WORST_CASE(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,1,F,G,H,I,J) [A >= 1 && B >= 1 + C && D = B && E = F && G = C && H = I && J = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,1 + D,1,F,G,H,I,J) [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,-1,F,G,H,I,J) [B >= 1 + C && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 4. lbl71(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [C >= B && A >= 1 && D = 1 + C && E = 1 && J = A && H = I && G = C] (?,1) 5. lbl71(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,D + E,E,F,G,H,I,J) [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] (?,1) 6. lbl71(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && A >= 1 && E = 1 && J = A && H = I && G = C] (?,1) 7. lbl81(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [0 >= A && C >= B && D = 1 + C && 1 + E = 0 && J = A && H = I && G = C] (?,1) 8. lbl81(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,D + E,E,F,G,H,I,J) [A >= 1 && C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] (?,1) 9. lbl81(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,B,C,B,F,F,C,I,I,A) True (1,1) Signature: {(lbl71,10);(lbl81,10);(start,10);(start0,10);(stop,10)} Flow Graph: [0->{},1->{4,5,6},2->{},3->{7,8,9},4->{},5->{4,5,6},6->{7,8,9},7->{},8->{4,5,6},9->{7,8,9},10->{0,1,2,3}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [6,8] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,1,F,G,H,I,J) [A >= 1 && B >= 1 + C && D = B && E = F && G = C && H = I && J = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,1 + D,1,F,G,H,I,J) [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,-1,F,G,H,I,J) [B >= 1 + C && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 4. lbl71(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [C >= B && A >= 1 && D = 1 + C && E = 1 && J = A && H = I && G = C] (?,1) 5. lbl71(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,D + E,E,F,G,H,I,J) [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] (?,1) 7. lbl81(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [0 >= A && C >= B && D = 1 + C && 1 + E = 0 && J = A && H = I && G = C] (?,1) 9. lbl81(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,B,C,B,F,F,C,I,I,A) True (1,1) Signature: {(lbl71,10);(lbl81,10);(start,10);(start0,10);(stop,10)} Flow Graph: [0->{},1->{4,5},2->{},3->{7,9},4->{},5->{4,5},7->{},9->{7,9},10->{0,1,2,3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, 1, .= 1) (< 0,0,F>, F, .= 0) (< 0,0,G>, G, .= 0) (< 0,0,H>, H, .= 0) (< 0,0,I>, I, .= 0) (< 0,0,J>, J, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, 1 + D, .+ 1) (< 1,0,E>, 1, .= 1) (< 1,0,F>, F, .= 0) (< 1,0,G>, G, .= 0) (< 1,0,H>, H, .= 0) (< 1,0,I>, I, .= 0) (< 1,0,J>, J, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, 1, .= 1) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 2,0,H>, H, .= 0) (< 2,0,I>, I, .= 0) (< 2,0,J>, J, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, 1 + D, .+ 1) (< 3,0,E>, 1, .= 1) (< 3,0,F>, F, .= 0) (< 3,0,G>, G, .= 0) (< 3,0,H>, H, .= 0) (< 3,0,I>, I, .= 0) (< 3,0,J>, J, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, H, .= 0) (< 4,0,I>, I, .= 0) (< 4,0,J>, J, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, 2 + B + D, .* 2) (< 5,0,E>, E, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>, G, .= 0) (< 5,0,H>, H, .= 0) (< 5,0,I>, I, .= 0) (< 5,0,J>, J, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,I>, I, .= 0) (< 7,0,J>, J, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, 1 + B + D + E, .* 1) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, G, .= 0) (< 9,0,H>, H, .= 0) (< 9,0,I>, I, .= 0) (< 9,0,J>, J, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, B, .= 0) (<10,0,E>, F, .= 0) (<10,0,F>, F, .= 0) (<10,0,G>, C, .= 0) (<10,0,H>, I, .= 0) (<10,0,I>, I, .= 0) (<10,0,J>, A, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,1,F,G,H,I,J) [A >= 1 && B >= 1 + C && D = B && E = F && G = C && H = I && J = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,1 + D,1,F,G,H,I,J) [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,-1,F,G,H,I,J) [B >= 1 + C && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 4. lbl71(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [C >= B && A >= 1 && D = 1 + C && E = 1 && J = A && H = I && G = C] (?,1) 5. lbl71(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,D + E,E,F,G,H,I,J) [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] (?,1) 7. lbl81(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [0 >= A && C >= B && D = 1 + C && 1 + E = 0 && J = A && H = I && G = C] (?,1) 9. lbl81(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,B,C,B,F,F,C,I,I,A) True (1,1) Signature: {(lbl71,10);(lbl81,10);(start,10);(start0,10);(stop,10)} Flow Graph: [0->{},1->{4,5},2->{},3->{7,9},4->{},5->{4,5},7->{},9->{7,9},10->{0,1,2,3}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) (< 0,0,J>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) (< 1,0,J>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) (< 2,0,J>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) (< 3,0,J>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) (< 4,0,J>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) (< 5,0,J>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) (< 7,0,J>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,J>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,J>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, B) (< 0,0,E>, 1) (< 0,0,F>, F) (< 0,0,G>, C) (< 0,0,H>, I) (< 0,0,I>, I) (< 0,0,J>, A) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 1 + B) (< 1,0,E>, 1) (< 1,0,F>, F) (< 1,0,G>, C) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, A) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, B) (< 2,0,E>, 1) (< 2,0,F>, F) (< 2,0,G>, C) (< 2,0,H>, I) (< 2,0,I>, I) (< 2,0,J>, A) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, 1 + B) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, C) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, A) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, 1 + B + C) (< 4,0,E>, 1) (< 4,0,F>, F) (< 4,0,G>, C) (< 4,0,H>, I) (< 4,0,I>, I) (< 4,0,J>, A) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, 1 + C) (< 5,0,E>, 1) (< 5,0,F>, F) (< 5,0,G>, C) (< 5,0,H>, I) (< 5,0,I>, I) (< 5,0,J>, A) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, 1 + B + C) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, C) (< 7,0,H>, I) (< 7,0,I>, I) (< 7,0,J>, A) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, C) (< 9,0,E>, 1) (< 9,0,F>, F) (< 9,0,G>, C) (< 9,0,H>, I) (< 9,0,I>, I) (< 9,0,J>, A) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, B) (<10,0,E>, F) (<10,0,F>, F) (<10,0,G>, C) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, A) * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,1,F,G,H,I,J) [A >= 1 && B >= 1 + C && D = B && E = F && G = C && H = I && J = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,1 + D,1,F,G,H,I,J) [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,-1,F,G,H,I,J) [B >= 1 + C && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 4. lbl71(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [C >= B && A >= 1 && D = 1 + C && E = 1 && J = A && H = I && G = C] (?,1) 5. lbl71(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,D + E,E,F,G,H,I,J) [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] (?,1) 7. lbl81(A,B,C,D,E,F,G,H,I,J) -> stop(A,B,C,D,E,F,G,H,I,J) [0 >= A && C >= B && D = 1 + C && 1 + E = 0 && J = A && H = I && G = C] (?,1) 9. lbl81(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,B,C,B,F,F,C,I,I,A) True (1,1) Signature: {(lbl71,10);(lbl81,10);(start,10);(start0,10);(stop,10)} Flow Graph: [0->{},1->{4,5},2->{},3->{7,9},4->{},5->{4,5},7->{},9->{7,9},10->{0,1,2,3}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, B) (< 0,0,E>, 1) (< 0,0,F>, F) (< 0,0,G>, C) (< 0,0,H>, I) (< 0,0,I>, I) (< 0,0,J>, A) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 1 + B) (< 1,0,E>, 1) (< 1,0,F>, F) (< 1,0,G>, C) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, A) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, C) (< 2,0,D>, B) (< 2,0,E>, 1) (< 2,0,F>, F) (< 2,0,G>, C) (< 2,0,H>, I) (< 2,0,I>, I) (< 2,0,J>, A) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, 1 + B) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, C) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, A) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, C) (< 4,0,D>, 1 + B + C) (< 4,0,E>, 1) (< 4,0,F>, F) (< 4,0,G>, C) (< 4,0,H>, I) (< 4,0,I>, I) (< 4,0,J>, A) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, 1 + C) (< 5,0,E>, 1) (< 5,0,F>, F) (< 5,0,G>, C) (< 5,0,H>, I) (< 5,0,I>, I) (< 5,0,J>, A) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, C) (< 7,0,D>, 1 + B + C) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, C) (< 7,0,H>, I) (< 7,0,I>, I) (< 7,0,J>, A) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, C) (< 9,0,E>, 1) (< 9,0,F>, F) (< 9,0,G>, C) (< 9,0,H>, I) (< 9,0,I>, I) (< 9,0,J>, A) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, B) (<10,0,E>, F) (<10,0,F>, F) (<10,0,G>, C) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, A) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0,2,4,7] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,1 + D,1,F,G,H,I,J) [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 5. lbl71(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,D + E,E,F,G,H,I,J) [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] (?,1) 9. lbl81(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,B,C,B,F,F,C,I,I,A) True (1,1) Signature: {(lbl71,10);(lbl81,10);(start,10);(start0,10);(stop,10)} Flow Graph: [1->{5},3->{9},5->{5},9->{9},10->{1,3}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 1 + B) (< 1,0,E>, 1) (< 1,0,F>, F) (< 1,0,G>, C) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, A) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, 1 + B) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, C) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, A) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, 1 + C) (< 5,0,E>, 1) (< 5,0,F>, F) (< 5,0,G>, C) (< 5,0,H>, I) (< 5,0,I>, I) (< 5,0,J>, A) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, C) (< 9,0,E>, 1) (< 9,0,F>, F) (< 9,0,G>, C) (< 9,0,H>, I) (< 9,0,I>, I) (< 9,0,J>, A) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, B) (<10,0,E>, F) (<10,0,F>, F) (<10,0,G>, C) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl71) = -1*x2 + x3 p(lbl81) = 1 + x3 + -1*x4 p(start) = -1*x2 + x3 p(start0) = -1*x2 + x3 The following rules are strictly oriented: [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] ==> lbl81(A,B,C,D,E,F,G,H,I,J) = 1 + C + -1*D > 1 + C + -1*D + E = lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) The following rules are weakly oriented: [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] ==> start(A,B,C,D,E,F,G,H,I,J) = -1*B + C >= -1*B + C = lbl71(A,B,C,1 + D,1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] ==> start(A,B,C,D,E,F,G,H,I,J) = -1*B + C >= C + -1*D = lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] ==> lbl71(A,B,C,D,E,F,G,H,I,J) = -1*B + C >= -1*B + C = lbl71(A,B,C,D + E,E,F,G,H,I,J) True ==> start0(A,B,C,D,E,F,G,H,I,J) = -1*B + C >= -1*B + C = start(A,B,C,B,F,F,C,I,I,A) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,1 + D,1,F,G,H,I,J) [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] (?,1) 5. lbl71(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,D + E,E,F,G,H,I,J) [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] (?,1) 9. lbl81(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] (B + C,1) 10. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,B,C,B,F,F,C,I,I,A) True (1,1) Signature: {(lbl71,10);(lbl81,10);(start,10);(start0,10);(stop,10)} Flow Graph: [1->{5},3->{9},5->{5},9->{9},10->{1,3}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 1 + B) (< 1,0,E>, 1) (< 1,0,F>, F) (< 1,0,G>, C) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, A) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, 1 + B) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, C) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, A) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, 1 + C) (< 5,0,E>, 1) (< 5,0,F>, F) (< 5,0,G>, C) (< 5,0,H>, I) (< 5,0,I>, I) (< 5,0,J>, A) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, C) (< 9,0,E>, 1) (< 9,0,F>, F) (< 9,0,G>, C) (< 9,0,H>, I) (< 9,0,I>, I) (< 9,0,J>, A) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, B) (<10,0,E>, F) (<10,0,F>, F) (<10,0,G>, C) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, A) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,1 + D,1,F,G,H,I,J) [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] (1,1) 3. start(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] (1,1) 5. lbl71(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,D + E,E,F,G,H,I,J) [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] (?,1) 9. lbl81(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] (B + C,1) 10. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,B,C,B,F,F,C,I,I,A) True (1,1) Signature: {(lbl71,10);(lbl81,10);(start,10);(start0,10);(stop,10)} Flow Graph: [1->{5},3->{9},5->{5},9->{9},10->{1,3}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 1 + B) (< 1,0,E>, 1) (< 1,0,F>, F) (< 1,0,G>, C) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, A) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, 1 + B) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, C) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, A) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, 1 + C) (< 5,0,E>, 1) (< 5,0,F>, F) (< 5,0,G>, C) (< 5,0,H>, I) (< 5,0,I>, I) (< 5,0,J>, A) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, C) (< 9,0,E>, 1) (< 9,0,F>, F) (< 9,0,G>, C) (< 9,0,H>, I) (< 9,0,I>, I) (< 9,0,J>, A) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, B) (<10,0,E>, F) (<10,0,F>, F) (<10,0,G>, C) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl71) = 1 + x3 + -1*x4 p(lbl81) = -1*x2 + x3 p(start) = -1*x2 + x3 p(start0) = -1*x2 + x3 The following rules are strictly oriented: [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] ==> lbl71(A,B,C,D,E,F,G,H,I,J) = 1 + C + -1*D > 1 + C + -1*D + -1*E = lbl71(A,B,C,D + E,E,F,G,H,I,J) The following rules are weakly oriented: [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] ==> start(A,B,C,D,E,F,G,H,I,J) = -1*B + C >= C + -1*D = lbl71(A,B,C,1 + D,1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] ==> start(A,B,C,D,E,F,G,H,I,J) = -1*B + C >= -1*B + C = lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] ==> lbl81(A,B,C,D,E,F,G,H,I,J) = -1*B + C >= -1*B + C = lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) True ==> start0(A,B,C,D,E,F,G,H,I,J) = -1*B + C >= -1*B + C = start(A,B,C,B,F,F,C,I,I,A) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,1 + D,1,F,G,H,I,J) [A >= 1 && C >= B && D = B && E = F && G = C && H = I && J = A] (1,1) 3. start(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,1 + D,-1,F,G,H,I,J) [C >= B && 0 >= A && D = B && E = F && G = C && H = I && J = A] (1,1) 5. lbl71(A,B,C,D,E,F,G,H,I,J) -> lbl71(A,B,C,D + E,E,F,G,H,I,J) [A >= 1 && C >= D && D >= 1 + B && 1 + C >= D && E = 1 && J = A && H = I && G = C] (B + C,1) 9. lbl81(A,B,C,D,E,F,G,H,I,J) -> lbl81(A,B,C,D + -1*E,E,F,G,H,I,J) [C >= D && 0 >= A && D >= 1 + B && 1 + C >= D && 1 + E = 0 && J = A && H = I && G = C] (B + C,1) 10. start0(A,B,C,D,E,F,G,H,I,J) -> start(A,B,C,B,F,F,C,I,I,A) True (1,1) Signature: {(lbl71,10);(lbl81,10);(start,10);(start0,10);(stop,10)} Flow Graph: [1->{5},3->{9},5->{5},9->{9},10->{1,3}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, 1 + B) (< 1,0,E>, 1) (< 1,0,F>, F) (< 1,0,G>, C) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, A) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, C) (< 3,0,D>, 1 + B) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, C) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, A) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, C) (< 5,0,D>, 1 + C) (< 5,0,E>, 1) (< 5,0,F>, F) (< 5,0,G>, C) (< 5,0,H>, I) (< 5,0,I>, I) (< 5,0,J>, A) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, C) (< 9,0,D>, C) (< 9,0,E>, 1) (< 9,0,F>, F) (< 9,0,G>, C) (< 9,0,H>, I) (< 9,0,I>, I) (< 9,0,J>, A) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, C) (<10,0,D>, B) (<10,0,E>, F) (<10,0,F>, F) (<10,0,G>, C) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, A) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))