WORST_CASE(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 5 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [2 >= A && B = C && D = E && F = G && H = A] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [A >= 3 && 4 >= A && B = C && D = E && F = G && H = A] (?,1) 3. lbl92(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [D >= 4 && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 6. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [2 >= H && 9 >= B && B >= 0 && H >= A && H >= 3 && 4 >= H && F = 1 + B] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{3,4,5},2->{6,7,8},3->{},4->{3,4,5},5->{6,7,8},6->{3,4,5},7->{3,4,5},8->{6,7,8},9->{0,1,2}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [6] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 5 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [2 >= A && B = C && D = E && F = G && H = A] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [A >= 3 && 4 >= A && B = C && D = E && F = G && H = A] (?,1) 3. lbl92(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [D >= 4 && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{3,4,5},2->{7,8},3->{},4->{3,4,5},5->{7,8},7->{3,4,5},8->{7,8},9->{0,1,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>, E, .= 0) (<0,0,F>, F, .= 0) (<0,0,G>, G, .= 0) (<0,0,H>, H, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, H, .= 0) (<1,0,E>, E, .= 0) (<1,0,F>, 0, .= 0) (<1,0,G>, G, .= 0) (<1,0,H>, 1 + H, .+ 1) (<2,0,A>, A, .= 0) (<2,0,B>, 0, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>, E, .= 0) (<2,0,F>, 1, .= 1) (<2,0,G>, G, .= 0) (<2,0,H>, H, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>, E, .= 0) (<3,0,F>, F, .= 0) (<3,0,G>, G, .= 0) (<3,0,H>, H, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, H, .= 0) (<4,0,E>, E, .= 0) (<4,0,F>, 0, .= 0) (<4,0,G>, G, .= 0) (<4,0,H>, 1 + H, .+ 1) (<5,0,A>, A, .= 0) (<5,0,B>, 0, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>, E, .= 0) (<5,0,F>, 1, .= 1) (<5,0,G>, G, .= 0) (<5,0,H>, H, .= 0) (<7,0,A>, A, .= 0) (<7,0,B>, B, .= 0) (<7,0,C>, C, .= 0) (<7,0,D>, H, .= 0) (<7,0,E>, E, .= 0) (<7,0,F>, F, .= 0) (<7,0,G>, G, .= 0) (<7,0,H>, 5, .= 5) (<8,0,A>, A, .= 0) (<8,0,B>, F, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) (<8,0,E>, E, .= 0) (<8,0,F>, 11, .= 11) (<8,0,G>, G, .= 0) (<8,0,H>, H, .= 0) (<9,0,A>, A, .= 0) (<9,0,B>, C, .= 0) (<9,0,C>, C, .= 0) (<9,0,D>, E, .= 0) (<9,0,E>, E, .= 0) (<9,0,F>, G, .= 0) (<9,0,G>, G, .= 0) (<9,0,H>, A, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 5 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [2 >= A && B = C && D = E && F = G && H = A] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [A >= 3 && 4 >= A && B = C && D = E && F = G && H = A] (?,1) 3. lbl92(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [D >= 4 && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{3,4,5},2->{7,8},3->{},4->{3,4,5},5->{7,8},7->{3,4,5},8->{7,8},9->{0,1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<0,0,G>, ?) (<0,0,H>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) (<7,0,G>, ?) (<7,0,H>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) (<8,0,G>, ?) (<8,0,H>, ?) (<9,0,A>, ?) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) (<9,0,F>, ?) (<9,0,G>, ?) (<9,0,H>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>, E) (<0,0,E>, E) (<0,0,F>, G) (<0,0,G>, G) (<0,0,H>, A) (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, E) (<1,0,F>, 0) (<1,0,G>, G) (<1,0,H>, 1 + A) (<2,0,A>, A) (<2,0,B>, 0) (<2,0,C>, C) (<2,0,D>, E) (<2,0,E>, E) (<2,0,F>, 1) (<2,0,G>, G) (<2,0,H>, A) (<3,0,A>, A) (<3,0,B>, 11 + C) (<3,0,C>, C) (<3,0,D>, ?) (<3,0,E>, E) (<3,0,F>, 11) (<3,0,G>, G) (<3,0,H>, ?) (<4,0,A>, A) (<4,0,B>, 11 + C) (<4,0,C>, C) (<4,0,D>, ?) (<4,0,E>, E) (<4,0,F>, 0) (<4,0,G>, G) (<4,0,H>, ?) (<5,0,A>, A) (<5,0,B>, 0) (<5,0,C>, C) (<5,0,D>, ?) (<5,0,E>, E) (<5,0,F>, 1) (<5,0,G>, G) (<5,0,H>, ?) (<7,0,A>, A) (<7,0,B>, 11) (<7,0,C>, C) (<7,0,D>, ?) (<7,0,E>, E) (<7,0,F>, 11) (<7,0,G>, G) (<7,0,H>, 5) (<8,0,A>, A) (<8,0,B>, 11) (<8,0,C>, C) (<8,0,D>, ?) (<8,0,E>, E) (<8,0,F>, 11) (<8,0,G>, G) (<8,0,H>, 4) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, E) (<9,0,E>, E) (<9,0,F>, G) (<9,0,G>, G) (<9,0,H>, A) * Step 4: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 5 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [2 >= A && B = C && D = E && F = G && H = A] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [A >= 3 && 4 >= A && B = C && D = E && F = G && H = A] (?,1) 3. lbl92(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [D >= 4 && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{3,4,5},2->{7,8},3->{},4->{3,4,5},5->{7,8},7->{3,4,5},8->{7,8},9->{0,1,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>, E) (<0,0,E>, E) (<0,0,F>, G) (<0,0,G>, G) (<0,0,H>, A) (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, E) (<1,0,F>, 0) (<1,0,G>, G) (<1,0,H>, 1 + A) (<2,0,A>, A) (<2,0,B>, 0) (<2,0,C>, C) (<2,0,D>, E) (<2,0,E>, E) (<2,0,F>, 1) (<2,0,G>, G) (<2,0,H>, A) (<3,0,A>, A) (<3,0,B>, 11 + C) (<3,0,C>, C) (<3,0,D>, ?) (<3,0,E>, E) (<3,0,F>, 11) (<3,0,G>, G) (<3,0,H>, ?) (<4,0,A>, A) (<4,0,B>, 11 + C) (<4,0,C>, C) (<4,0,D>, ?) (<4,0,E>, E) (<4,0,F>, 0) (<4,0,G>, G) (<4,0,H>, ?) (<5,0,A>, A) (<5,0,B>, 0) (<5,0,C>, C) (<5,0,D>, ?) (<5,0,E>, E) (<5,0,F>, 1) (<5,0,G>, G) (<5,0,H>, ?) (<7,0,A>, A) (<7,0,B>, 11) (<7,0,C>, C) (<7,0,D>, ?) (<7,0,E>, E) (<7,0,F>, 11) (<7,0,G>, G) (<7,0,H>, 5) (<8,0,A>, A) (<8,0,B>, 11) (<8,0,C>, C) (<8,0,D>, ?) (<8,0,E>, E) (<8,0,F>, 11) (<8,0,G>, G) (<8,0,H>, 4) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, E) (<9,0,E>, E) (<9,0,F>, G) (<9,0,G>, G) (<9,0,H>, A) + Applied Processor: ChainProcessor False [0,1,2,3,4,5,7,8,9] + Details: We chained rule 9 to obtain the rules [10,11,12] . * Step 5: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 5 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [2 >= A && B = C && D = E && F = G && H = A] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [A >= 3 && 4 >= A && B = C && D = E && F = G && H = A] (?,1) 3. lbl92(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [D >= 4 && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{3,4,5},2->{7,8},3->{},4->{3,4,5},5->{7,8},7->{3,4,5},8->{7,8},10->{},11->{3,4,5},12->{7,8}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, E) (< 0,0,E>, E) (< 0,0,F>, G) (< 0,0,G>, G) (< 0,0,H>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, E) (< 1,0,F>, 0) (< 1,0,G>, G) (< 1,0,H>, 1 + A) (< 2,0,A>, A) (< 2,0,B>, 0) (< 2,0,C>, C) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, 1) (< 2,0,G>, G) (< 2,0,H>, A) (< 3,0,A>, A) (< 3,0,B>, 11 + C) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, 11) (< 3,0,G>, G) (< 3,0,H>, ?) (< 4,0,A>, A) (< 4,0,B>, 11 + C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [0,1,2] * Step 6: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. lbl92(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [D >= 4 && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [3->{},4->{3,4,5},5->{7,8},7->{3,4,5},8->{7,8},10->{},11->{3,4,5},12->{7,8}] Sizebounds: (< 3,0,A>, A) (< 3,0,B>, 11 + C) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, 11) (< 3,0,G>, G) (< 3,0,H>, ?) (< 4,0,A>, A) (< 4,0,B>, 11 + C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(4,3),(5,7),(7,4),(11,3),(12,7)] * Step 7: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. lbl92(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [D >= 4 && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [3->{},4->{4,5},5->{8},7->{3,5},8->{7,8},10->{},11->{4,5},12->{8}] Sizebounds: (< 3,0,A>, A) (< 3,0,B>, 11 + C) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, 11) (< 3,0,G>, G) (< 3,0,H>, ?) (< 4,0,A>, A) (< 4,0,B>, 11 + C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3] * Step 8: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [4->{4,5},5->{8},7->{5},8->{7,8},10->{},11->{4,5},12->{8}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, 11 + C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, H, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, 0, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, 1 + H, .+ 1) (< 5,0,A>, A, .= 0) (< 5,0,B>, 0, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, 1, .= 1) (< 5,0,G>, G, .= 0) (< 5,0,H>, H, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, H, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, 5, .= 5) (< 8,0,A>, A, .= 0) (< 8,0,B>, F, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, 11, .= 11) (< 8,0,G>, G, .= 0) (< 8,0,H>, H, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, C, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, E, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, G, .= 0) (<10,0,G>, G, .= 0) (<10,0,H>, A, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, C, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, A, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>, 0, .= 0) (<11,0,G>, G, .= 0) (<11,0,H>, 1 + A, .+ 1) (<12,0,A>, A, .= 0) (<12,0,B>, 0, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, E, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>, 1, .= 1) (<12,0,G>, G, .= 0) (<12,0,H>, A, .= 0) * Step 9: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [4->{4,5},5->{8},7->{5},8->{7,8},10->{},11->{4,5},12->{8}] Sizebounds: (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, 4) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) * Step 10: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [4->{4,5},5->{8},7->{5},8->{7,8},10->{},11->{4,5},12->{8}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, 4) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 4 : [4 >= A && 2 >= A] 5 : [4 >= A] 7 : [4 >= A && H >= 3] 8 : [4 >= A] 10 : True 11 : True 12 : True . * Step 11: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (?,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [4->{4,5},5->{8},7->{5},8->{7,8},10->{},11->{4,5},12->{8}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, 4) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl82) = 45 + -1*x2 + -9*x8 p(lbl92) = 45 + -9*x8 p(start0) = 45 + -9*x1 p(stop) = 45 + -9*x8 The following rules are strictly oriented: [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] ==> lbl82(A,B,C,D,E,F,G,H) = 45 + -1*B + -9*H > 45 + -1*F + -9*H = lbl82(A,F,C,D,E,1 + F,G,H) The following rules are weakly oriented: [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] ==> lbl92(A,B,C,D,E,F,G,H) = 45 + -9*H >= 36 + -9*H = lbl92(A,B,C,H,E,0,G,1 + H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] ==> lbl92(A,B,C,D,E,F,G,H) = 45 + -9*H >= 45 + -9*H = lbl82(A,0,C,D,E,1,G,H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] ==> lbl82(A,B,C,D,E,F,G,H) = 45 + -1*B + -9*H >= 36 + -9*H = lbl92(A,B,C,H,E,F,G,1 + H) [A >= 5 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 45 + -9*A >= 45 + -9*A = stop(A,C,C,E,E,G,G,A) [2 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 45 + -9*A >= 36 + -9*A = lbl92(A,C,C,A,E,0,G,1 + A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 45 + -9*A >= 45 + -9*A = lbl82(A,0,C,E,E,1,G,A) * Step 12: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (?,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (45 + 9*A,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [4->{4,5},5->{8},7->{5},8->{7,8},10->{},11->{4,5},12->{8}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, 4) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl82) = 5 + -1*x8 p(lbl92) = 4 + -1*x4 p(start0) = 5 + -1*x1 p(stop) = 5 + -1*x8 The following rules are strictly oriented: [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] ==> lbl82(A,B,C,D,E,F,G,H) = 5 + -1*H > 4 + -1*H = lbl92(A,B,C,H,E,F,G,1 + H) The following rules are weakly oriented: [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] ==> lbl92(A,B,C,D,E,F,G,H) = 4 + -1*D >= 4 + -1*H = lbl92(A,B,C,H,E,0,G,1 + H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] ==> lbl92(A,B,C,D,E,F,G,H) = 4 + -1*D >= 5 + -1*H = lbl82(A,0,C,D,E,1,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] ==> lbl82(A,B,C,D,E,F,G,H) = 5 + -1*H >= 5 + -1*H = lbl82(A,F,C,D,E,1 + F,G,H) [A >= 5 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 5 + -1*A >= 5 + -1*A = stop(A,C,C,E,E,G,G,A) [2 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 5 + -1*A >= 4 + -1*A = lbl92(A,C,C,A,E,0,G,1 + A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 5 + -1*A >= 5 + -1*A = lbl82(A,0,C,E,E,1,G,A) * Step 13: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (5 + A,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (45 + 9*A,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [4->{4,5},5->{8},7->{5},8->{7,8},10->{},11->{4,5},12->{8}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, 4) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl82) = 4 + -1*x8 p(lbl92) = 4 + -1*x4 p(start0) = 4 + -1*x1 p(stop) = 4 + -1*x8 The following rules are strictly oriented: [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] ==> lbl92(A,B,C,D,E,F,G,H) = 4 + -1*D > 4 + -1*H = lbl82(A,0,C,D,E,1,G,H) The following rules are weakly oriented: [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] ==> lbl92(A,B,C,D,E,F,G,H) = 4 + -1*D >= 4 + -1*H = lbl92(A,B,C,H,E,0,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] ==> lbl82(A,B,C,D,E,F,G,H) = 4 + -1*H >= 4 + -1*H = lbl92(A,B,C,H,E,F,G,1 + H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] ==> lbl82(A,B,C,D,E,F,G,H) = 4 + -1*H >= 4 + -1*H = lbl82(A,F,C,D,E,1 + F,G,H) [A >= 5 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 4 + -1*A >= 4 + -1*A = stop(A,C,C,E,E,G,G,A) [2 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 4 + -1*A >= 4 + -1*A = lbl92(A,C,C,A,E,0,G,1 + A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 4 + -1*A >= 4 + -1*A = lbl82(A,0,C,E,E,1,G,A) * Step 14: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (?,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (4 + A,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (5 + A,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (45 + 9*A,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [4->{4,5},5->{8},7->{5},8->{7,8},10->{},11->{4,5},12->{8}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, 4) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl82) = -1 p(lbl92) = 2 + -1*x4 p(start0) = 3 + -1*x1 p(stop) = 3 + -1*x8 The following rules are strictly oriented: [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] ==> lbl92(A,B,C,D,E,F,G,H) = 2 + -1*D > 2 + -1*H = lbl92(A,B,C,H,E,0,G,1 + H) The following rules are weakly oriented: [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] ==> lbl92(A,B,C,D,E,F,G,H) = 2 + -1*D >= -1 = lbl82(A,0,C,D,E,1,G,H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] ==> lbl82(A,B,C,D,E,F,G,H) = -1 >= 2 + -1*H = lbl92(A,B,C,H,E,F,G,1 + H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] ==> lbl82(A,B,C,D,E,F,G,H) = -1 >= -1 = lbl82(A,F,C,D,E,1 + F,G,H) [A >= 5 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 3 + -1*A >= 3 + -1*A = stop(A,C,C,E,E,G,G,A) [2 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 3 + -1*A >= 2 + -1*A = lbl92(A,C,C,A,E,0,G,1 + A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 3 + -1*A >= -1 = lbl82(A,0,C,E,E,1,G,A) * Step 15: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl92(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,0,G,1 + H) [1 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (3 + A,1) 5. lbl92(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,D,E,1,G,H) [D >= 2 && 3 >= D && D >= A && 10 + F >= 5*D && F >= 0 && H = 1 + D] (4 + A,1) 7. lbl82(A,B,C,D,E,F,G,H) -> lbl92(A,B,C,H,E,F,G,1 + H) [H >= A && H >= 3 && 4 >= H && F = 10 && B = 9] (5 + A,1) 8. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,F,C,D,E,1 + F,G,H) [H >= 3 && 8 >= B && 9 >= B && B >= 0 && H >= A && 4 >= H && F = 1 + B] (45 + 9*A,1) 10. start0(A,B,C,D,E,F,G,H) -> stop(A,C,C,E,E,G,G,A) [A >= 5 && C = C && E = E && G = G && A = A] (1,2) 11. start0(A,B,C,D,E,F,G,H) -> lbl92(A,C,C,A,E,0,G,1 + A) [2 >= A && C = C && E = E && G = G && A = A] (1,2) 12. start0(A,B,C,D,E,F,G,H) -> lbl82(A,0,C,E,E,1,G,A) [A >= 3 && 4 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl82,8);(lbl92,8);(start,8);(start0,8);(stop,8)} Flow Graph: [4->{4,5},5->{8},7->{5},8->{7,8},10->{},11->{4,5},12->{8}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, 0) (< 4,0,G>, G) (< 4,0,H>, ?) (< 5,0,A>, A) (< 5,0,B>, 0) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, 1) (< 5,0,G>, G) (< 5,0,H>, ?) (< 7,0,A>, A) (< 7,0,B>, 11) (< 7,0,C>, C) (< 7,0,D>, 4) (< 7,0,E>, E) (< 7,0,F>, 11) (< 7,0,G>, G) (< 7,0,H>, 5) (< 8,0,A>, A) (< 8,0,B>, 11) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, 11) (< 8,0,G>, G) (< 8,0,H>, 4) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, E) (<11,0,F>, 0) (<11,0,G>, G) (<11,0,H>, 1 + A) (<12,0,A>, A) (<12,0,B>, 0) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1) (<12,0,G>, G) (<12,0,H>, A) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))