WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D) -> stop(A,B,C,D) [1 >= A && B = C && D = A] (?,1) 1. start(A,B,C,D) -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A] (?,1) 2. lbl32(A,B,C,D) -> stop(A,B,C,D) [A >= 2 && D = 1 && B = C] (?,1) 3. lbl32(A,B,C,D) -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (?,1) 4. start0(A,B,C,D) -> start(A,C,C,A) True (1,1) Signature: {(lbl32,4);(start,4);(start0,4);(stop,4)} Flow Graph: [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, 1 + D, .+ 1) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, 1 + D, .+ 1) (<4,0,A>, A, .= 0) (<4,0,B>, C, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, A, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D) -> stop(A,B,C,D) [1 >= A && B = C && D = A] (?,1) 1. start(A,B,C,D) -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A] (?,1) 2. lbl32(A,B,C,D) -> stop(A,B,C,D) [A >= 2 && D = 1 && B = C] (?,1) 3. lbl32(A,B,C,D) -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (?,1) 4. start0(A,B,C,D) -> start(A,C,C,A) True (1,1) Signature: {(lbl32,4);(start,4);(start0,4);(stop,4)} Flow Graph: [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>, A) (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) (<2,0,A>, A) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, 1 + A) (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, A) (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, A) * Step 3: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D) -> stop(A,B,C,D) [1 >= A && B = C && D = A] (?,1) 1. start(A,B,C,D) -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A] (?,1) 2. lbl32(A,B,C,D) -> stop(A,B,C,D) [A >= 2 && D = 1 && B = C] (?,1) 3. lbl32(A,B,C,D) -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (?,1) 4. start0(A,B,C,D) -> start(A,C,C,A) True (1,1) Signature: {(lbl32,4);(start,4);(start0,4);(stop,4)} Flow Graph: [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}] Sizebounds: (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>, A) (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) (<2,0,A>, A) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, 1 + A) (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, A) (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, A) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0,2] * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D) -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A] (?,1) 3. lbl32(A,B,C,D) -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (?,1) 4. start0(A,B,C,D) -> start(A,C,C,A) True (1,1) Signature: {(lbl32,4);(start,4);(start0,4);(stop,4)} Flow Graph: [1->{3},3->{3},4->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, A) (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl32) = x4 p(start) = -1 + x4 p(start0) = -1 + x1 The following rules are strictly oriented: [D >= 2 && D >= 1 && A >= 1 + D && B = C] ==> lbl32(A,B,C,D) = D > -1 + D = lbl32(A,B,C,-1 + D) The following rules are weakly oriented: [A >= 2 && B = C && D = A] ==> start(A,B,C,D) = -1 + D >= -1 + D = lbl32(A,B,C,-1 + D) True ==> start0(A,B,C,D) = -1 + A >= -1 + A = start(A,C,C,A) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D) -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A] (?,1) 3. lbl32(A,B,C,D) -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (1 + A,1) 4. start0(A,B,C,D) -> start(A,C,C,A) True (1,1) Signature: {(lbl32,4);(start,4);(start0,4);(stop,4)} Flow Graph: [1->{3},3->{3},4->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, A) (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, A) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D) -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A] (1,1) 3. lbl32(A,B,C,D) -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (1 + A,1) 4. start0(A,B,C,D) -> start(A,C,C,A) True (1,1) Signature: {(lbl32,4);(start,4);(start0,4);(stop,4)} Flow Graph: [1->{3},3->{3},4->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, A) (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, A) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))