WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultiplestart(A,B,C,D)    -> evalSimpleMultipleentryin(A,B,C,D)   True         (1,1)
          1. evalSimpleMultipleentryin(A,B,C,D)  -> evalSimpleMultiplebb3in(0,0,C,D)     True         (?,1)
          2. evalSimpleMultiplebb3in(A,B,C,D)    -> evalSimpleMultiplebbin(A,B,C,D)      [C >= 1 + B] (?,1)
          3. evalSimpleMultiplebb3in(A,B,C,D)    -> evalSimpleMultiplereturnin(A,B,C,D)  [B >= C]     (?,1)
          4. evalSimpleMultiplebbin(A,B,C,D)     -> evalSimpleMultiplebb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultiplebbin(A,B,C,D)     -> evalSimpleMultiplebb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultiplebb1in(A,B,C,D)    -> evalSimpleMultiplebb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultiplebb2in(A,B,C,D)    -> evalSimpleMultiplebb3in(A,1 + B,C,D) True         (?,1)
          8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D)      True         (?,1)
        Signature:
          {(evalSimpleMultiplebb1in,4)
          ;(evalSimpleMultiplebb2in,4)
          ;(evalSimpleMultiplebb3in,4)
          ;(evalSimpleMultiplebbin,4)
          ;(evalSimpleMultipleentryin,4)
          ;(evalSimpleMultiplereturnin,4)
          ;(evalSimpleMultiplestart,4)
          ;(evalSimpleMultiplestop,4)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) (<0,0,B>,     B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) 
          (<1,0,A>,     0, .= 0) (<1,0,B>,     0, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) 
          (<2,0,A>,     A, .= 0) (<2,0,B>,     B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) 
          (<3,0,A>,     A, .= 0) (<3,0,B>,     B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) 
          (<4,0,A>,     A, .= 0) (<4,0,B>,     B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) 
          (<5,0,A>,     A, .= 0) (<5,0,B>,     B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) 
          (<6,0,A>, 1 + A, .+ 1) (<6,0,B>,     B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) 
          (<7,0,A>,     A, .= 0) (<7,0,B>, 1 + B, .+ 1) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) 
          (<8,0,A>,     A, .= 0) (<8,0,B>,     B, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultiplestart(A,B,C,D)    -> evalSimpleMultipleentryin(A,B,C,D)   True         (1,1)
          1. evalSimpleMultipleentryin(A,B,C,D)  -> evalSimpleMultiplebb3in(0,0,C,D)     True         (?,1)
          2. evalSimpleMultiplebb3in(A,B,C,D)    -> evalSimpleMultiplebbin(A,B,C,D)      [C >= 1 + B] (?,1)
          3. evalSimpleMultiplebb3in(A,B,C,D)    -> evalSimpleMultiplereturnin(A,B,C,D)  [B >= C]     (?,1)
          4. evalSimpleMultiplebbin(A,B,C,D)     -> evalSimpleMultiplebb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultiplebbin(A,B,C,D)     -> evalSimpleMultiplebb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultiplebb1in(A,B,C,D)    -> evalSimpleMultiplebb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultiplebb2in(A,B,C,D)    -> evalSimpleMultiplebb3in(A,1 + B,C,D) True         (?,1)
          8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D)      True         (?,1)
        Signature:
          {(evalSimpleMultiplebb1in,4)
          ;(evalSimpleMultiplebb2in,4)
          ;(evalSimpleMultiplebb3in,4)
          ;(evalSimpleMultiplebbin,4)
          ;(evalSimpleMultipleentryin,4)
          ;(evalSimpleMultiplereturnin,4)
          ;(evalSimpleMultiplestart,4)
          ;(evalSimpleMultiplestop,4)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<3,0,A>, ?) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
          (<8,0,A>, ?) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, D) 
* Step 3: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultiplestart(A,B,C,D)    -> evalSimpleMultipleentryin(A,B,C,D)   True         (1,1)
          1. evalSimpleMultipleentryin(A,B,C,D)  -> evalSimpleMultiplebb3in(0,0,C,D)     True         (?,1)
          2. evalSimpleMultiplebb3in(A,B,C,D)    -> evalSimpleMultiplebbin(A,B,C,D)      [C >= 1 + B] (?,1)
          3. evalSimpleMultiplebb3in(A,B,C,D)    -> evalSimpleMultiplereturnin(A,B,C,D)  [B >= C]     (?,1)
          4. evalSimpleMultiplebbin(A,B,C,D)     -> evalSimpleMultiplebb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultiplebbin(A,B,C,D)     -> evalSimpleMultiplebb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultiplebb1in(A,B,C,D)    -> evalSimpleMultiplebb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultiplebb2in(A,B,C,D)    -> evalSimpleMultiplebb3in(A,1 + B,C,D) True         (?,1)
          8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D)      True         (?,1)
        Signature:
          {(evalSimpleMultiplebb1in,4)
          ;(evalSimpleMultiplebb2in,4)
          ;(evalSimpleMultiplebb3in,4)
          ;(evalSimpleMultiplebbin,4)
          ;(evalSimpleMultipleentryin,4)
          ;(evalSimpleMultiplereturnin,4)
          ;(evalSimpleMultiplestart,4)
          ;(evalSimpleMultiplestop,4)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<3,0,A>, ?) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
          (<8,0,A>, ?) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, D) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,8]
* Step 4: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultiplestart(A,B,C,D)   -> evalSimpleMultipleentryin(A,B,C,D)   True         (1,1)
          1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D)     True         (?,1)
          2. evalSimpleMultiplebb3in(A,B,C,D)   -> evalSimpleMultiplebbin(A,B,C,D)      [C >= 1 + B] (?,1)
          4. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultiplebb1in(A,B,C,D)   -> evalSimpleMultiplebb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultiplebb2in(A,B,C,D)   -> evalSimpleMultiplebb3in(A,1 + B,C,D) True         (?,1)
        Signature:
          {(evalSimpleMultiplebb1in,4)
          ;(evalSimpleMultiplebb2in,4)
          ;(evalSimpleMultiplebb3in,4)
          ;(evalSimpleMultiplebbin,4)
          ;(evalSimpleMultipleentryin,4)
          ;(evalSimpleMultiplereturnin,4)
          ;(evalSimpleMultiplestart,4)
          ;(evalSimpleMultiplestop,4)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalSimpleMultiplebb1in) = -1*x1 + x4    
            p(evalSimpleMultiplebb2in) = 1 + -1*x1 + x4
            p(evalSimpleMultiplebb3in) = 1 + -1*x1 + x4
             p(evalSimpleMultiplebbin) = 1 + -1*x1 + x4
          p(evalSimpleMultipleentryin) = 1 + x4        
            p(evalSimpleMultiplestart) = 1 + x4        
        
        The following rules are strictly oriented:
                             [D >= 1 + A] ==>                                 
          evalSimpleMultiplebbin(A,B,C,D)   = 1 + -1*A + D                    
                                            > -1*A + D                        
                                            = evalSimpleMultiplebb1in(A,B,C,D)
        
        
        The following rules are weakly oriented:
                                        True ==>                                     
            evalSimpleMultiplestart(A,B,C,D)   = 1 + D                               
                                              >= 1 + D                               
                                               = evalSimpleMultipleentryin(A,B,C,D)  
        
                                        True ==>                                     
          evalSimpleMultipleentryin(A,B,C,D)   = 1 + D                               
                                              >= 1 + D                               
                                               = evalSimpleMultiplebb3in(0,0,C,D)    
        
                                [C >= 1 + B] ==>                                     
            evalSimpleMultiplebb3in(A,B,C,D)   = 1 + -1*A + D                        
                                              >= 1 + -1*A + D                        
                                               = evalSimpleMultiplebbin(A,B,C,D)     
        
                                    [A >= D] ==>                                     
             evalSimpleMultiplebbin(A,B,C,D)   = 1 + -1*A + D                        
                                              >= 1 + -1*A + D                        
                                               = evalSimpleMultiplebb2in(A,B,C,D)    
        
                                        True ==>                                     
            evalSimpleMultiplebb1in(A,B,C,D)   = -1*A + D                            
                                              >= -1*A + D                            
                                               = evalSimpleMultiplebb3in(1 + A,B,C,D)
        
                                        True ==>                                     
            evalSimpleMultiplebb2in(A,B,C,D)   = 1 + -1*A + D                        
                                              >= 1 + -1*A + D                        
                                               = evalSimpleMultiplebb3in(A,1 + B,C,D)
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultiplestart(A,B,C,D)   -> evalSimpleMultipleentryin(A,B,C,D)   True         (1,1)    
          1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D)     True         (?,1)    
          2. evalSimpleMultiplebb3in(A,B,C,D)   -> evalSimpleMultiplebbin(A,B,C,D)      [C >= 1 + B] (?,1)    
          4. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb1in(A,B,C,D)     [D >= 1 + A] (1 + D,1)
          5. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb2in(A,B,C,D)     [A >= D]     (?,1)    
          6. evalSimpleMultiplebb1in(A,B,C,D)   -> evalSimpleMultiplebb3in(1 + A,B,C,D) True         (?,1)    
          7. evalSimpleMultiplebb2in(A,B,C,D)   -> evalSimpleMultiplebb3in(A,1 + B,C,D) True         (?,1)    
        Signature:
          {(evalSimpleMultiplebb1in,4)
          ;(evalSimpleMultiplebb2in,4)
          ;(evalSimpleMultiplebb3in,4)
          ;(evalSimpleMultiplebbin,4)
          ;(evalSimpleMultipleentryin,4)
          ;(evalSimpleMultiplereturnin,4)
          ;(evalSimpleMultiplestart,4)
          ;(evalSimpleMultiplestop,4)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultiplestart(A,B,C,D)   -> evalSimpleMultipleentryin(A,B,C,D)   True         (1,1)    
          1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D)     True         (1,1)    
          2. evalSimpleMultiplebb3in(A,B,C,D)   -> evalSimpleMultiplebbin(A,B,C,D)      [C >= 1 + B] (?,1)    
          4. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb1in(A,B,C,D)     [D >= 1 + A] (1 + D,1)
          5. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb2in(A,B,C,D)     [A >= D]     (?,1)    
          6. evalSimpleMultiplebb1in(A,B,C,D)   -> evalSimpleMultiplebb3in(1 + A,B,C,D) True         (1 + D,1)
          7. evalSimpleMultiplebb2in(A,B,C,D)   -> evalSimpleMultiplebb3in(A,1 + B,C,D) True         (?,1)    
        Signature:
          {(evalSimpleMultiplebb1in,4)
          ;(evalSimpleMultiplebb2in,4)
          ;(evalSimpleMultiplebb3in,4)
          ;(evalSimpleMultiplebbin,4)
          ;(evalSimpleMultipleentryin,4)
          ;(evalSimpleMultiplereturnin,4)
          ;(evalSimpleMultiplestart,4)
          ;(evalSimpleMultiplestop,4)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,6,7,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalSimpleMultiplebb1in) = 2 + -1*x2 + x3
          p(evalSimpleMultiplebb2in) = 1 + -1*x2 + x3
          p(evalSimpleMultiplebb3in) = 2 + -1*x2 + x3
           p(evalSimpleMultiplebbin) = 1 + -1*x2 + x3
        
        The following rules are strictly oriented:
                              [C >= 1 + B] ==>                                
          evalSimpleMultiplebb3in(A,B,C,D)   = 2 + -1*B + C                   
                                             > 1 + -1*B + C                   
                                             = evalSimpleMultiplebbin(A,B,C,D)
        
        
        The following rules are weakly oriented:
                                  [A >= D] ==>                                     
           evalSimpleMultiplebbin(A,B,C,D)   = 1 + -1*B + C                        
                                            >= 1 + -1*B + C                        
                                             = evalSimpleMultiplebb2in(A,B,C,D)    
        
                                      True ==>                                     
          evalSimpleMultiplebb1in(A,B,C,D)   = 2 + -1*B + C                        
                                            >= 2 + -1*B + C                        
                                             = evalSimpleMultiplebb3in(1 + A,B,C,D)
        
                                      True ==>                                     
          evalSimpleMultiplebb2in(A,B,C,D)   = 1 + -1*B + C                        
                                            >= 1 + -1*B + C                        
                                             = evalSimpleMultiplebb3in(A,1 + B,C,D)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
        (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
        (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
        (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
        (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
        (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
        (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
* Step 7: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultiplestart(A,B,C,D)   -> evalSimpleMultipleentryin(A,B,C,D)   True         (1,1)                    
          1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D)     True         (1,1)                    
          2. evalSimpleMultiplebb3in(A,B,C,D)   -> evalSimpleMultiplebbin(A,B,C,D)      [C >= 1 + B] (4 + 3*C + 2*C*D + 2*D,1)
          4. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb1in(A,B,C,D)     [D >= 1 + A] (1 + D,1)                
          5. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb2in(A,B,C,D)     [A >= D]     (?,1)                    
          6. evalSimpleMultiplebb1in(A,B,C,D)   -> evalSimpleMultiplebb3in(1 + A,B,C,D) True         (1 + D,1)                
          7. evalSimpleMultiplebb2in(A,B,C,D)   -> evalSimpleMultiplebb3in(A,1 + B,C,D) True         (?,1)                    
        Signature:
          {(evalSimpleMultiplebb1in,4)
          ;(evalSimpleMultiplebb2in,4)
          ;(evalSimpleMultiplebb3in,4)
          ;(evalSimpleMultiplebbin,4)
          ;(evalSimpleMultipleentryin,4)
          ;(evalSimpleMultiplereturnin,4)
          ;(evalSimpleMultiplestart,4)
          ;(evalSimpleMultiplestop,4)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 8: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultiplestart(A,B,C,D)   -> evalSimpleMultipleentryin(A,B,C,D)   True         (1,1)                    
          1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D)     True         (1,1)                    
          2. evalSimpleMultiplebb3in(A,B,C,D)   -> evalSimpleMultiplebbin(A,B,C,D)      [C >= 1 + B] (4 + 3*C + 2*C*D + 2*D,1)
          4. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb1in(A,B,C,D)     [D >= 1 + A] (1 + D,1)                
          5. evalSimpleMultiplebbin(A,B,C,D)    -> evalSimpleMultiplebb2in(A,B,C,D)     [A >= D]     (4 + 3*C + 2*C*D + 2*D,1)
          6. evalSimpleMultiplebb1in(A,B,C,D)   -> evalSimpleMultiplebb3in(1 + A,B,C,D) True         (1 + D,1)                
          7. evalSimpleMultiplebb2in(A,B,C,D)   -> evalSimpleMultiplebb3in(A,1 + B,C,D) True         (4 + 3*C + 2*C*D + 2*D,1)
        Signature:
          {(evalSimpleMultiplebb1in,4)
          ;(evalSimpleMultiplebb2in,4)
          ;(evalSimpleMultiplebb3in,4)
          ;(evalSimpleMultiplebbin,4)
          ;(evalSimpleMultipleentryin,4)
          ;(evalSimpleMultiplereturnin,4)
          ;(evalSimpleMultiplestart,4)
          ;(evalSimpleMultiplestop,4)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))