WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [0 >= 1 + A && B = C && D = A && E = F && G = H] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 3. lbl82(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [E >= A && 2*A >= E && D = A && 1 + G = A] (?,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 6. lbl121(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 1 + E && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{3,4,5},2->{6,7,8},3->{},4->{3,4,5},5->{6,7,8},6->{},7->{3,4,5},8->{6,7,8},9->{0,1,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>, E, .= 0) (<0,0,F>, F, .= 0) (<0,0,G>, G, .= 0) (<0,0,H>, H, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<1,0,E>, A + D, .* 0) (<1,0,F>, F, .= 0) (<1,0,G>, 1 + A + D, .* 1) (<1,0,H>, H, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, A + D, .* 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>, 1 + A + D, .* 1) (<2,0,F>, F, .= 0) (<2,0,G>, 1 + A + D, .* 1) (<2,0,H>, H, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>, E, .= 0) (<3,0,F>, F, .= 0) (<3,0,G>, G, .= 0) (<3,0,H>, H, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>, E, .= 0) (<4,0,F>, F, .= 0) (<4,0,G>, 1 + G, .+ 1) (<4,0,H>, H, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, G, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>, 1 + E, .+ 1) (<5,0,F>, F, .= 0) (<5,0,G>, 1 + E, .+ 1) (<5,0,H>, H, .= 0) (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>, E, .= 0) (<6,0,F>, F, .= 0) (<6,0,G>, G, .= 0) (<6,0,H>, H, .= 0) (<7,0,A>, A, .= 0) (<7,0,B>, B, .= 0) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<7,0,E>, E, .= 0) (<7,0,F>, F, .= 0) (<7,0,G>, 1 + G, .+ 1) (<7,0,H>, H, .= 0) (<8,0,A>, A, .= 0) (<8,0,B>, G, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) (<8,0,E>, 1 + E, .+ 1) (<8,0,F>, F, .= 0) (<8,0,G>, 1 + E, .+ 1) (<8,0,H>, H, .= 0) (<9,0,A>, A, .= 0) (<9,0,B>, C, .= 0) (<9,0,C>, C, .= 0) (<9,0,D>, A, .= 0) (<9,0,E>, F, .= 0) (<9,0,F>, F, .= 0) (<9,0,G>, H, .= 0) (<9,0,H>, H, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [0 >= 1 + A && B = C && D = A && E = F && G = H] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 3. lbl82(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [E >= A && 2*A >= E && D = A && 1 + G = A] (?,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 6. lbl121(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 1 + E && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{3,4,5},2->{6,7,8},3->{},4->{3,4,5},5->{6,7,8},6->{},7->{3,4,5},8->{6,7,8},9->{0,1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<0,0,G>, ?) (<0,0,H>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) (<6,0,G>, ?) (<6,0,H>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) (<7,0,G>, ?) (<7,0,H>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) (<8,0,G>, ?) (<8,0,H>, ?) (<9,0,A>, ?) (<9,0,B>, ?) (<9,0,C>, ?) (<9,0,D>, ?) (<9,0,E>, ?) (<9,0,F>, ?) (<9,0,G>, ?) (<9,0,H>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>, A) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<3,0,A>, A) (<3,0,B>, 3 + 2*A + C) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, 2*A) (<3,0,F>, F) (<3,0,G>, 3 + 2*A) (<3,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, 3 + 2*A) (<6,0,C>, C) (<6,0,D>, A) (<6,0,E>, 1 + 2*A) (<6,0,F>, F) (<6,0,G>, 2 + 2*A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) * Step 3: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [0 >= 1 + A && B = C && D = A && E = F && G = H] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 3. lbl82(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [E >= A && 2*A >= E && D = A && 1 + G = A] (?,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 6. lbl121(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 1 + E && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{3,4,5},2->{6,7,8},3->{},4->{3,4,5},5->{6,7,8},6->{},7->{3,4,5},8->{6,7,8},9->{0,1,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>, A) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<3,0,A>, A) (<3,0,B>, 3 + 2*A + C) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, 2*A) (<3,0,F>, F) (<3,0,G>, 3 + 2*A) (<3,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, 3 + 2*A) (<6,0,C>, C) (<6,0,D>, A) (<6,0,E>, 1 + 2*A) (<6,0,F>, F) (<6,0,G>, 2 + 2*A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(5,6)] * Step 4: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [0 >= 1 + A && B = C && D = A && E = F && G = H] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 3. lbl82(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [E >= A && 2*A >= E && D = A && 1 + G = A] (?,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 6. lbl121(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 1 + E && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{3,4,5},2->{6,7,8},3->{},4->{3,4,5},5->{7,8},6->{},7->{3,4,5},8->{6,7,8},9->{0,1,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>, A) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<3,0,A>, A) (<3,0,B>, 3 + 2*A + C) (<3,0,C>, C) (<3,0,D>, A) (<3,0,E>, 2*A) (<3,0,F>, F) (<3,0,G>, 3 + 2*A) (<3,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, 3 + 2*A) (<6,0,C>, C) (<6,0,D>, A) (<6,0,E>, 1 + 2*A) (<6,0,F>, F) (<6,0,G>, 2 + 2*A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0,3,6] * Step 5: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [1->{4,5},2->{7,8},4->{4,5},5->{7,8},7->{4,5},8->{7,8},9->{1,2}] Sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl121) = 1 + -1*x1 + x5 p(lbl82) = -1*x1 + x5 p(start) = x1 p(start0) = x1 The following rules are strictly oriented: [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] ==> lbl121(A,B,C,D,E,F,G,H) = 1 + -1*A + E > -1*A + E = lbl121(A,G,C,D,-1 + E,F,-1 + E,H) The following rules are weakly oriented: [A >= 0 && B = C && D = A && E = F && G = H] ==> start(A,B,C,D,E,F,G,H) = A >= -1*A + 2*D = lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] ==> start(A,B,C,D,E,F,G,H) = A >= -1*A + 2*D = lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] ==> lbl82(A,B,C,D,E,F,G,H) = -1*A + E >= -1*A + E = lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] ==> lbl82(A,B,C,D,E,F,G,H) = -1*A + E >= -1*A + E = lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] ==> lbl121(A,B,C,D,E,F,G,H) = 1 + -1*A + E >= -1*A + E = lbl82(A,B,C,D,E,F,-1 + G,H) True ==> start0(A,B,C,D,E,F,G,H) = A >= A = start(A,C,C,A,F,F,H,H) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (?,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (A,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [1->{4,5},2->{7,8},4->{4,5},5->{7,8},7->{4,5},8->{7,8},9->{1,2}] Sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (1,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (1,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (?,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (A,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [1->{4,5},2->{7,8},4->{4,5},5->{7,8},7->{4,5},8->{7,8},9->{1,2}] Sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl121) = 1 + x5 p(lbl82) = x5 p(start) = 1 + 2*x1 p(start0) = 1 + 2*x1 The following rules are strictly oriented: [A >= 0 && B = C && D = A && E = F && G = H] ==> start(A,B,C,D,E,F,G,H) = 1 + 2*A > 2*D = lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] ==> start(A,B,C,D,E,F,G,H) = 1 + 2*A > 2*D = lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] ==> lbl121(A,B,C,D,E,F,G,H) = 1 + E > E = lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] ==> lbl121(A,B,C,D,E,F,G,H) = 1 + E > E = lbl121(A,G,C,D,-1 + E,F,-1 + E,H) The following rules are weakly oriented: [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] ==> lbl82(A,B,C,D,E,F,G,H) = E >= E = lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] ==> lbl82(A,B,C,D,E,F,G,H) = E >= E = lbl121(A,G,C,D,-1 + E,F,-1 + E,H) True ==> start0(A,B,C,D,E,F,G,H) = 1 + 2*A >= 1 + 2*A = start(A,C,C,A,F,F,H,H) * Step 8: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (1,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (1,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (1 + 2*A,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (A,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [1->{4,5},2->{7,8},4->{4,5},5->{7,8},7->{4,5},8->{7,8},9->{1,2}] Sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl121) = 1 + -1*x1 + x5 p(lbl82) = 1 + -1*x1 + x5 p(start) = 1 + x1 p(start0) = 1 + x1 The following rules are strictly oriented: [A >= 0 && B = C && D = A && E = F && G = H] ==> start(A,B,C,D,E,F,G,H) = 1 + A > -1*A + 2*D = lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] ==> lbl82(A,B,C,D,E,F,G,H) = 1 + -1*A + E > -1*A + E = lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] ==> lbl121(A,B,C,D,E,F,G,H) = 1 + -1*A + E > -1*A + E = lbl121(A,G,C,D,-1 + E,F,-1 + E,H) The following rules are weakly oriented: [A >= 0 && B = C && D = A && E = F && G = H] ==> start(A,B,C,D,E,F,G,H) = 1 + A >= 1 + -1*A + 2*D = lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] ==> lbl82(A,B,C,D,E,F,G,H) = 1 + -1*A + E >= 1 + -1*A + E = lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] ==> lbl121(A,B,C,D,E,F,G,H) = 1 + -1*A + E >= 1 + -1*A + E = lbl82(A,B,C,D,E,F,-1 + G,H) True ==> start0(A,B,C,D,E,F,G,H) = 1 + A >= 1 + A = start(A,C,C,A,F,F,H,H) * Step 9: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (1,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (1,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (?,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (1 + A,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (1 + 2*A,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (A,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [1->{4,5},2->{7,8},4->{4,5},5->{7,8},7->{4,5},8->{7,8},9->{1,2}] Sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [4,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl121) = 0 p(lbl82) = 2 + -1*x1 + x7 The following rules are strictly oriented: [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] ==> lbl82(A,B,C,D,E,F,G,H) = 2 + -1*A + G > 1 + -1*A + G = lbl82(A,B,C,D,E,F,-1 + G,H) The following rules are weakly oriented: [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] ==> lbl121(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl121(A,G,C,D,-1 + E,F,-1 + E,H) We use the following global sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) * Step 10: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (1,1) 2. start(A,B,C,D,E,F,G,H) -> lbl121(A,2*D,C,D,-1 + 2*D,F,-1 + 2*D,H) [A >= 0 && B = C && D = A && E = F && G = H] (1,1) 4. lbl82(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (8 + 16*A + 6*A^2,1) 5. lbl82(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [G >= A && E >= 1 + G && 2*A >= E && 1 + G >= A && D = A] (1 + A,1) 7. lbl121(A,B,C,D,E,F,G,H) -> lbl82(A,B,C,D,E,F,-1 + G,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (1 + 2*A,1) 8. lbl121(A,B,C,D,E,F,G,H) -> lbl121(A,G,C,D,-1 + E,F,-1 + E,H) [E >= A && 2*A >= 1 + E && B >= A && 1 + E >= B && G = E && D = A] (A,1) 9. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl121,8);(lbl82,8);(start,8);(start0,8);(stop,8)} Flow Graph: [1->{4,5},2->{7,8},4->{4,5},5->{7,8},7->{4,5},8->{7,8},9->{1,2}] Sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, A) (<1,0,E>, 2*A) (<1,0,F>, F) (<1,0,G>, 1 + 2*A) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, 2*A) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, 1 + 2*A) (<2,0,F>, F) (<2,0,G>, 1 + 2*A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, 3 + 2*A + C) (<4,0,C>, C) (<4,0,D>, A) (<4,0,E>, 2*A) (<4,0,F>, F) (<4,0,G>, 2*A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, 3 + 2*A) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, 2*A) (<5,0,F>, F) (<5,0,G>, 1 + 2*A) (<5,0,H>, H) (<7,0,A>, A) (<7,0,B>, 3 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, 2*A) (<7,0,F>, F) (<7,0,G>, 3 + 2*A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, 2 + 2*A) (<8,0,C>, C) (<8,0,D>, A) (<8,0,E>, 2*A) (<8,0,F>, F) (<8,0,G>, 2 + 2*A) (<8,0,H>, H) (<9,0,A>, A) (<9,0,B>, C) (<9,0,C>, C) (<9,0,D>, A) (<9,0,E>, F) (<9,0,F>, F) (<9,0,G>, H) (<9,0,H>, H) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))