WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D) -> stop(A,B,C,D) [A >= 30 && B = C && D = A] (?,1) 1. start(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [C >= A && 29 >= A && B = C && D = A] (?,1) 2. start(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [A >= 1 + C && C >= 6 && 29 >= A && B = C && D = A] (?,1) 3. start(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [A >= 1 + C && 5 >= C && 29 >= A && B = C && D = A] (?,1) 4. lbl171(A,B,C,D) -> stop(A,B,C,D) [D >= 30 (?,1) && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 11. start0(A,B,C,D) -> start(A,C,C,A) True (1,1) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [0->{},1->{4,5,6,7},2->{8,9,10},3->{8,9,10},4->{},5->{4,5,6,7},6->{8,9,10},7->{8,9,10},8->{4,5,6,7},9->{8 ,9,10},10->{8,9,10},11->{0,1,2,3}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, 10 + B, .+ 10) (< 1,0,C>, C, .= 0) (< 1,0,D>, 2 + D, .+ 2) (< 2,0,A>, A, .= 0) (< 2,0,B>, 35, .= 35) (< 2,0,C>, C, .= 0) (< 2,0,D>, 30, .= 30) (< 3,0,A>, A, .= 0) (< 3,0,B>, 2 + B, .+ 2) (< 3,0,C>, C, .= 0) (< 3,0,D>, 1 + D, .+ 1) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, 10 + B, .+ 10) (< 5,0,C>, C, .= 0) (< 5,0,D>, 31 + D, .+ 31) (< 6,0,A>, A, .= 0) (< 6,0,B>, 35, .= 35) (< 6,0,C>, C, .= 0) (< 6,0,D>, 30, .= 30) (< 7,0,A>, A, .= 0) (< 7,0,B>, 7 + B, .+ 7) (< 7,0,C>, C, .= 0) (< 7,0,D>, 30 + D, .+ 30) (< 8,0,A>, A, .= 0) (< 8,0,B>, 10 + B, .+ 10) (< 8,0,C>, C, .= 0) (< 8,0,D>, 2 + D, .+ 2) (< 9,0,A>, A, .= 0) (< 9,0,B>, 13 + B, .+ 13) (< 9,0,C>, C, .= 0) (< 9,0,D>, 1 + D, .+ 1) (<10,0,A>, A, .= 0) (<10,0,B>, 2 + B, .+ 2) (<10,0,C>, C, .= 0) (<10,0,D>, 1 + D, .+ 1) (<11,0,A>, A, .= 0) (<11,0,B>, C, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, A, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D) -> stop(A,B,C,D) [A >= 30 && B = C && D = A] (?,1) 1. start(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [C >= A && 29 >= A && B = C && D = A] (?,1) 2. start(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [A >= 1 + C && C >= 6 && 29 >= A && B = C && D = A] (?,1) 3. start(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [A >= 1 + C && 5 >= C && 29 >= A && B = C && D = A] (?,1) 4. lbl171(A,B,C,D) -> stop(A,B,C,D) [D >= 30 (?,1) && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 11. start0(A,B,C,D) -> start(A,C,C,A) True (1,1) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [0->{},1->{4,5,6,7},2->{8,9,10},3->{8,9,10},4->{},5->{4,5,6,7},6->{8,9,10},7->{8,9,10},8->{4,5,6,7},9->{8 ,9,10},10->{8,9,10},11->{0,1,2,3}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 1,0,A>, A) (< 1,0,B>, 10 + C) (< 1,0,C>, C) (< 1,0,D>, 2 + A) (< 2,0,A>, A) (< 2,0,B>, 35) (< 2,0,C>, C) (< 2,0,D>, 30) (< 3,0,A>, A) (< 3,0,B>, 2 + C) (< 3,0,C>, C) (< 3,0,D>, 1 + A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, ?) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) * Step 3: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D) -> stop(A,B,C,D) [A >= 30 && B = C && D = A] (?,1) 1. start(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [C >= A && 29 >= A && B = C && D = A] (?,1) 2. start(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [A >= 1 + C && C >= 6 && 29 >= A && B = C && D = A] (?,1) 3. start(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [A >= 1 + C && 5 >= C && 29 >= A && B = C && D = A] (?,1) 4. lbl171(A,B,C,D) -> stop(A,B,C,D) [D >= 30 (?,1) && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 11. start0(A,B,C,D) -> start(A,C,C,A) True (1,1) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [0->{},1->{4,5,6,7},2->{8,9,10},3->{8,9,10},4->{},5->{4,5,6,7},6->{8,9,10},7->{8,9,10},8->{4,5,6,7},9->{8 ,9,10},10->{8,9,10},11->{0,1,2,3}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 1,0,A>, A) (< 1,0,B>, 10 + C) (< 1,0,C>, C) (< 1,0,D>, 2 + A) (< 2,0,A>, A) (< 2,0,B>, 35) (< 2,0,C>, C) (< 2,0,D>, 30) (< 3,0,A>, A) (< 3,0,B>, 2 + C) (< 3,0,C>, C) (< 3,0,D>, 1 + A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, ?) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) + Applied Processor: ChainProcessor False [0,1,2,3,4,5,6,7,8,9,10,11] + Details: We chained rule 11 to obtain the rules [12,13,14,15] . * Step 4: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D) -> stop(A,B,C,D) [A >= 30 && B = C && D = A] (?,1) 1. start(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [C >= A && 29 >= A && B = C && D = A] (?,1) 2. start(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [A >= 1 + C && C >= 6 && 29 >= A && B = C && D = A] (?,1) 3. start(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [A >= 1 + C && 5 >= C && 29 >= A && B = C && D = A] (?,1) 4. lbl171(A,B,C,D) -> stop(A,B,C,D) [D >= 30 (?,1) && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [0->{},1->{4,5,6,7},2->{8,9,10},3->{8,9,10},4->{},5->{4,5,6,7},6->{8,9,10},7->{8,9,10},8->{4,5,6,7},9->{8 ,9,10},10->{8,9,10},12->{},13->{4,5,6,7},14->{8,9,10},15->{8,9,10}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 1,0,A>, A) (< 1,0,B>, 10 + C) (< 1,0,C>, C) (< 1,0,D>, 2 + A) (< 2,0,A>, A) (< 2,0,B>, 35) (< 2,0,C>, C) (< 2,0,D>, 30) (< 3,0,A>, A) (< 3,0,B>, 2 + C) (< 3,0,C>, C) (< 3,0,D>, 1 + A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, ?) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [0,1,2,3] * Step 5: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl171(A,B,C,D) -> stop(A,B,C,D) [D >= 30 (?,1) && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [4->{},5->{4,5,6,7},6->{8,9,10},7->{8,9,10},8->{4,5,6,7},9->{8,9,10},10->{8,9,10},12->{},13->{4,5,6,7} ,14->{8,9,10},15->{8,9,10}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, ?) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(6,10),(8,5),(9,10),(14,10)] * Step 6: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 4. lbl171(A,B,C,D) -> stop(A,B,C,D) [D >= 30 (?,1) && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [4->{},5->{4,5,6,7},6->{8,9},7->{8,9,10},8->{4,6,7},9->{8,9},10->{8,9,10},12->{},13->{4,5,6,7},14->{8,9} ,15->{8,9,10}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, ?) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [4] * Step 7: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, ?) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 5,0,A>, A, .= 0) (< 5,0,B>, 10 + B, .+ 10) (< 5,0,C>, C, .= 0) (< 5,0,D>, 31 + D, .+ 31) (< 6,0,A>, A, .= 0) (< 6,0,B>, 35, .= 35) (< 6,0,C>, C, .= 0) (< 6,0,D>, 30, .= 30) (< 7,0,A>, A, .= 0) (< 7,0,B>, 7 + B, .+ 7) (< 7,0,C>, C, .= 0) (< 7,0,D>, 30 + D, .+ 30) (< 8,0,A>, A, .= 0) (< 8,0,B>, 10 + B, .+ 10) (< 8,0,C>, C, .= 0) (< 8,0,D>, 2 + D, .+ 2) (< 9,0,A>, A, .= 0) (< 9,0,B>, 13 + B, .+ 13) (< 9,0,C>, C, .= 0) (< 9,0,D>, 1 + D, .+ 1) (<10,0,A>, A, .= 0) (<10,0,B>, 2 + B, .+ 2) (<10,0,C>, C, .= 0) (<10,0,D>, 1 + D, .+ 1) (<12,0,A>, A, .= 0) (<12,0,B>, C, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, A, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, 10 + C, .+ 10) (<13,0,C>, C, .= 0) (<13,0,D>, 2 + A + C, .* 2) (<14,0,A>, A, .= 0) (<14,0,B>, 35, .= 35) (<14,0,C>, C, .= 0) (<14,0,D>, 30, .= 30) (<15,0,A>, A, .= 0) (<15,0,B>, 2 + C, .+ 2) (<15,0,C>, C, .= 0) (<15,0,D>, 1 + A, .+ 1) * Step 8: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) * Step 9: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 5 : [C >= A && C >= A] 6 : [A = A] 7 : [A = A] 8 : [A = A] 9 : [A = A] 10 : [A = A] 12 : True 13 : True 14 : True 15 : True . * Step 10: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl151) = 146 + -5*x1 + -1*x3 + -1*x4 p(lbl171) = 146 + -5*x1 + -1*x3 + -1*x4 p(start0) = 145 + -6*x1 + -1*x3 p(stop) = 145 + -1*x2 + -6*x4 The following rules are strictly oriented: [D >= 1 + B ==> && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 146 + -5*A + -1*C + -1*D > 145 + -5*A + -1*C + -1*D = lbl151(A,2 + B,C,1 + D) The following rules are weakly oriented: [B >= D ==> && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 146 + -5*A + -1*C + -1*D >= 144 + -5*A + -1*C + -1*D = lbl171(A,-10 + B,C,2 + D) [D >= 1 + B ==> && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 146 + -5*A + -1*C + -1*D >= 145 + -5*A + -1*C + -1*D = lbl151(A,7 + B,C,1 + D) [B >= D ==> && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 146 + -5*A + -1*C + -1*D >= 144 + -5*A + -1*C + -1*D = lbl171(A,-10 + B,C,2 + D) [D >= 1 + B ==> && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 146 + -5*A + -1*C + -1*D >= 145 + -5*A + -1*C + -1*D = lbl151(A,7 + B,C,1 + D) [D >= 1 + B ==> && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 146 + -5*A + -1*C + -1*D >= 145 + -5*A + -1*C + -1*D = lbl151(A,2 + B,C,1 + D) [A >= 30 && C = C && A = A] ==> start0(A,B,C,D) = 145 + -6*A + -1*C >= 145 + -6*A + -1*C = stop(A,C,C,A) [C >= A && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 145 + -6*A + -1*C >= 144 + -6*A + -1*C = lbl171(A,-10 + C,C,2 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 145 + -6*A + -1*C >= 145 + -6*A + -1*C = lbl151(A,7 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 145 + -6*A + -1*C >= 145 + -6*A + -1*C = lbl151(A,2 + C,C,1 + A) * Step 11: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (145 + 6*A + C,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl151) = 1218 + -41*x1 + -1*x3 + -1*x4 p(lbl171) = 1220 + -41*x1 + -1*x3 + -1*x4 p(start0) = 1218 + -42*x1 + -1*x3 p(stop) = 1218 + -1*x2 + -42*x4 The following rules are strictly oriented: [D >= 1 + B ==> && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 1220 + -41*A + -1*C + -1*D > 1217 + -41*A + -1*C + -1*D = lbl151(A,7 + B,C,1 + D) The following rules are weakly oriented: [B >= D ==> && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 1220 + -41*A + -1*C + -1*D >= 1218 + -41*A + -1*C + -1*D = lbl171(A,-10 + B,C,2 + D) [D >= 1 + B ==> && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 1220 + -41*A + -1*C + -1*D >= 1217 + -41*A + -1*C + -1*D = lbl151(A,2 + B,C,1 + D) [B >= D ==> && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 1218 + -41*A + -1*C + -1*D >= 1218 + -41*A + -1*C + -1*D = lbl171(A,-10 + B,C,2 + D) [D >= 1 + B ==> && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 1218 + -41*A + -1*C + -1*D >= 1217 + -41*A + -1*C + -1*D = lbl151(A,7 + B,C,1 + D) [D >= 1 + B ==> && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 1218 + -41*A + -1*C + -1*D >= 1217 + -41*A + -1*C + -1*D = lbl151(A,2 + B,C,1 + D) [A >= 30 && C = C && A = A] ==> start0(A,B,C,D) = 1218 + -42*A + -1*C >= 1218 + -42*A + -1*C = stop(A,C,C,A) [C >= A && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 1218 + -42*A + -1*C >= 1218 + -42*A + -1*C = lbl171(A,-10 + C,C,2 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 1218 + -42*A + -1*C >= 1217 + -42*A + -1*C = lbl151(A,7 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 1218 + -42*A + -1*C >= 1217 + -42*A + -1*C = lbl151(A,2 + C,C,1 + A) * Step 12: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (1218 + 42*A + C,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (145 + 6*A + C,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (?,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl151) = 209 + -5*x1 + -1*x3 + -1*x4 p(lbl171) = 211 + -5*x1 + -1*x3 + -1*x4 p(start0) = 209 + -6*x1 + -1*x3 p(stop) = 209 + -1*x2 + -6*x4 The following rules are strictly oriented: [D >= 1 + B ==> && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 211 + -5*A + -1*C + -1*D > 208 + -5*A + -1*C + -1*D = lbl151(A,7 + B,C,1 + D) [D >= 1 + B ==> && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 211 + -5*A + -1*C + -1*D > 208 + -5*A + -1*C + -1*D = lbl151(A,2 + B,C,1 + D) [D >= 1 + B ==> && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 209 + -5*A + -1*C + -1*D > 208 + -5*A + -1*C + -1*D = lbl151(A,2 + B,C,1 + D) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 209 + -6*A + -1*C > 208 + -6*A + -1*C = lbl151(A,7 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 209 + -6*A + -1*C > 208 + -6*A + -1*C = lbl151(A,2 + C,C,1 + A) The following rules are weakly oriented: [B >= D ==> && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 211 + -5*A + -1*C + -1*D >= 209 + -5*A + -1*C + -1*D = lbl171(A,-10 + B,C,2 + D) [B >= D ==> && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 209 + -5*A + -1*C + -1*D >= 209 + -5*A + -1*C + -1*D = lbl171(A,-10 + B,C,2 + D) [D >= 1 + B ==> && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 209 + -5*A + -1*C + -1*D >= 208 + -5*A + -1*C + -1*D = lbl151(A,7 + B,C,1 + D) [A >= 30 && C = C && A = A] ==> start0(A,B,C,D) = 209 + -6*A + -1*C >= 209 + -6*A + -1*C = stop(A,C,C,A) [C >= A && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 209 + -6*A + -1*C >= 209 + -6*A + -1*C = lbl171(A,-10 + C,C,2 + A) * Step 13: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (145 + 6*A + C,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (?,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl151) = 3584 + -103*x1 + -1*x2 + -11*x3 + -7*x4 p(lbl171) = 3577 + -103*x1 + -1*x2 + -11*x3 + -7*x4 p(start0) = 3575 + -110*x1 + -12*x3 p(stop) = 3575 + -12*x2 + -110*x4 The following rules are strictly oriented: [D >= 1 + B ==> && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 3577 + -103*A + -1*B + -11*C + -7*D > 3570 + -103*A + -1*B + -11*C + -7*D = lbl151(A,7 + B,C,1 + D) [D >= 1 + B ==> && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 3577 + -103*A + -1*B + -11*C + -7*D > 3575 + -103*A + -1*B + -11*C + -7*D = lbl151(A,2 + B,C,1 + D) [D >= 1 + B ==> && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 3584 + -103*A + -1*B + -11*C + -7*D > 3570 + -103*A + -1*B + -11*C + -7*D = lbl151(A,7 + B,C,1 + D) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 3575 + -110*A + -12*C > 3570 + -110*A + -12*C = lbl151(A,7 + C,C,1 + A) The following rules are weakly oriented: [B >= D ==> && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 3577 + -103*A + -1*B + -11*C + -7*D >= 3573 + -103*A + -1*B + -11*C + -7*D = lbl171(A,-10 + B,C,2 + D) [B >= D ==> && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 3584 + -103*A + -1*B + -11*C + -7*D >= 3573 + -103*A + -1*B + -11*C + -7*D = lbl171(A,-10 + B,C,2 + D) [D >= 1 + B ==> && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 3584 + -103*A + -1*B + -11*C + -7*D >= 3575 + -103*A + -1*B + -11*C + -7*D = lbl151(A,2 + B,C,1 + D) [A >= 30 && C = C && A = A] ==> start0(A,B,C,D) = 3575 + -110*A + -12*C >= 3575 + -110*A + -12*C = stop(A,C,C,A) [C >= A && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 3575 + -110*A + -12*C >= 3573 + -110*A + -12*C = lbl171(A,-10 + C,C,2 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 3575 + -110*A + -12*C >= 3575 + -110*A + -12*C = lbl151(A,2 + C,C,1 + A) * Step 14: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (145 + 6*A + C,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (3575 + 110*A + 12*C,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl151) = 1950 + -57*x1 + -7*x3 + -2*x4 p(lbl171) = 1952 + -57*x1 + -7*x3 + -2*x4 p(start0) = 1948 + -59*x1 + -7*x3 p(stop) = 1948 + -7*x2 + -59*x4 The following rules are strictly oriented: [B >= D ==> && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 1950 + -57*A + -7*C + -2*D > 1948 + -57*A + -7*C + -2*D = lbl171(A,-10 + B,C,2 + D) The following rules are weakly oriented: [B >= D ==> && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 1952 + -57*A + -7*C + -2*D >= 1948 + -57*A + -7*C + -2*D = lbl171(A,-10 + B,C,2 + D) [D >= 1 + B ==> && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 1952 + -57*A + -7*C + -2*D >= 1948 + -57*A + -7*C + -2*D = lbl151(A,7 + B,C,1 + D) [D >= 1 + B ==> && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 1952 + -57*A + -7*C + -2*D >= 1948 + -57*A + -7*C + -2*D = lbl151(A,2 + B,C,1 + D) [D >= 1 + B ==> && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 1950 + -57*A + -7*C + -2*D >= 1948 + -57*A + -7*C + -2*D = lbl151(A,7 + B,C,1 + D) [D >= 1 + B ==> && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 1950 + -57*A + -7*C + -2*D >= 1948 + -57*A + -7*C + -2*D = lbl151(A,2 + B,C,1 + D) [A >= 30 && C = C && A = A] ==> start0(A,B,C,D) = 1948 + -59*A + -7*C >= 1948 + -59*A + -7*C = stop(A,C,C,A) [C >= A && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 1948 + -59*A + -7*C >= 1948 + -59*A + -7*C = lbl171(A,-10 + C,C,2 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 1948 + -59*A + -7*C >= 1948 + -59*A + -7*C = lbl151(A,7 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 1948 + -59*A + -7*C >= 1948 + -59*A + -7*C = lbl151(A,2 + C,C,1 + A) * Step 15: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (?,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (145 + 6*A + C,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (1948 + 59*A + 7*C,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (3575 + 110*A + 12*C,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl151) = 673 + -17*x1 + x2 + -1*x3 + -7*x4 p(lbl171) = 697 + -17*x1 + x2 + -1*x3 + -7*x4 p(start0) = 673 + -24*x1 p(stop) = 673 + -24*x4 The following rules are strictly oriented: [B >= D ==> && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 697 + -17*A + B + -1*C + -7*D > 673 + -17*A + B + -1*C + -7*D = lbl171(A,-10 + B,C,2 + D) [D >= 1 + B ==> && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 697 + -17*A + B + -1*C + -7*D > 673 + -17*A + B + -1*C + -7*D = lbl151(A,7 + B,C,1 + D) [D >= 1 + B ==> && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] lbl171(A,B,C,D) = 697 + -17*A + B + -1*C + -7*D > 668 + -17*A + B + -1*C + -7*D = lbl151(A,2 + B,C,1 + D) The following rules are weakly oriented: [B >= D ==> && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 673 + -17*A + B + -1*C + -7*D >= 673 + -17*A + B + -1*C + -7*D = lbl171(A,-10 + B,C,2 + D) [D >= 1 + B ==> && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 673 + -17*A + B + -1*C + -7*D >= 673 + -17*A + B + -1*C + -7*D = lbl151(A,7 + B,C,1 + D) [D >= 1 + B ==> && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] lbl151(A,B,C,D) = 673 + -17*A + B + -1*C + -7*D >= 668 + -17*A + B + -1*C + -7*D = lbl151(A,2 + B,C,1 + D) [A >= 30 && C = C && A = A] ==> start0(A,B,C,D) = 673 + -24*A >= 673 + -24*A = stop(A,C,C,A) [C >= A && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 673 + -24*A >= 673 + -24*A = lbl171(A,-10 + C,C,2 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 673 + -24*A >= 673 + -24*A = lbl151(A,7 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] ==> start0(A,B,C,D) = 673 + -24*A >= 668 + -24*A = lbl151(A,2 + C,C,1 + A) * Step 16: LoopRecurrenceProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (673 + 24*A,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (145 + 6*A + C,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (1948 + 59*A + 7*C,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (3575 + 110*A + 12*C,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: LoopRecurrenceProcessor [5] + Details: Applying the recurrence pattern linear * f to the expression B-A yields the solution -1*A + B . * Step 17: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. lbl171(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (673 + 24*A,1) && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 6. lbl171(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && B >= 6 && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 7. lbl171(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (145 + 6*A + C,1) && 5 >= B && 29 >= D && 29 >= A && B + 5*D >= 5*A + C && C + 7*D >= 24 + 7*A + B && 1674 + 7*B >= 35*A + 7*C + 19*D && 12 + B >= D] 8. lbl151(A,B,C,D) -> lbl171(A,-10 + B,C,2 + D) [B >= D (1948 + 59*A + 7*C,1) && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 9. lbl151(A,B,C,D) -> lbl151(A,7 + B,C,1 + D) [D >= 1 + B (3575 + 110*A + 12*C,1) && B >= 6 && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 10. lbl151(A,B,C,D) -> lbl151(A,2 + B,C,1 + D) [D >= 1 + B (209 + 6*A + C,1) && 5 >= B && 6*D >= 7 + 5*A + C && B + 5*D >= 7 + 5*A + C && D >= 1 + A && 29 >= A && 203 + B >= 5*A + C + 2*D && 1561 + 2*B >= 35*A + 7*C + 14*D && 23*B + 140*D >= 161 + 140*A + 28*C && 5719 + 23*B >= 140*A + 28*C + 56*D && 5 + D >= B && C + 7*D >= 7*A + B] 12. start0(A,B,C,D) -> stop(A,C,C,A) [A >= 30 && C = C && A = A] (1,2) 13. start0(A,B,C,D) -> lbl171(A,-10 + C,C,2 + A) [C >= A && 29 >= A && C = C && A = A] (1,2) 14. start0(A,B,C,D) -> lbl151(A,7 + C,C,1 + A) [A >= 1 + C && C >= 6 && 29 >= A && C = C && A = A] (1,2) 15. start0(A,B,C,D) -> lbl151(A,2 + C,C,1 + A) [A >= 1 + C && 5 >= C && 29 >= A && C = C && A = A] (1,2) Signature: {(lbl151,4);(lbl171,4);(start,4);(start0,4);(stop,4)} Flow Graph: [5->{5,6,7},6->{8,9},7->{8,9,10},8->{6,7},9->{8,9},10->{8,9,10},12->{},13->{5,6,7},14->{8,9},15->{8,9,10}] Sizebounds: (< 5,0,A>, A) (< 5,0,B>, 217 + 7*A + 8*C) (< 5,0,C>, C) (< 5,0,D>, 31) (< 6,0,A>, A) (< 6,0,B>, 35) (< 6,0,C>, C) (< 6,0,D>, 30) (< 7,0,A>, A) (< 7,0,B>, 30) (< 7,0,C>, C) (< 7,0,D>, 30) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (<10,0,A>, A) (<10,0,B>, 7) (<10,0,C>, C) (<10,0,D>, 234 + C) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, A) (<13,0,A>, A) (<13,0,B>, 10 + C) (<13,0,C>, C) (<13,0,D>, 2 + A + C) (<14,0,A>, A) (<14,0,B>, 35) (<14,0,C>, C) (<14,0,D>, 30) (<15,0,A>, A) (<15,0,B>, 2 + C) (<15,0,C>, C) (<15,0,D>, 1 + A) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))