WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (?,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [C >= 1 + B] (?,1) 3. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplereturnin(A,B,C,D) [B >= C] (?,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) True (?,1) 8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D) True (?,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<1,0,A>, 0, .= 0) (<1,0,B>, 0, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<6,0,A>, 1 + A, .+ 1) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<7,0,A>, A, .= 0) (<7,0,B>, 1 + B, .+ 1) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<8,0,A>, A, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (?,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [C >= 1 + B] (?,1) 3. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplereturnin(A,B,C,D) [B >= C] (?,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) True (?,1) 8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D) True (?,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<3,0,A>, ?) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) (<8,0,A>, ?) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, D) * Step 3: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (?,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [C >= 1 + B] (?,1) 3. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplereturnin(A,B,C,D) [B >= C] (?,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) True (?,1) 8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D) True (?,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<3,0,A>, ?) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) (<8,0,A>, ?) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, D) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,8] * Step 4: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (?,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [C >= 1 + B] (?,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) True (?,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleMultiplebb1in) = -1*x1 + x4 p(evalSimpleMultiplebb2in) = 1 + -1*x1 + x4 p(evalSimpleMultiplebb3in) = 1 + -1*x1 + x4 p(evalSimpleMultiplebbin) = 1 + -1*x1 + x4 p(evalSimpleMultipleentryin) = 1 + x4 p(evalSimpleMultiplestart) = 1 + x4 The following rules are strictly oriented: [D >= 1 + A] ==> evalSimpleMultiplebbin(A,B,C,D) = 1 + -1*A + D > -1*A + D = evalSimpleMultiplebb1in(A,B,C,D) The following rules are weakly oriented: True ==> evalSimpleMultiplestart(A,B,C,D) = 1 + D >= 1 + D = evalSimpleMultipleentryin(A,B,C,D) True ==> evalSimpleMultipleentryin(A,B,C,D) = 1 + D >= 1 + D = evalSimpleMultiplebb3in(0,0,C,D) [C >= 1 + B] ==> evalSimpleMultiplebb3in(A,B,C,D) = 1 + -1*A + D >= 1 + -1*A + D = evalSimpleMultiplebbin(A,B,C,D) [A >= D] ==> evalSimpleMultiplebbin(A,B,C,D) = 1 + -1*A + D >= 1 + -1*A + D = evalSimpleMultiplebb2in(A,B,C,D) True ==> evalSimpleMultiplebb1in(A,B,C,D) = -1*A + D >= -1*A + D = evalSimpleMultiplebb3in(1 + A,B,C,D) True ==> evalSimpleMultiplebb2in(A,B,C,D) = 1 + -1*A + D >= 1 + -1*A + D = evalSimpleMultiplebb3in(A,1 + B,C,D) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (?,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [C >= 1 + B] (?,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [D >= 1 + A] (1 + D,1) 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) True (?,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (1,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [C >= 1 + B] (?,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [D >= 1 + A] (1 + D,1) 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) True (1 + D,1) 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) True (?,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,6,7,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleMultiplebb1in) = 2 + -1*x2 + x3 p(evalSimpleMultiplebb2in) = 1 + -1*x2 + x3 p(evalSimpleMultiplebb3in) = 2 + -1*x2 + x3 p(evalSimpleMultiplebbin) = 1 + -1*x2 + x3 The following rules are strictly oriented: [C >= 1 + B] ==> evalSimpleMultiplebb3in(A,B,C,D) = 2 + -1*B + C > 1 + -1*B + C = evalSimpleMultiplebbin(A,B,C,D) The following rules are weakly oriented: [A >= D] ==> evalSimpleMultiplebbin(A,B,C,D) = 1 + -1*B + C >= 1 + -1*B + C = evalSimpleMultiplebb2in(A,B,C,D) True ==> evalSimpleMultiplebb1in(A,B,C,D) = 2 + -1*B + C >= 2 + -1*B + C = evalSimpleMultiplebb3in(1 + A,B,C,D) True ==> evalSimpleMultiplebb2in(A,B,C,D) = 1 + -1*B + C >= 1 + -1*B + C = evalSimpleMultiplebb3in(A,1 + B,C,D) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) * Step 7: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (1,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [C >= 1 + B] (4 + 3*C + 2*C*D + 2*D,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [D >= 1 + A] (1 + D,1) 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) True (1 + D,1) 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) True (?,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 8: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (1,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [C >= 1 + B] (4 + 3*C + 2*C*D + 2*D,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [D >= 1 + A] (1 + D,1) 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [A >= D] (4 + 3*C + 2*C*D + 2*D,1) 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) True (1 + D,1) 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) True (4 + 3*C + 2*C*D + 2*D,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, ?) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, ?) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, ?) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^2))