            (2 + A,1)      
          5. lbl31(A,B,C,D,E,F,G,H,I,J)  -> lbl13(A,B,C,I,E,F,-1 + I,H,1 + I,J) [I >= 1 && A >= 1 + I && F = A]                                                            (1 + A,1)      
          7. lbl13(A,B,C,D,E,F,G,H,I,J)  -> lbl31(A,K,C,D,E,F,G,H,I,J)          [A >= 2 + D && D + G >= 1 && 1 + G >= 0 && A >= 1 + D && D >= 1 + G && F = A && I = 1 + D] (1 + A,1)      
          8. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,C,C,E,E,A,H,H,J,J)          True                                                                                       (1,1)          
        Signature:
          {(lbl13,10);(lbl31,10);(lbl43,10);(start,10);(start0,10);(stop,10)}
        Flow Graph:
          [1->{4,5},2->{2,3},3->{7},4->{2,3},5->{7},7->{4,5},8->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>, ?) (<1,0,C>, C) (<1,0,D>,         E) (<1,0,E>, E) (<1,0,F>, A) (<1,0,G>,     H) (<1,0,H>, H) (<1,0,I>, 1) (<1,0,J>, J) 
          (<2,0,A>, A) (<2,0,B>, ?) (<2,0,C>, C) (<2,0,D>, 1 + A + E) (<2,0,E>, E) (<2,0,F>, A) (<2,0,G>,     A) (<2,0,H>, H) (<2,0,I>, A) (<2,0,J>, J) 
          (<3,0,A>, A) (<3,0,B>, ?) (<3,0,C>, C) (<3,0,D>,         A) (<3,0,E>, E) (<3,0,F>, A) (<3,0,G>, 3 + A) (<3,0,H>, H) (<3,0,I>, A) (<3,0,J>, J) 
          (<4,0,A>, A) (<4,0,B>, ?) (<4,0,C>, C) (<4,0,D>, 1 + A + E) (<4,0,E>, E) (<4,0,F>, A) (<4,0,G>, 3 + A) (<4,0,H>, H) (<4,0,I>, A) (<4,0,J>, J) 
          (<5,0,A>, A) (<5,0,B>, ?) (<5,0,C>, C) (<5,0,D>,     1 + A) (<5,0,E>, E) (<5,0,F>, A) (<5,0,G>, 2 + A) (<5,0,H>, H) (<5,0,I>, A) (<5,0,J>, J) 
          (<7,0,A>, A) (<7,0,B>, ?) (<7,0,C>, C) (<7,0,D>,     1 + A) (<7,0,E>, E) (<7,0,F>, A) (<7,0,G>, 3 + A) (<7,0,H>, H) (<7,0,I>, A) (<7,0,J>, J) 
          (<8,0,A>, A) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>,         E) (<8,0,E>, E) (<8,0,F>, A) (<8,0,G>,     H) (<8,0,H>, H) (<8,0,I>, J) (<8,0,J>, J) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))