WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,D,H) [0 >= 1 + A && B = C && D = A && E = F && G = H] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + D,H) [D = 0 && B = C && A = 0 && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 4. lbl142(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 0 && 1 + G = 0 && E = 0 && D = A] (?,1) 5. lbl142(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + G,H) [A >= 1 && G = 0 && E = 1 && D = A] (?,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (?,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (?,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{4,5,6,7},2->{11},3->{8,9,10},4->{},5->{4,5,6,7},6->{11},7->{8,9,10},8->{4,5,6,7},9->{11},10->{8 ,9,10},11->{8,9,10},12->{0,1,2,3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>, D, .= 0) (< 0,0,H>, H, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>, 0, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, 1, .= 1) (< 1,0,H>, H, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, ?, .?) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, 0, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,G>, D, .= 0) (< 2,0,H>, H, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, 1, .= 1) (< 3,0,F>, F, .= 0) (< 3,0,G>, D, .= 0) (< 3,0,H>, H, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>, G, .= 0) (< 4,0,H>, H, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, 0, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>, 1, .= 1) (< 5,0,H>, H, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, ?, .?) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, 0, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>, G, .= 0) (< 6,0,H>, H, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, 1, .= 1) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, 1 + G, .+ 1) (< 8,0,H>, H, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, ?, .?) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, G, .= 0) (< 9,0,H>, H, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 2 + E, .+ 2) (<10,0,F>, F, .= 0) (<10,0,G>, G, .= 0) (<10,0,H>, H, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, 1 + E, .+ 1) (<11,0,F>, F, .= 0) (<11,0,G>, G, .= 0) (<11,0,H>, H, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, C, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, A, .= 0) (<12,0,E>, F, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>, H, .= 0) (<12,0,H>, H, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,D,H) [0 >= 1 + A && B = C && D = A && E = F && G = H] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + D,H) [D = 0 && B = C && A = 0 && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 4. lbl142(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 0 && 1 + G = 0 && E = 0 && D = A] (?,1) 5. lbl142(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + G,H) [A >= 1 && G = 0 && E = 1 && D = A] (?,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (?,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (?,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{4,5,6,7},2->{11},3->{8,9,10},4->{},5->{4,5,6,7},6->{11},7->{8,9,10},8->{4,5,6,7},9->{11},10->{8 ,9,10},11->{8,9,10},12->{0,1,2,3}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>, F) (< 0,0,F>, F) (< 0,0,G>, A) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, 1) (< 1,0,H>, H) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>, 1 + A) (< 4,0,F>, F) (< 4,0,G>, 1 + A) (< 4,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, 0) (< 5,0,F>, F) (< 5,0,G>, 1) (< 5,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) * Step 3: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,D,H) [0 >= 1 + A && B = C && D = A && E = F && G = H] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + D,H) [D = 0 && B = C && A = 0 && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 4. lbl142(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 0 && 1 + G = 0 && E = 0 && D = A] (?,1) 5. lbl142(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + G,H) [A >= 1 && G = 0 && E = 1 && D = A] (?,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (?,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (?,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{4,5,6,7},2->{11},3->{8,9,10},4->{},5->{4,5,6,7},6->{11},7->{8,9,10},8->{4,5,6,7},9->{11},10->{8 ,9,10},11->{8,9,10},12->{0,1,2,3}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>, F) (< 0,0,F>, F) (< 0,0,G>, A) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, 1) (< 1,0,H>, H) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>, 1 + A) (< 4,0,F>, F) (< 4,0,G>, 1 + A) (< 4,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, 0) (< 5,0,F>, F) (< 5,0,G>, 1) (< 5,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,5),(1,6),(1,7),(5,5),(5,6),(5,7),(8,4)] * Step 4: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,D,H) [0 >= 1 + A && B = C && D = A && E = F && G = H] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + D,H) [D = 0 && B = C && A = 0 && E = F && G = H] (?,1) 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 4. lbl142(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A >= 0 && 1 + G = 0 && E = 0 && D = A] (?,1) 5. lbl142(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,0,F,-1 + G,H) [A >= 1 && G = 0 && E = 1 && D = A] (?,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (?,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (?,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{4},2->{11},3->{8,9,10},4->{},5->{4},6->{11},7->{8,9,10},8->{5,6,7},9->{11},10->{8,9,10},11->{8 ,9,10},12->{0,1,2,3}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>, F) (< 0,0,F>, F) (< 0,0,G>, A) (< 0,0,H>, H) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, 1) (< 1,0,H>, H) (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>, 1 + A) (< 4,0,F>, F) (< 4,0,G>, 1 + A) (< 4,0,H>, H) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, 0) (< 5,0,F>, F) (< 5,0,G>, 1) (< 5,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [1,5,0,4] * Step 5: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (?,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (?,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl131) = 1 + x7 p(lbl142) = 1 + x7 p(lbl91) = 1 + x7 p(start) = 1 + x1 p(start0) = 1 + x1 The following rules are strictly oriented: [G >= 1 && A >= G && E = G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = 1 + G > G = lbl142(A,B,C,D,E,F,-1 + G,H) The following rules are weakly oriented: [A >= 1 && B = C && D = A && E = F && G = H] ==> start(A,B,C,D,E,F,G,H) = 1 + A >= 1 + D = lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] ==> start(A,B,C,D,E,F,G,H) = 1 + A >= 1 + D = lbl131(A,B,C,D,1,F,D,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==> lbl142(A,B,C,D,E,F,G,H) = 1 + G >= 1 + G = lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==> lbl142(A,B,C,D,E,F,G,H) = 1 + G >= 1 + G = lbl131(A,B,C,D,1,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = 1 + G >= 1 + G = lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = 1 + G >= 1 + G = lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] ==> lbl91(A,B,C,D,E,F,G,H) = 1 + G >= 1 + G = lbl131(A,B,C,D,1 + E,F,G,H) True ==> start0(A,B,C,D,E,F,G,H) = 1 + A >= 1 + A = start(A,C,C,A,F,F,H,H) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (?,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (?,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (1 + A,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (?,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (1,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (1,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (1 + A,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (1 + A,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (1 + A,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (?,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [11,6,7,10,9], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl131) = -1*x5 + x7 p(lbl142) = x7 p(lbl91) = -1*x5 + x7 The following rules are strictly oriented: [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==> lbl142(A,B,C,D,E,F,G,H) = G > -1 + G = lbl131(A,B,C,D,1,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] ==> lbl91(A,B,C,D,E,F,G,H) = -1*E + G > -1 + -1*E + G = lbl131(A,B,C,D,1 + E,F,G,H) The following rules are weakly oriented: [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==> lbl142(A,B,C,D,E,F,G,H) = G >= G = lbl91(A,I,C,D,0,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = -1*E + G >= -1*E + G = lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = -1*E + G >= -1 + -1*E + G = lbl131(A,B,C,D,1 + E,F,G,H) We use the following global sizebounds: (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) * Step 8: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (1,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (1,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (1 + A,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (1 + A,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (1 + A,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (1 + 3*A + A^2,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [8,7,10,9], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl131) = 1 p(lbl142) = 1 p(lbl91) = 0 The following rules are strictly oriented: [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = 1 > 0 = lbl91(A,I,C,D,E,F,G,H) The following rules are weakly oriented: [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==> lbl142(A,B,C,D,E,F,G,H) = 1 >= 1 = lbl131(A,B,C,D,1,F,G,H) [G >= 1 && A >= G && E = G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = 1 >= 1 = lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = 1 >= 1 = lbl131(A,B,C,D,1 + E,F,G,H) We use the following global sizebounds: (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) * Step 9: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (1,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (1,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (1 + A,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (1 + A,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (1 + A,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (2 + 3*A + A^2,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (?,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (1 + 3*A + A^2,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [11,6,7,10,9], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl131) = 1 + -1*x5 + x7 p(lbl142) = x7 p(lbl91) = -1*x5 + x7 The following rules are strictly oriented: [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = 1 + -1*E + G > -1*E + G = lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] ==> lbl131(A,B,C,D,E,F,G,H) = 1 + -1*E + G > -1*E + G = lbl131(A,B,C,D,1 + E,F,G,H) The following rules are weakly oriented: [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==> lbl142(A,B,C,D,E,F,G,H) = G >= G = lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] ==> lbl142(A,B,C,D,E,F,G,H) = G >= G = lbl131(A,B,C,D,1,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] ==> lbl91(A,B,C,D,E,F,G,H) = -1*E + G >= -1*E + G = lbl131(A,B,C,D,1 + E,F,G,H) We use the following global sizebounds: (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) * Step 10: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (1,1) 3. start(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,D,H) [A >= 1 && B = C && D = A && E = F && G = H] (1,1) 6. lbl142(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,0,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (1 + A,1) 7. lbl142(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1,F,G,H) [E >= 2 && E >= 0 && A >= E && 1 + G = E && D = A] (1 + A,1) 8. lbl131(A,B,C,D,E,F,G,H) -> lbl142(A,B,C,D,E,F,-1 + G,H) [G >= 1 && A >= G && E = G && D = A] (1 + A,1) 9. lbl131(A,B,C,D,E,F,G,H) -> lbl91(A,I,C,D,E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (2 + 3*A + A^2,1) 10. lbl131(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [G >= 1 + E && G >= E && E >= 1 && A >= G && D = A] (2 + 3*A + A^2,1) 11. lbl91(A,B,C,D,E,F,G,H) -> lbl131(A,B,C,D,1 + E,F,G,H) [E >= 0 && G >= 1 + E && A >= G && D = A] (1 + 3*A + A^2,1) 12. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H) True (1,1) Signature: {(lbl131,8);(lbl142,8);(lbl91,8);(start,8);(start0,8);(stop,8)} Flow Graph: [2->{11},3->{8,9,10},6->{11},7->{8,9,10},8->{6,7},9->{11},10->{8,9,10},11->{8,9,10},12->{2,3}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, ?) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, 0) (< 2,0,F>, F) (< 2,0,G>, A) (< 2,0,H>, H) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, A) (< 3,0,H>, H) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 0) (< 6,0,F>, F) (< 6,0,G>, A) (< 6,0,H>, H) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 1) (< 7,0,F>, F) (< 7,0,G>, A) (< 7,0,H>, H) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A) (< 8,0,F>, F) (< 8,0,G>, A) (< 8,0,H>, H) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>, A) (< 9,0,H>, H) (<10,0,A>, A) (<10,0,B>, ?) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, A) (<10,0,F>, F) (<10,0,G>, A) (<10,0,H>, H) (<11,0,A>, A) (<11,0,B>, ?) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, A) (<11,0,F>, F) (<11,0,G>, A) (<11,0,H>, H) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>, F) (<12,0,F>, F) (<12,0,G>, H) (<12,0,H>, H) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))