WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,E,F,D,H)        [0 >= 1 + A && B = C && D = A && E = F && G = H]    (?,1)
          1.  start(A,B,C,D,E,F,G,H)  -> lbl142(A,B,C,D,0,F,-1 + D,H) [D = 0 && B = C && A = 0 && E = F && G = H]         (?,1)
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          4.  lbl142(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H)        [A >= 0 && 1 + G = 0 && E = 0 && D = A]             (?,1)
          5.  lbl142(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + G,H) [A >= 1 && G = 0 && E = 1 && D = A]                 (?,1)
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (?,1)
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (?,1)
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [0->{},1->{4,5,6,7},2->{11},3->{8,9,10},4->{},5->{4,5,6,7},6->{11},7->{8,9,10},8->{4,5,6,7},9->{11},10->{8
          ,9,10},11->{8,9,10},12->{0,1,2,3}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>,     E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>,     D, .= 0) (< 0,0,H>, H, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>,     0, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>,     1, .= 1) (< 1,0,H>, H, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>, ?,   .?) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>,     0, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,G>,     D, .= 0) (< 2,0,H>, H, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>,     1, .= 1) (< 3,0,F>, F, .= 0) (< 3,0,G>,     D, .= 0) (< 3,0,H>, H, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>,     E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>,     G, .= 0) (< 4,0,H>, H, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>,     0, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>,     1, .= 1) (< 5,0,H>, H, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>, ?,   .?) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>,     0, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>,     G, .= 0) (< 6,0,H>, H, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>,     1, .= 1) (< 7,0,F>, F, .= 0) (< 7,0,G>,     G, .= 0) (< 7,0,H>, H, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>,     E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, 1 + G, .+ 1) (< 8,0,H>, H, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>, ?,   .?) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>,     E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>,     G, .= 0) (< 9,0,H>, H, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 2 + E, .+ 2) (<10,0,F>, F, .= 0) (<10,0,G>,     G, .= 0) (<10,0,H>, H, .= 0) 
          (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, 1 + E, .+ 1) (<11,0,F>, F, .= 0) (<11,0,G>,     G, .= 0) (<11,0,H>, H, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>, C, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, A, .= 0) (<12,0,E>,     F, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>,     H, .= 0) (<12,0,H>, H, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,E,F,D,H)        [0 >= 1 + A && B = C && D = A && E = F && G = H]    (?,1)
          1.  start(A,B,C,D,E,F,G,H)  -> lbl142(A,B,C,D,0,F,-1 + D,H) [D = 0 && B = C && A = 0 && E = F && G = H]         (?,1)
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          4.  lbl142(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H)        [A >= 0 && 1 + G = 0 && E = 0 && D = A]             (?,1)
          5.  lbl142(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + G,H) [A >= 1 && G = 0 && E = 1 && D = A]                 (?,1)
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (?,1)
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (?,1)
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [0->{},1->{4,5,6,7},2->{11},3->{8,9,10},4->{},5->{4,5,6,7},6->{11},7->{8,9,10},8->{4,5,6,7},9->{11},10->{8
          ,9,10},11->{8,9,10},12->{0,1,2,3}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>,     F) (< 0,0,F>, F) (< 0,0,G>,     A) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>,     1) (< 1,0,H>, H) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>,     A) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>,     A) (< 3,0,H>, H) 
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>, 1 + A) (< 4,0,F>, F) (< 4,0,G>, 1 + A) (< 4,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>,     0) (< 5,0,F>, F) (< 5,0,G>,     1) (< 5,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>,     A) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>,     A) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>,     A) (<10,0,H>, H) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>,     A) (<11,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>,     H) (<12,0,H>, H) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,E,F,D,H)        [0 >= 1 + A && B = C && D = A && E = F && G = H]    (?,1)
          1.  start(A,B,C,D,E,F,G,H)  -> lbl142(A,B,C,D,0,F,-1 + D,H) [D = 0 && B = C && A = 0 && E = F && G = H]         (?,1)
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          4.  lbl142(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H)        [A >= 0 && 1 + G = 0 && E = 0 && D = A]             (?,1)
          5.  lbl142(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + G,H) [A >= 1 && G = 0 && E = 1 && D = A]                 (?,1)
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (?,1)
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (?,1)
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [0->{},1->{4,5,6,7},2->{11},3->{8,9,10},4->{},5->{4,5,6,7},6->{11},7->{8,9,10},8->{4,5,6,7},9->{11},10->{8
          ,9,10},11->{8,9,10},12->{0,1,2,3}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>,     F) (< 0,0,F>, F) (< 0,0,G>,     A) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>,     1) (< 1,0,H>, H) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>,     A) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>,     A) (< 3,0,H>, H) 
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>, 1 + A) (< 4,0,F>, F) (< 4,0,G>, 1 + A) (< 4,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>,     0) (< 5,0,F>, F) (< 5,0,G>,     1) (< 5,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>,     A) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>,     A) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>,     A) (<10,0,H>, H) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>,     A) (<11,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>,     H) (<12,0,H>, H) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,5),(1,6),(1,7),(5,5),(5,6),(5,7),(8,4)]
* Step 4: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,E,F,D,H)        [0 >= 1 + A && B = C && D = A && E = F && G = H]    (?,1)
          1.  start(A,B,C,D,E,F,G,H)  -> lbl142(A,B,C,D,0,F,-1 + D,H) [D = 0 && B = C && A = 0 && E = F && G = H]         (?,1)
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          4.  lbl142(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H)        [A >= 0 && 1 + G = 0 && E = 0 && D = A]             (?,1)
          5.  lbl142(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + G,H) [A >= 1 && G = 0 && E = 1 && D = A]                 (?,1)
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (?,1)
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (?,1)
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [0->{},1->{4},2->{11},3->{8,9,10},4->{},5->{4},6->{11},7->{8,9,10},8->{5,6,7},9->{11},10->{8,9,10},11->{8
          ,9,10},12->{0,1,2,3}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>,     F) (< 0,0,F>, F) (< 0,0,G>,     A) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>,     1) (< 1,0,H>, H) 
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>,     A) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>,     A) (< 3,0,H>, H) 
          (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>, 1 + A) (< 4,0,F>, F) (< 4,0,G>, 1 + A) (< 4,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>,     0) (< 5,0,F>, F) (< 5,0,G>,     1) (< 5,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>,     A) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>,     A) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>,     A) (<10,0,H>, H) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>,     A) (<11,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>,     H) (<12,0,H>, H) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [1,5,0,4]
* Step 5: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (?,1)
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (?,1)
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl131) = 1 + x7
          p(lbl142) = 1 + x7
           p(lbl91) = 1 + x7
           p(start) = 1 + x1
          p(start0) = 1 + x1
        
        The following rules are strictly oriented:
        [G >= 1 && A >= G && E = G && D = A] ==>                             
                     lbl131(A,B,C,D,E,F,G,H)   = 1 + G                       
                                               > G                           
                                               = lbl142(A,B,C,D,E,F,-1 + G,H)
        
        
        The following rules are weakly oriented:
               [A >= 1 && B = C && D = A && E = F && G = H] ==>                            
                                     start(A,B,C,D,E,F,G,H)   = 1 + A                      
                                                             >= 1 + D                      
                                                              = lbl91(A,I,C,D,0,F,D,H)     
        
               [A >= 1 && B = C && D = A && E = F && G = H] ==>                            
                                     start(A,B,C,D,E,F,G,H)   = 1 + A                      
                                                             >= 1 + D                      
                                                              = lbl131(A,B,C,D,1,F,D,H)    
        
         [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==>                            
                                    lbl142(A,B,C,D,E,F,G,H)   = 1 + G                      
                                                             >= 1 + G                      
                                                              = lbl91(A,I,C,D,0,F,G,H)     
        
         [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==>                            
                                    lbl142(A,B,C,D,E,F,G,H)   = 1 + G                      
                                                             >= 1 + G                      
                                                              = lbl131(A,B,C,D,1,F,G,H)    
        
        [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==>                            
                                    lbl131(A,B,C,D,E,F,G,H)   = 1 + G                      
                                                             >= 1 + G                      
                                                              = lbl91(A,I,C,D,E,F,G,H)     
        
        [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==>                            
                                    lbl131(A,B,C,D,E,F,G,H)   = 1 + G                      
                                                             >= 1 + G                      
                                                              = lbl131(A,B,C,D,1 + E,F,G,H)
        
                  [E >= 0 && G >= 1 + E && A >= G && D = A] ==>                            
                                     lbl91(A,B,C,D,E,F,G,H)   = 1 + G                      
                                                             >= 1 + G                      
                                                              = lbl131(A,B,C,D,1 + E,F,G,H)
        
                                                       True ==>                            
                                    start0(A,B,C,D,E,F,G,H)   = 1 + A                      
                                                             >= 1 + A                      
                                                              = start(A,C,C,A,F,F,H,H)     
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)    
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (?,1)    
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)    
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (?,1)    
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (1 + A,1)
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)    
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)    
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (?,1)    
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)    
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (1,1)    
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (1,1)    
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (1 + A,1)
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (1 + A,1)
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (1 + A,1)
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)    
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)    
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (?,1)    
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)    
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [11,6,7,10,9], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl131) = -1*x5 + x7
          p(lbl142) = x7        
           p(lbl91) = -1*x5 + x7
        
        The following rules are strictly oriented:
        [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==>                            
                                   lbl142(A,B,C,D,E,F,G,H)   = G                          
                                                             > -1 + G                     
                                                             = lbl131(A,B,C,D,1,F,G,H)    
        
                 [E >= 0 && G >= 1 + E && A >= G && D = A] ==>                            
                                    lbl91(A,B,C,D,E,F,G,H)   = -1*E + G                   
                                                             > -1 + -1*E + G              
                                                             = lbl131(A,B,C,D,1 + E,F,G,H)
        
        
        The following rules are weakly oriented:
         [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==>                            
                                    lbl142(A,B,C,D,E,F,G,H)   = G                          
                                                             >= G                          
                                                              = lbl91(A,I,C,D,0,F,G,H)     
        
        [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==>                            
                                    lbl131(A,B,C,D,E,F,G,H)   = -1*E + G                   
                                                             >= -1*E + G                   
                                                              = lbl91(A,I,C,D,E,F,G,H)     
        
        [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==>                            
                                    lbl131(A,B,C,D,E,F,G,H)   = -1*E + G                   
                                                             >= -1 + -1*E + G              
                                                              = lbl131(A,B,C,D,1 + E,F,G,H)
        
        We use the following global sizebounds:
        (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) 
        (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) 
        (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) 
        (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) 
        (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) 
        (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) 
        (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) 
        (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) 
        (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) 
* Step 8: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (1,1)            
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (1,1)            
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (1 + A,1)        
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (1 + A,1)        
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (1 + A,1)        
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)            
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)            
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (1 + 3*A + A^2,1)
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)            
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [8,7,10,9], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl131) = 1
          p(lbl142) = 1
           p(lbl91) = 0
        
        The following rules are strictly oriented:
        [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==>                       
                                    lbl131(A,B,C,D,E,F,G,H)   = 1                     
                                                              > 0                     
                                                              = lbl91(A,I,C,D,E,F,G,H)
        
        
        The following rules are weakly oriented:
         [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==>                             
                                    lbl142(A,B,C,D,E,F,G,H)   = 1                           
                                                             >= 1                           
                                                              = lbl131(A,B,C,D,1,F,G,H)     
        
                       [G >= 1 && A >= G && E = G && D = A] ==>                             
                                    lbl131(A,B,C,D,E,F,G,H)   = 1                           
                                                             >= 1                           
                                                              = lbl142(A,B,C,D,E,F,-1 + G,H)
        
        [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==>                             
                                    lbl131(A,B,C,D,E,F,G,H)   = 1                           
                                                             >= 1                           
                                                              = lbl131(A,B,C,D,1 + E,F,G,H) 
        
        We use the following global sizebounds:
        (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) 
        (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) 
        (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) 
        (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) 
        (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) 
        (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) 
        (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) 
        (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) 
        (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) 
* Step 9: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (1,1)            
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (1,1)            
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (1 + A,1)        
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (1 + A,1)        
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (1 + A,1)        
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (2 + 3*A + A^2,1)
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1)            
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (1 + 3*A + A^2,1)
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)            
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [11,6,7,10,9], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl131) = 1 + -1*x5 + x7
          p(lbl142) = x7            
           p(lbl91) = -1*x5 + x7    
        
        The following rules are strictly oriented:
        [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==>                            
                                    lbl131(A,B,C,D,E,F,G,H)   = 1 + -1*E + G               
                                                              > -1*E + G                   
                                                              = lbl91(A,I,C,D,E,F,G,H)     
        
        [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==>                            
                                    lbl131(A,B,C,D,E,F,G,H)   = 1 + -1*E + G               
                                                              > -1*E + G                   
                                                              = lbl131(A,B,C,D,1 + E,F,G,H)
        
        
        The following rules are weakly oriented:
        [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==>                            
                                   lbl142(A,B,C,D,E,F,G,H)   = G                          
                                                            >= G                          
                                                             = lbl91(A,I,C,D,0,F,G,H)     
        
        [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==>                            
                                   lbl142(A,B,C,D,E,F,G,H)   = G                          
                                                            >= G                          
                                                             = lbl131(A,B,C,D,1,F,G,H)    
        
                 [E >= 0 && G >= 1 + E && A >= G && D = A] ==>                            
                                    lbl91(A,B,C,D,E,F,G,H)   = -1*E + G                   
                                                            >= -1*E + G                   
                                                             = lbl131(A,B,C,D,1 + E,F,G,H)
        
        We use the following global sizebounds:
        (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) 
        (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) 
        (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) 
        (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) 
        (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) 
        (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) 
        (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) 
        (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) 
        (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) 
* Step 10: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2.  start(A,B,C,D,E,F,G,H)  -> lbl91(A,I,C,D,0,F,D,H)       [A >= 1 && B = C && D = A && E = F && G = H]        (1,1)            
          3.  start(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1,F,D,H)      [A >= 1 && B = C && D = A && E = F && G = H]        (1,1)            
          6.  lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H)       [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (1 + A,1)        
          7.  lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H)      [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A]  (1 + A,1)        
          8.  lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A]                (1 + A,1)        
          9.  lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H)       [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (2 + 3*A + A^2,1)
          10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H)  [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (2 + 3*A + A^2,1)
          11. lbl91(A,B,C,D,E,F,G,H)  -> lbl131(A,B,C,D,1 + E,F,G,H)  [E >= 0 && G >= 1 + E && A >= G && D = A]           (1 + 3*A + A^2,1)
          12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)       True                                                (1,1)            
        Signature:
          {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}]
        Sizebounds:
          (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>,     0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>,     A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) 
          (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>,     A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))