WORST_CASE(?,O(n^2)) * Step 1: UnsatRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + A && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + E && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + C && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,0,K,L) [A >= 0 && E >= 0 && B = 0 && C = 0 && D = E && F = G && H = I && J = K && L = A] (?,1) 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (?,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (?,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 7. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [J >= C && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] (?,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 10. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + J,G,1,I,J,K,L) [A >= 1 + J (?,1) && E >= 1 && C >= 1 + J && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (?,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 13. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + J,G,1 + H,I,J,K,L) [A >= 1 + F (?,1) && E >= 1 + H && A + C >= 1 + F && A >= 0 && E >= H && F >= A && H >= 1 && J = F && L = A && D = E && B = C] 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (?,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (?,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [0->{},1->{},2->{},3->{},4->{7,8,9,10},5->{11,12,13},6->{14,15},7->{},8->{7,8,9,10},9->{11,12,13},10->{14 ,15},11->{7,8,9,10},12->{11,12,13},13->{14,15},14->{11,12,13},15->{14,15},16->{0,1,2,3,4,5,6}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [13] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + A && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + E && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + C && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,0,K,L) [A >= 0 && E >= 0 && B = 0 && C = 0 && D = E && F = G && H = I && J = K && L = A] (?,1) 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (?,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (?,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 7. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [J >= C && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] (?,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 10. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + J,G,1,I,J,K,L) [A >= 1 + J (?,1) && E >= 1 && C >= 1 + J && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (?,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (?,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (?,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [0->{},1->{},2->{},3->{},4->{7,8,9,10},5->{11,12},6->{14,15},7->{},8->{7,8,9,10},9->{11,12},10->{14,15} ,11->{7,8,9,10},12->{11,12},14->{11,12},15->{14,15},16->{0,1,2,3,4,5,6}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>, G, .= 0) (< 0,0,H>, H, .= 0) (< 0,0,I>, I, .= 0) (< 0,0,J>, J, .= 0) (< 0,0,K>, K, .= 0) (< 0,0,L>, L, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>, E, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, G, .= 0) (< 1,0,H>, H, .= 0) (< 1,0,I>, I, .= 0) (< 1,0,J>, J, .= 0) (< 1,0,K>, K, .= 0) (< 1,0,L>, L, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 2,0,H>, H, .= 0) (< 2,0,I>, I, .= 0) (< 2,0,J>, J, .= 0) (< 2,0,K>, K, .= 0) (< 2,0,L>, L, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 3,0,G>, G, .= 0) (< 3,0,H>, H, .= 0) (< 3,0,I>, I, .= 0) (< 3,0,J>, 0, .= 0) (< 3,0,K>, K, .= 0) (< 3,0,L>, L, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, 0, .= 0) (< 4,0,I>, I, .= 0) (< 4,0,J>, 1, .= 1) (< 4,0,K>, K, .= 0) (< 4,0,L>, L, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, 0, .= 0) (< 5,0,G>, G, .= 0) (< 5,0,H>, 1, .= 1) (< 5,0,I>, I, .= 0) (< 5,0,J>, 0, .= 0) (< 5,0,K>, K, .= 0) (< 5,0,L>, L, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, 1, .= 1) (< 6,0,G>, G, .= 0) (< 6,0,H>, 1, .= 1) (< 6,0,I>, I, .= 0) (< 6,0,J>, 0, .= 0) (< 6,0,K>, K, .= 0) (< 6,0,L>, L, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,I>, I, .= 0) (< 7,0,J>, J, .= 0) (< 7,0,K>, K, .= 0) (< 7,0,L>, L, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, G, .= 0) (< 8,0,H>, 0, .= 0) (< 8,0,I>, I, .= 0) (< 8,0,J>, 1 + J, .+ 1) (< 8,0,K>, K, .= 0) (< 8,0,L>, L, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, J, .= 0) (< 9,0,G>, G, .= 0) (< 9,0,H>, 1, .= 1) (< 9,0,I>, I, .= 0) (< 9,0,J>, J, .= 0) (< 9,0,K>, K, .= 0) (< 9,0,L>, L, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, 1 + J, .+ 1) (<10,0,G>, G, .= 0) (<10,0,H>, 1, .= 1) (<10,0,I>, I, .= 0) (<10,0,J>, J, .= 0) (<10,0,K>, K, .= 0) (<10,0,L>, L, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, E, .= 0) (<11,0,F>, F, .= 0) (<11,0,G>, G, .= 0) (<11,0,H>, H, .= 0) (<11,0,I>, I, .= 0) (<11,0,J>, 1 + J, .+ 1) (<11,0,K>, K, .= 0) (<11,0,L>, L, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<12,0,E>, E, .= 0) (<12,0,F>, J, .= 0) (<12,0,G>, G, .= 0) (<12,0,H>, 2 + H, .+ 2) (<12,0,I>, I, .= 0) (<12,0,J>, J, .= 0) (<12,0,K>, K, .= 0) (<12,0,L>, L, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, B, .= 0) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) (<14,0,E>, E, .= 0) (<14,0,F>, F, .= 0) (<14,0,G>, G, .= 0) (<14,0,H>, H, .= 0) (<14,0,I>, I, .= 0) (<14,0,J>, F, .= 0) (<14,0,K>, K, .= 0) (<14,0,L>, L, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>, 1 + F, .+ 1) (<15,0,G>, G, .= 0) (<15,0,H>, H, .= 0) (<15,0,I>, I, .= 0) (<15,0,J>, J, .= 0) (<15,0,K>, K, .= 0) (<15,0,L>, L, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, C, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, E, .= 0) (<16,0,E>, E, .= 0) (<16,0,F>, G, .= 0) (<16,0,G>, G, .= 0) (<16,0,H>, I, .= 0) (<16,0,I>, I, .= 0) (<16,0,J>, K, .= 0) (<16,0,K>, K, .= 0) (<16,0,L>, A, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + A && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + E && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + C && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,0,K,L) [A >= 0 && E >= 0 && B = 0 && C = 0 && D = E && F = G && H = I && J = K && L = A] (?,1) 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (?,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (?,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 7. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [J >= C && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] (?,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 10. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + J,G,1,I,J,K,L) [A >= 1 + J (?,1) && E >= 1 && C >= 1 + J && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (?,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (?,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (?,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [0->{},1->{},2->{},3->{},4->{7,8,9,10},5->{11,12},6->{14,15},7->{},8->{7,8,9,10},9->{11,12},10->{14,15} ,11->{7,8,9,10},12->{11,12},14->{11,12},15->{14,15},16->{0,1,2,3,4,5,6}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) (< 0,0,J>, ?) (< 0,0,K>, ?) (< 0,0,L>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) (< 1,0,J>, ?) (< 1,0,K>, ?) (< 1,0,L>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) (< 2,0,J>, ?) (< 2,0,K>, ?) (< 2,0,L>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) (< 3,0,J>, ?) (< 3,0,K>, ?) (< 3,0,L>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) (< 4,0,J>, ?) (< 4,0,K>, ?) (< 4,0,L>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) (< 5,0,J>, ?) (< 5,0,K>, ?) (< 5,0,L>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,I>, ?) (< 6,0,J>, ?) (< 6,0,K>, ?) (< 6,0,L>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) (< 7,0,J>, ?) (< 7,0,K>, ?) (< 7,0,L>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,I>, ?) (< 8,0,J>, ?) (< 8,0,K>, ?) (< 8,0,L>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,J>, ?) (< 9,0,K>, ?) (< 9,0,L>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,J>, ?) (<10,0,K>, ?) (<10,0,L>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<11,0,I>, ?) (<11,0,J>, ?) (<11,0,K>, ?) (<11,0,L>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<12,0,I>, ?) (<12,0,J>, ?) (<12,0,K>, ?) (<12,0,L>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) (<14,0,I>, ?) (<14,0,J>, ?) (<14,0,K>, ?) (<14,0,L>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<15,0,I>, ?) (<15,0,J>, ?) (<15,0,K>, ?) (<15,0,L>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,G>, ?) (<16,0,H>, ?) (<16,0,I>, ?) (<16,0,J>, ?) (<16,0,K>, ?) (<16,0,L>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, E) (< 0,0,E>, E) (< 0,0,F>, G) (< 0,0,G>, G) (< 0,0,H>, I) (< 0,0,I>, I) (< 0,0,J>, K) (< 0,0,K>, K) (< 0,0,L>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, K) (< 1,0,K>, K) (< 1,0,L>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, I) (< 2,0,I>, I) (< 2,0,J>, K) (< 2,0,K>, K) (< 2,0,L>, A) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, G) (< 3,0,G>, G) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, 0) (< 3,0,K>, K) (< 3,0,L>, A) (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 7,0,A>, A) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, 2 + A + C + G) (< 7,0,G>, G) (< 7,0,H>, 1 + E) (< 7,0,I>, I) (< 7,0,J>, 2 + C) (< 7,0,K>, K) (< 7,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, 2 + C) (<10,0,G>, G) (<10,0,H>, 1) (<10,0,I>, I) (<10,0,J>, 2 + C) (<10,0,K>, K) (<10,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) * Step 4: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + A && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + E && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + C && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,0,K,L) [A >= 0 && E >= 0 && B = 0 && C = 0 && D = E && F = G && H = I && J = K && L = A] (?,1) 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (?,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (?,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 7. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [J >= C && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] (?,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 10. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + J,G,1,I,J,K,L) [A >= 1 + J (?,1) && E >= 1 && C >= 1 + J && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (?,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (?,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (?,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [0->{},1->{},2->{},3->{},4->{7,8,9,10},5->{11,12},6->{14,15},7->{},8->{7,8,9,10},9->{11,12},10->{14,15} ,11->{7,8,9,10},12->{11,12},14->{11,12},15->{14,15},16->{0,1,2,3,4,5,6}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, E) (< 0,0,E>, E) (< 0,0,F>, G) (< 0,0,G>, G) (< 0,0,H>, I) (< 0,0,I>, I) (< 0,0,J>, K) (< 0,0,K>, K) (< 0,0,L>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, K) (< 1,0,K>, K) (< 1,0,L>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, I) (< 2,0,I>, I) (< 2,0,J>, K) (< 2,0,K>, K) (< 2,0,L>, A) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, G) (< 3,0,G>, G) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, 0) (< 3,0,K>, K) (< 3,0,L>, A) (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 7,0,A>, A) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, 2 + A + C + G) (< 7,0,G>, G) (< 7,0,H>, 1 + E) (< 7,0,I>, I) (< 7,0,J>, 2 + C) (< 7,0,K>, K) (< 7,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, 2 + C) (<10,0,G>, G) (<10,0,H>, 1) (<10,0,I>, I) (<10,0,J>, 2 + C) (<10,0,K>, K) (<10,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(4,9),(4,10),(8,9),(8,10),(11,8),(11,10)] * Step 5: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + A && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + E && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + C && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,0,K,L) [A >= 0 && E >= 0 && B = 0 && C = 0 && D = E && F = G && H = I && J = K && L = A] (?,1) 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (?,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (?,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 7. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [J >= C && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] (?,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 10. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + J,G,1,I,J,K,L) [A >= 1 + J (?,1) && E >= 1 && C >= 1 + J && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (?,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (?,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (?,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [0->{},1->{},2->{},3->{},4->{7,8},5->{11,12},6->{14,15},7->{},8->{7,8},9->{11,12},10->{14,15},11->{7,9} ,12->{11,12},14->{11,12},15->{14,15},16->{0,1,2,3,4,5,6}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, E) (< 0,0,E>, E) (< 0,0,F>, G) (< 0,0,G>, G) (< 0,0,H>, I) (< 0,0,I>, I) (< 0,0,J>, K) (< 0,0,K>, K) (< 0,0,L>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, K) (< 1,0,K>, K) (< 1,0,L>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, I) (< 2,0,I>, I) (< 2,0,J>, K) (< 2,0,K>, K) (< 2,0,L>, A) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, G) (< 3,0,G>, G) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, 0) (< 3,0,K>, K) (< 3,0,L>, A) (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 7,0,A>, A) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, 2 + A + C + G) (< 7,0,G>, G) (< 7,0,H>, 1 + E) (< 7,0,I>, I) (< 7,0,J>, 2 + C) (< 7,0,K>, K) (< 7,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, 2 + C) (<10,0,G>, G) (<10,0,H>, 1) (<10,0,I>, I) (<10,0,J>, 2 + C) (<10,0,K>, K) (<10,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [10] * Step 6: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + A && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + E && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [0 >= 1 + C && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 3. start(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,0,K,L) [A >= 0 && E >= 0 && B = 0 && C = 0 && D = E && F = G && H = I && J = K && L = A] (?,1) 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (?,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (?,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 7. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> stop(A,B,C,D,E,F,G,H,I,J,K,L) [J >= C && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] (?,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (?,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (?,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (?,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [0->{},1->{},2->{},3->{},4->{7,8},5->{11,12},6->{14,15},7->{},8->{7,8},9->{11,12},11->{7,9},12->{11,12} ,14->{11,12},15->{14,15},16->{0,1,2,3,4,5,6}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, E) (< 0,0,E>, E) (< 0,0,F>, G) (< 0,0,G>, G) (< 0,0,H>, I) (< 0,0,I>, I) (< 0,0,J>, K) (< 0,0,K>, K) (< 0,0,L>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, E) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, I) (< 1,0,I>, I) (< 1,0,J>, K) (< 1,0,K>, K) (< 1,0,L>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, E) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, I) (< 2,0,I>, I) (< 2,0,J>, K) (< 2,0,K>, K) (< 2,0,L>, A) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, E) (< 3,0,E>, E) (< 3,0,F>, G) (< 3,0,G>, G) (< 3,0,H>, I) (< 3,0,I>, I) (< 3,0,J>, 0) (< 3,0,K>, K) (< 3,0,L>, A) (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 7,0,A>, A) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, E) (< 7,0,E>, E) (< 7,0,F>, 2 + A + C + G) (< 7,0,G>, G) (< 7,0,H>, 1 + E) (< 7,0,I>, I) (< 7,0,J>, 2 + C) (< 7,0,K>, K) (< 7,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0,1,2,3,7] * Step 7: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (?,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (?,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (?,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (?,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (?,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [4->{8},5->{11,12},6->{14,15},8->{8},9->{11,12},11->{9},12->{11,12},14->{11,12},15->{14,15},16->{4,5,6}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = x1 + -1*x6 p(lbl121) = 0 p(lbl131) = 0 p(start) = x1 p(start0) = x1 The following rules are strictly oriented: [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] ==> lbl111(A,B,C,D,E,F,G,H,I,J,K,L) = A + -1*F > -1 + A + -1*F = lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) The following rules are weakly oriented: [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L) = A >= 0 = lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] ==> start(A,B,C,D,E,F,G,H,I,J,K,L) = A >= 0 = lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L) = A >= -1 + A = lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] ==> lbl131(A,B,C,D,E,F,G,H,I,J,K,L) = 0 >= 0 = lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [E >= 1 ==> && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] lbl131(A,B,C,D,E,F,G,H,I,J,K,L) = 0 >= 0 = lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] ==> lbl121(A,B,C,D,E,F,G,H,I,J,K,L) = 0 >= 0 = lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] ==> lbl121(A,B,C,D,E,F,G,H,I,J,K,L) = 0 >= 0 = lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] ==> lbl111(A,B,C,D,E,F,G,H,I,J,K,L) = A + -1*F >= 0 = lbl121(A,B,C,D,E,F,G,H,I,F,K,L) True ==> start0(A,B,C,D,E,F,G,H,I,J,K,L) = A >= A = start(A,C,C,E,E,G,G,I,I,K,K,A) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (?,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (?,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (?,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (?,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (?,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (A,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [4->{8},5->{11,12},6->{14,15},8->{8},9->{11,12},11->{9},12->{11,12},14->{11,12},15->{14,15},16->{4,5,6}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (1,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (1,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (1,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (?,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (1 + A,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (A,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [4->{8},5->{11,12},6->{14,15},8->{8},9->{11,12},11->{9},12->{11,12},14->{11,12},15->{14,15},16->{4,5,6}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = x1 + x2 + -1*x10 p(lbl121) = x1 + x2 + -1*x6 p(lbl131) = x1 + x2 + -1*x10 p(start) = x1 + x3 p(start0) = x1 + x3 The following rules are strictly oriented: [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L) = A + C > -1 + A + B = lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] ==> lbl121(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*F > -1 + A + B + -1*J = lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] ==> lbl111(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*J > A + B + -1*F = lbl121(A,B,C,D,E,F,G,H,I,F,K,L) The following rules are weakly oriented: [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] ==> start(A,B,C,D,E,F,G,H,I,J,K,L) = A + C >= A + B = lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L) = A + C >= A + B = lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] ==> lbl131(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*J >= -1 + A + B + -1*J = lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [E >= 1 ==> && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] lbl131(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*J >= A + B + -1*J = lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] ==> lbl121(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*F >= A + B + -1*J = lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] ==> lbl111(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*J >= A + B + -1*J = lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) True ==> start0(A,B,C,D,E,F,G,H,I,J,K,L) = A + C >= A + C = start(A,C,C,E,E,G,G,I,I,K,K,A) * Step 10: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (1,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (1,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (1,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (?,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (A + C,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (1 + A,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (A,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [4->{8},5->{11,12},6->{14,15},8->{8},9->{11,12},11->{9},12->{11,12},14->{11,12},15->{14,15},16->{4,5,6}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 11: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (1,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (1,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (1,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (?,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (A + C,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (A + C,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (1 + A,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (A,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [4->{8},5->{11,12},6->{14,15},8->{8},9->{11,12},11->{9},12->{11,12},14->{11,12},15->{14,15},16->{4,5,6}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = x1 + x3 + -1*x10 p(lbl121) = x1 + x2 + -1*x10 p(lbl131) = x1 + x2 + -1*x10 p(start) = -1 + x1 + 2*x3 p(start0) = -1 + x1 + 2*x3 The following rules are strictly oriented: [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L) = -1 + A + 2*C > -1 + A + B = lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] ==> lbl131(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*J > -1 + A + B + -1*J = lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] ==> lbl121(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*J > -1 + A + B + -1*J = lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] ==> lbl111(A,B,C,D,E,F,G,H,I,J,K,L) = A + C + -1*J > A + B + -1*F = lbl121(A,B,C,D,E,F,G,H,I,F,K,L) The following rules are weakly oriented: [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] ==> start(A,B,C,D,E,F,G,H,I,J,K,L) = -1 + A + 2*C >= A + B = lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L) = -1 + A + 2*C >= A + C = lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [E >= 1 ==> && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] lbl131(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*J >= A + B + -1*J = lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] ==> lbl121(A,B,C,D,E,F,G,H,I,J,K,L) = A + B + -1*J >= A + B + -1*J = lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] ==> lbl111(A,B,C,D,E,F,G,H,I,J,K,L) = A + C + -1*J >= A + C + -1*J = lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) True ==> start0(A,B,C,D,E,F,G,H,I,J,K,L) = -1 + A + 2*C >= -1 + A + 2*C = start(A,C,C,E,E,G,G,I,I,K,K,A) * Step 12: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (1,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (1,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (1,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (1 + A + 2*C,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (A + C,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (A + C,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (?,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (1 + A,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (A,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [4->{8},5->{11,12},6->{14,15},8->{8},9->{11,12},11->{9},12->{11,12},14->{11,12},15->{14,15},16->{4,5,6}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [12], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl121) = 1 + x5 + -1*x8 The following rules are strictly oriented: [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] ==> lbl121(A,B,C,D,E,F,G,H,I,J,K,L) = 1 + E + -1*H > E + -1*H = lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) The following rules are weakly oriented: We use the following global sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) * Step 13: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1,K,L) [A >= 0 && C >= 1 && D = 0 && B = C && E = 0 && F = G && H = I && J = K && L = A] (1,1) 5. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,0,G,1,I,0,K,L) [E >= 1 && C >= 1 && L = 0 && B = C && D = E && F = G && H = I && J = K && A = 0] (1,1) 6. start(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1,G,1,I,0,K,L) [A >= 1 && E >= 1 && C >= 1 && B = C && D = E && F = G && H = I && J = K && L = A] (1,1) 8. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,0,I,1 + J,K,L) [C >= 1 + J && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = 0 && D = 0 && L = A && E = 0 && B = C] (1 + A + 2*C,1) 9. lbl131(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1,I,J,K,L) [E >= 1 (A + C,1) && C >= 1 + J && J >= A && E >= 0 && A >= 0 && C >= 1 && A + C >= J && J >= 1 && H = E && L = A && D = E && B = C] 11. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl131(A,B,C,D,E,F,G,H,I,1 + J,K,L) [A + C >= 1 + F && A >= 0 && F >= A && E >= 1 && H = E && J = F && L = A && D = E && B = C] (A + C,1) 12. lbl121(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,J,G,1 + H,I,J,K,L) [E >= 1 + H && F >= A && A + C >= 1 + F && A >= 0 && E >= H && H >= 1 && J = F && L = A && D = E && B = C] (4 + 4*A + 2*A*E + 2*C + C*E + 2*E,1) 14. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl121(A,B,C,D,E,F,G,H,I,F,K,L) [A >= 1 + J && E >= 1 && J >= 0 && C >= 1 + J && F = A && H = 1 && L = A && D = E && B = C] (1 + A,1) 15. lbl111(A,B,C,D,E,F,G,H,I,J,K,L) -> lbl111(A,B,C,D,E,1 + F,G,H,I,J,K,L) [A >= 1 + F && F >= 1 + J && E >= 1 && J >= 0 && A >= F && C >= 1 + J && H = 1 && L = A && D = E && B = C] (A,1) 16. start0(A,B,C,D,E,F,G,H,I,J,K,L) -> start(A,C,C,E,E,G,G,I,I,K,K,A) True (1,1) Signature: {(lbl111,12);(lbl121,12);(lbl131,12);(start,12);(start0,12);(stop,12)} Flow Graph: [4->{8},5->{11,12},6->{14,15},8->{8},9->{11,12},11->{9},12->{11,12},14->{11,12},15->{14,15},16->{4,5,6}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, E) (< 4,0,E>, E) (< 4,0,F>, G) (< 4,0,G>, G) (< 4,0,H>, 0) (< 4,0,I>, I) (< 4,0,J>, 1) (< 4,0,K>, K) (< 4,0,L>, A) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, E) (< 5,0,E>, E) (< 5,0,F>, 0) (< 5,0,G>, G) (< 5,0,H>, 1) (< 5,0,I>, I) (< 5,0,J>, 0) (< 5,0,K>, K) (< 5,0,L>, A) (< 6,0,A>, A) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, E) (< 6,0,E>, E) (< 6,0,F>, 1) (< 6,0,G>, G) (< 6,0,H>, 1) (< 6,0,I>, I) (< 6,0,J>, 0) (< 6,0,K>, K) (< 6,0,L>, A) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, E) (< 8,0,E>, E) (< 8,0,F>, 2 + A + C + G) (< 8,0,G>, G) (< 8,0,H>, 0) (< 8,0,I>, I) (< 8,0,J>, C) (< 8,0,K>, K) (< 8,0,L>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, E) (< 9,0,E>, E) (< 9,0,F>, 2 + C) (< 9,0,G>, G) (< 9,0,H>, 1) (< 9,0,I>, I) (< 9,0,J>, C) (< 9,0,K>, K) (< 9,0,L>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, E) (<11,0,E>, E) (<11,0,F>, 2 + A + C) (<11,0,G>, G) (<11,0,H>, 1 + E) (<11,0,I>, I) (<11,0,J>, 2 + C) (<11,0,K>, K) (<11,0,L>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, E) (<12,0,E>, E) (<12,0,F>, 1 + C) (<12,0,G>, G) (<12,0,H>, E) (<12,0,I>, I) (<12,0,J>, 1 + C) (<12,0,K>, K) (<12,0,L>, A) (<14,0,A>, A) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, E) (<14,0,E>, E) (<14,0,F>, 2 + A + C) (<14,0,G>, G) (<14,0,H>, 1) (<14,0,I>, I) (<14,0,J>, 1) (<14,0,K>, K) (<14,0,L>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, E) (<15,0,E>, E) (<15,0,F>, A) (<15,0,G>, G) (<15,0,H>, 1) (<15,0,I>, I) (<15,0,J>, A) (<15,0,K>, K) (<15,0,L>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, E) (<16,0,E>, E) (<16,0,F>, G) (<16,0,G>, G) (<16,0,H>, I) (<16,0,I>, I) (<16,0,J>, K) (<16,0,K>, K) (<16,0,L>, A) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))