WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D)  -> stop(A,B,C,D)       [1 >= A && B = C && D = A]                (?,1)
          1. start(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A]                (?,1)
          2. lbl32(A,B,C,D)  -> stop(A,B,C,D)       [A >= 2 && D = 1 && B = C]                (?,1)
          3. lbl32(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (?,1)
          4. start0(A,B,C,D) -> start(A,C,C,A)      True                                      (1,1)
        Signature:
          {(lbl32,4);(start,4);(start0,4);(stop,4)}
        Flow Graph:
          [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>,     D, .= 0) 
          (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, 1 + D, .+ 1) 
          (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>,     D, .= 0) 
          (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, 1 + D, .+ 1) 
          (<4,0,A>, A, .= 0) (<4,0,B>, C, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>,     A, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D)  -> stop(A,B,C,D)       [1 >= A && B = C && D = A]                (?,1)
          1. start(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A]                (?,1)
          2. lbl32(A,B,C,D)  -> stop(A,B,C,D)       [A >= 2 && D = 1 && B = C]                (?,1)
          3. lbl32(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (?,1)
          4. start0(A,B,C,D) -> start(A,C,C,A)      True                                      (1,1)
        Signature:
          {(lbl32,4);(start,4);(start0,4);(stop,4)}
        Flow Graph:
          [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>,     A) 
          (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) 
          (<2,0,A>, A) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, 1 + A) 
          (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>,     A) 
          (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>,     A) 
* Step 3: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D)  -> stop(A,B,C,D)       [1 >= A && B = C && D = A]                (?,1)
          1. start(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A]                (?,1)
          2. lbl32(A,B,C,D)  -> stop(A,B,C,D)       [A >= 2 && D = 1 && B = C]                (?,1)
          3. lbl32(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (?,1)
          4. start0(A,B,C,D) -> start(A,C,C,A)      True                                      (1,1)
        Signature:
          {(lbl32,4);(start,4);(start0,4);(stop,4)}
        Flow Graph:
          [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, C) (<0,0,C>, C) (<0,0,D>,     A) 
          (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) 
          (<2,0,A>, A) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, 1 + A) 
          (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>,     A) 
          (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>,     A) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [0,2]
* Step 4: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A]                (?,1)
          3. lbl32(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (?,1)
          4. start0(A,B,C,D) -> start(A,C,C,A)      True                                      (1,1)
        Signature:
          {(lbl32,4);(start,4);(start0,4);(stop,4)}
        Flow Graph:
          [1->{3},3->{3},4->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) 
          (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>,     A) 
          (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>,     A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(lbl32) = x4     
           p(start) = -1 + x4
          p(start0) = -1 + x1
        
        The following rules are strictly oriented:
        [D >= 2 && D >= 1 && A >= 1 + D && B = C] ==>                    
                                   lbl32(A,B,C,D)   = D                  
                                                    > -1 + D             
                                                    = lbl32(A,B,C,-1 + D)
        
        
        The following rules are weakly oriented:
        [A >= 2 && B = C && D = A] ==>                    
                    start(A,B,C,D)   = -1 + D             
                                    >= -1 + D             
                                     = lbl32(A,B,C,-1 + D)
        
                              True ==>                    
                   start0(A,B,C,D)   = -1 + A             
                                    >= -1 + A             
                                     = start(A,C,C,A)     
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A]                (?,1)    
          3. lbl32(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (1 + A,1)
          4. start0(A,B,C,D) -> start(A,C,C,A)      True                                      (1,1)    
        Signature:
          {(lbl32,4);(start,4);(start0,4);(stop,4)}
        Flow Graph:
          [1->{3},3->{3},4->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) 
          (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>,     A) 
          (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>,     A) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [A >= 2 && B = C && D = A]                (1,1)    
          3. lbl32(A,B,C,D)  -> lbl32(A,B,C,-1 + D) [D >= 2 && D >= 1 && A >= 1 + D && B = C] (1 + A,1)
          4. start0(A,B,C,D) -> start(A,C,C,A)      True                                      (1,1)    
        Signature:
          {(lbl32,4);(start,4);(start0,4);(stop,4)}
        Flow Graph:
          [1->{3},3->{3},4->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>, C) (<1,0,C>, C) (<1,0,D>, 1 + A) 
          (<3,0,A>, A) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>,     A) 
          (<4,0,A>, A) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>,     A) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))