WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F)  -> stop(A,B,C,F,E,F)        [0 >= 1 + A && B = C && D = E && F = A]                                         (?,1)
          1. start(A,B,C,D,E,F)  -> lbl121(A,1,C,-1 + F,E,F) [A >= 0 && 1 >= A && B = C && D = E && F = A]                                   (?,1)
          2. start(A,B,C,D,E,F)  -> lbl101(A,2,C,F,E,F)      [A >= 2 && B = C && D = E && F = A]                                             (?,1)
          3. lbl121(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)        [A >= 0 && B >= 0 && B >= 1 && 1 + D = 0 && F = A]                              (?,1)
          4. lbl121(A,B,C,D,E,F) -> lbl121(A,1,C,-1 + D,E,F) [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] (?,1)
          5. lbl121(A,B,C,D,E,F) -> lbl101(A,2,C,D,E,F)      [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A]           (?,1)
          6. lbl101(A,B,C,D,E,F) -> lbl101(A,2*B,C,D,E,F)    [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                       (?,1)
          7. lbl101(A,B,C,D,E,F) -> lbl121(A,B,C,-1 + D,E,F) [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                           (?,1)
          8. start0(A,B,C,D,E,F) -> start(A,C,C,E,E,A)       True                                                                            (1,1)
        Signature:
          {(lbl101,6);(lbl121,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{},1->{3,4,5},2->{6,7},3->{},4->{3,4,5},5->{6,7},6->{6,7},7->{3,4,5},8->{0,1,2}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, A, .= 0) (<0,0,B>,         B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>,     F, .= 0) (<0,0,E>, E, .= 0) (<0,0,F>, F, .= 0) 
          (<1,0,A>, A, .= 0) (<1,0,B>,         1, .= 1) (<1,0,C>, C, .= 0) (<1,0,D>,     1, .= 1) (<1,0,E>, E, .= 0) (<1,0,F>, F, .= 0) 
          (<2,0,A>, A, .= 0) (<2,0,B>,         2, .= 2) (<2,0,C>, C, .= 0) (<2,0,D>,     F, .= 0) (<2,0,E>, E, .= 0) (<2,0,F>, F, .= 0) 
          (<3,0,A>, A, .= 0) (<3,0,B>,         B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>,     D, .= 0) (<3,0,E>, E, .= 0) (<3,0,F>, F, .= 0) 
          (<4,0,A>, A, .= 0) (<4,0,B>,         1, .= 1) (<4,0,C>, C, .= 0) (<4,0,D>,     1, .= 1) (<4,0,E>, E, .= 0) (<4,0,F>, F, .= 0) 
          (<5,0,A>, A, .= 0) (<5,0,B>,         2, .= 2) (<5,0,C>, C, .= 0) (<5,0,D>,     D, .= 0) (<5,0,E>, E, .= 0) (<5,0,F>, F, .= 0) 
          (<6,0,A>, A, .= 0) (<6,0,B>, 4 + A + B, .* 4) (<6,0,C>, C, .= 0) (<6,0,D>,     D, .= 0) (<6,0,E>, E, .= 0) (<6,0,F>, F, .= 0) 
          (<7,0,A>, A, .= 0) (<7,0,B>,         B, .= 0) (<7,0,C>, C, .= 0) (<7,0,D>, 1 + D, .+ 1) (<7,0,E>, E, .= 0) (<7,0,F>, F, .= 0) 
          (<8,0,A>, A, .= 0) (<8,0,B>,         C, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>,     E, .= 0) (<8,0,E>, E, .= 0) (<8,0,F>, A, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F)  -> stop(A,B,C,F,E,F)        [0 >= 1 + A && B = C && D = E && F = A]                                         (?,1)
          1. start(A,B,C,D,E,F)  -> lbl121(A,1,C,-1 + F,E,F) [A >= 0 && 1 >= A && B = C && D = E && F = A]                                   (?,1)
          2. start(A,B,C,D,E,F)  -> lbl101(A,2,C,F,E,F)      [A >= 2 && B = C && D = E && F = A]                                             (?,1)
          3. lbl121(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)        [A >= 0 && B >= 0 && B >= 1 && 1 + D = 0 && F = A]                              (?,1)
          4. lbl121(A,B,C,D,E,F) -> lbl121(A,1,C,-1 + D,E,F) [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] (?,1)
          5. lbl121(A,B,C,D,E,F) -> lbl101(A,2,C,D,E,F)      [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A]           (?,1)
          6. lbl101(A,B,C,D,E,F) -> lbl101(A,2*B,C,D,E,F)    [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                       (?,1)
          7. lbl101(A,B,C,D,E,F) -> lbl121(A,B,C,-1 + D,E,F) [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                           (?,1)
          8. start0(A,B,C,D,E,F) -> start(A,C,C,E,E,A)       True                                                                            (1,1)
        Signature:
          {(lbl101,6);(lbl121,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{},1->{3,4,5},2->{6,7},3->{},4->{3,4,5},5->{6,7},6->{6,7},7->{3,4,5},8->{0,1,2}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>,       C) (<0,0,C>, C) (<0,0,D>,     A) (<0,0,E>, E) (<0,0,F>, A) 
          (<1,0,A>, A) (<1,0,B>,       1) (<1,0,C>, C) (<1,0,D>,     1) (<1,0,E>, E) (<1,0,F>, A) 
          (<2,0,A>, A) (<2,0,B>,       2) (<2,0,C>, C) (<2,0,D>,     A) (<2,0,E>, E) (<2,0,F>, A) 
          (<3,0,A>, A) (<3,0,B>, 2 + 2*A) (<3,0,C>, C) (<3,0,D>, 1 + A) (<3,0,E>, E) (<3,0,F>, A) 
          (<4,0,A>, A) (<4,0,B>,       1) (<4,0,C>, C) (<4,0,D>,     1) (<4,0,E>, E) (<4,0,F>, A) 
          (<5,0,A>, A) (<5,0,B>,       2) (<5,0,C>, C) (<5,0,D>,     A) (<5,0,E>, E) (<5,0,F>, A) 
          (<6,0,A>, A) (<6,0,B>,     2*A) (<6,0,C>, C) (<6,0,D>,     A) (<6,0,E>, E) (<6,0,F>, A) 
          (<7,0,A>, A) (<7,0,B>, 2 + 2*A) (<7,0,C>, C) (<7,0,D>,     A) (<7,0,E>, E) (<7,0,F>, A) 
          (<8,0,A>, A) (<8,0,B>,       C) (<8,0,C>, C) (<8,0,D>,     E) (<8,0,E>, E) (<8,0,F>, A) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F)  -> stop(A,B,C,F,E,F)        [0 >= 1 + A && B = C && D = E && F = A]                                         (?,1)
          1. start(A,B,C,D,E,F)  -> lbl121(A,1,C,-1 + F,E,F) [A >= 0 && 1 >= A && B = C && D = E && F = A]                                   (?,1)
          2. start(A,B,C,D,E,F)  -> lbl101(A,2,C,F,E,F)      [A >= 2 && B = C && D = E && F = A]                                             (?,1)
          3. lbl121(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)        [A >= 0 && B >= 0 && B >= 1 && 1 + D = 0 && F = A]                              (?,1)
          4. lbl121(A,B,C,D,E,F) -> lbl121(A,1,C,-1 + D,E,F) [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] (?,1)
          5. lbl121(A,B,C,D,E,F) -> lbl101(A,2,C,D,E,F)      [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A]           (?,1)
          6. lbl101(A,B,C,D,E,F) -> lbl101(A,2*B,C,D,E,F)    [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                       (?,1)
          7. lbl101(A,B,C,D,E,F) -> lbl121(A,B,C,-1 + D,E,F) [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                           (?,1)
          8. start0(A,B,C,D,E,F) -> start(A,C,C,E,E,A)       True                                                                            (1,1)
        Signature:
          {(lbl101,6);(lbl121,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{},1->{3,4,5},2->{6,7},3->{},4->{3,4,5},5->{6,7},6->{6,7},7->{3,4,5},8->{0,1,2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,       C) (<0,0,C>, C) (<0,0,D>,     A) (<0,0,E>, E) (<0,0,F>, A) 
          (<1,0,A>, A) (<1,0,B>,       1) (<1,0,C>, C) (<1,0,D>,     1) (<1,0,E>, E) (<1,0,F>, A) 
          (<2,0,A>, A) (<2,0,B>,       2) (<2,0,C>, C) (<2,0,D>,     A) (<2,0,E>, E) (<2,0,F>, A) 
          (<3,0,A>, A) (<3,0,B>, 2 + 2*A) (<3,0,C>, C) (<3,0,D>, 1 + A) (<3,0,E>, E) (<3,0,F>, A) 
          (<4,0,A>, A) (<4,0,B>,       1) (<4,0,C>, C) (<4,0,D>,     1) (<4,0,E>, E) (<4,0,F>, A) 
          (<5,0,A>, A) (<5,0,B>,       2) (<5,0,C>, C) (<5,0,D>,     A) (<5,0,E>, E) (<5,0,F>, A) 
          (<6,0,A>, A) (<6,0,B>,     2*A) (<6,0,C>, C) (<6,0,D>,     A) (<6,0,E>, E) (<6,0,F>, A) 
          (<7,0,A>, A) (<7,0,B>, 2 + 2*A) (<7,0,C>, C) (<7,0,D>,     A) (<7,0,E>, E) (<7,0,F>, A) 
          (<8,0,A>, A) (<8,0,B>,       C) (<8,0,C>, C) (<8,0,D>,     E) (<8,0,E>, E) (<8,0,F>, A) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,5),(4,5),(7,3)]
* Step 4: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F)  -> stop(A,B,C,F,E,F)        [0 >= 1 + A && B = C && D = E && F = A]                                         (?,1)
          1. start(A,B,C,D,E,F)  -> lbl121(A,1,C,-1 + F,E,F) [A >= 0 && 1 >= A && B = C && D = E && F = A]                                   (?,1)
          2. start(A,B,C,D,E,F)  -> lbl101(A,2,C,F,E,F)      [A >= 2 && B = C && D = E && F = A]                                             (?,1)
          3. lbl121(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)        [A >= 0 && B >= 0 && B >= 1 && 1 + D = 0 && F = A]                              (?,1)
          4. lbl121(A,B,C,D,E,F) -> lbl121(A,1,C,-1 + D,E,F) [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] (?,1)
          5. lbl121(A,B,C,D,E,F) -> lbl101(A,2,C,D,E,F)      [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A]           (?,1)
          6. lbl101(A,B,C,D,E,F) -> lbl101(A,2*B,C,D,E,F)    [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                       (?,1)
          7. lbl101(A,B,C,D,E,F) -> lbl121(A,B,C,-1 + D,E,F) [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                           (?,1)
          8. start0(A,B,C,D,E,F) -> start(A,C,C,E,E,A)       True                                                                            (1,1)
        Signature:
          {(lbl101,6);(lbl121,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{},1->{3,4},2->{6,7},3->{},4->{3,4},5->{6,7},6->{6,7},7->{4,5},8->{0,1,2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,       C) (<0,0,C>, C) (<0,0,D>,     A) (<0,0,E>, E) (<0,0,F>, A) 
          (<1,0,A>, A) (<1,0,B>,       1) (<1,0,C>, C) (<1,0,D>,     1) (<1,0,E>, E) (<1,0,F>, A) 
          (<2,0,A>, A) (<2,0,B>,       2) (<2,0,C>, C) (<2,0,D>,     A) (<2,0,E>, E) (<2,0,F>, A) 
          (<3,0,A>, A) (<3,0,B>, 2 + 2*A) (<3,0,C>, C) (<3,0,D>, 1 + A) (<3,0,E>, E) (<3,0,F>, A) 
          (<4,0,A>, A) (<4,0,B>,       1) (<4,0,C>, C) (<4,0,D>,     1) (<4,0,E>, E) (<4,0,F>, A) 
          (<5,0,A>, A) (<5,0,B>,       2) (<5,0,C>, C) (<5,0,D>,     A) (<5,0,E>, E) (<5,0,F>, A) 
          (<6,0,A>, A) (<6,0,B>,     2*A) (<6,0,C>, C) (<6,0,D>,     A) (<6,0,E>, E) (<6,0,F>, A) 
          (<7,0,A>, A) (<7,0,B>, 2 + 2*A) (<7,0,C>, C) (<7,0,D>,     A) (<7,0,E>, E) (<7,0,F>, A) 
          (<8,0,A>, A) (<8,0,B>,       C) (<8,0,C>, C) (<8,0,D>,     E) (<8,0,E>, E) (<8,0,F>, A) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [0,3]
* Step 5: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F)  -> lbl121(A,1,C,-1 + F,E,F) [A >= 0 && 1 >= A && B = C && D = E && F = A]                                   (?,1)
          2. start(A,B,C,D,E,F)  -> lbl101(A,2,C,F,E,F)      [A >= 2 && B = C && D = E && F = A]                                             (?,1)
          4. lbl121(A,B,C,D,E,F) -> lbl121(A,1,C,-1 + D,E,F) [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] (?,1)
          5. lbl121(A,B,C,D,E,F) -> lbl101(A,2,C,D,E,F)      [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A]           (?,1)
          6. lbl101(A,B,C,D,E,F) -> lbl101(A,2*B,C,D,E,F)    [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                       (?,1)
          7. lbl101(A,B,C,D,E,F) -> lbl121(A,B,C,-1 + D,E,F) [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                           (?,1)
          8. start0(A,B,C,D,E,F) -> start(A,C,C,E,E,A)       True                                                                            (1,1)
        Signature:
          {(lbl101,6);(lbl121,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [1->{4},2->{6,7},4->{4},5->{6,7},6->{6,7},7->{4,5},8->{1,2}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>,       1) (<1,0,C>, C) (<1,0,D>, 1) (<1,0,E>, E) (<1,0,F>, A) 
          (<2,0,A>, A) (<2,0,B>,       2) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, E) (<2,0,F>, A) 
          (<4,0,A>, A) (<4,0,B>,       1) (<4,0,C>, C) (<4,0,D>, 1) (<4,0,E>, E) (<4,0,F>, A) 
          (<5,0,A>, A) (<5,0,B>,       2) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, E) (<5,0,F>, A) 
          (<6,0,A>, A) (<6,0,B>,     2*A) (<6,0,C>, C) (<6,0,D>, A) (<6,0,E>, E) (<6,0,F>, A) 
          (<7,0,A>, A) (<7,0,B>, 2 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, E) (<7,0,F>, A) 
          (<8,0,A>, A) (<8,0,B>,       C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl101) = -3 + x1 + x4
          p(lbl121) = -3 + x1 + x4
           p(start) = -3 + 2*x1   
          p(start0) = -3 + 2*x1   
        
        The following rules are strictly oriented:
        [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A] ==>                         
                                          lbl101(A,B,C,D,E,F)   = -3 + A + D              
                                                                > -4 + A + D              
                                                                = lbl121(A,B,C,-1 + D,E,F)
        
        
        The following rules are weakly oriented:
                                          [A >= 0 && 1 >= A && B = C && D = E && F = A] ==>                         
                                                                     start(A,B,C,D,E,F)   = -3 + 2*A                
                                                                                         >= -4 + A + F              
                                                                                          = lbl121(A,1,C,-1 + F,E,F)
        
                                                    [A >= 2 && B = C && D = E && F = A] ==>                         
                                                                     start(A,B,C,D,E,F)   = -3 + 2*A                
                                                                                         >= -3 + A + F              
                                                                                          = lbl101(A,2,C,F,E,F)     
        
        [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] ==>                         
                                                                    lbl121(A,B,C,D,E,F)   = -3 + A + D              
                                                                                         >= -4 + A + D              
                                                                                          = lbl121(A,1,C,-1 + D,E,F)
        
                  [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] ==>                         
                                                                    lbl121(A,B,C,D,E,F)   = -3 + A + D              
                                                                                         >= -3 + A + D              
                                                                                          = lbl101(A,2,C,D,E,F)     
        
                              [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A] ==>                         
                                                                    lbl101(A,B,C,D,E,F)   = -3 + A + D              
                                                                                         >= -3 + A + D              
                                                                                          = lbl101(A,2*B,C,D,E,F)   
        
                                                                                   True ==>                         
                                                                    start0(A,B,C,D,E,F)   = -3 + 2*A                
                                                                                         >= -3 + 2*A                
                                                                                          = start(A,C,C,E,E,A)      
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F)  -> lbl121(A,1,C,-1 + F,E,F) [A >= 0 && 1 >= A && B = C && D = E && F = A]                                   (?,1)      
          2. start(A,B,C,D,E,F)  -> lbl101(A,2,C,F,E,F)      [A >= 2 && B = C && D = E && F = A]                                             (?,1)      
          4. lbl121(A,B,C,D,E,F) -> lbl121(A,1,C,-1 + D,E,F) [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] (?,1)      
          5. lbl121(A,B,C,D,E,F) -> lbl101(A,2,C,D,E,F)      [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A]           (?,1)      
          6. lbl101(A,B,C,D,E,F) -> lbl101(A,2*B,C,D,E,F)    [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                       (?,1)      
          7. lbl101(A,B,C,D,E,F) -> lbl121(A,B,C,-1 + D,E,F) [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                           (3 + 2*A,1)
          8. start0(A,B,C,D,E,F) -> start(A,C,C,E,E,A)       True                                                                            (1,1)      
        Signature:
          {(lbl101,6);(lbl121,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [1->{4},2->{6,7},4->{4},5->{6,7},6->{6,7},7->{4,5},8->{1,2}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>,       1) (<1,0,C>, C) (<1,0,D>, 1) (<1,0,E>, E) (<1,0,F>, A) 
          (<2,0,A>, A) (<2,0,B>,       2) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, E) (<2,0,F>, A) 
          (<4,0,A>, A) (<4,0,B>,       1) (<4,0,C>, C) (<4,0,D>, 1) (<4,0,E>, E) (<4,0,F>, A) 
          (<5,0,A>, A) (<5,0,B>,       2) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, E) (<5,0,F>, A) 
          (<6,0,A>, A) (<6,0,B>,     2*A) (<6,0,C>, C) (<6,0,D>, A) (<6,0,E>, E) (<6,0,F>, A) 
          (<7,0,A>, A) (<7,0,B>, 2 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, E) (<7,0,F>, A) 
          (<8,0,A>, A) (<8,0,B>,       C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F)  -> lbl121(A,1,C,-1 + F,E,F) [A >= 0 && 1 >= A && B = C && D = E && F = A]                                   (1,1)      
          2. start(A,B,C,D,E,F)  -> lbl101(A,2,C,F,E,F)      [A >= 2 && B = C && D = E && F = A]                                             (1,1)      
          4. lbl121(A,B,C,D,E,F) -> lbl121(A,1,C,-1 + D,E,F) [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] (?,1)      
          5. lbl121(A,B,C,D,E,F) -> lbl101(A,2,C,D,E,F)      [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A]           (3 + 2*A,1)
          6. lbl101(A,B,C,D,E,F) -> lbl101(A,2*B,C,D,E,F)    [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                       (?,1)      
          7. lbl101(A,B,C,D,E,F) -> lbl121(A,B,C,-1 + D,E,F) [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                           (3 + 2*A,1)
          8. start0(A,B,C,D,E,F) -> start(A,C,C,E,E,A)       True                                                                            (1,1)      
        Signature:
          {(lbl101,6);(lbl121,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [1->{4},2->{6,7},4->{4},5->{6,7},6->{6,7},7->{4,5},8->{1,2}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>,       1) (<1,0,C>, C) (<1,0,D>, 1) (<1,0,E>, E) (<1,0,F>, A) 
          (<2,0,A>, A) (<2,0,B>,       2) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, E) (<2,0,F>, A) 
          (<4,0,A>, A) (<4,0,B>,       1) (<4,0,C>, C) (<4,0,D>, 1) (<4,0,E>, E) (<4,0,F>, A) 
          (<5,0,A>, A) (<5,0,B>,       2) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, E) (<5,0,F>, A) 
          (<6,0,A>, A) (<6,0,B>,     2*A) (<6,0,C>, C) (<6,0,D>, A) (<6,0,E>, E) (<6,0,F>, A) 
          (<7,0,A>, A) (<7,0,B>, 2 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, E) (<7,0,F>, A) 
          (<8,0,A>, A) (<8,0,B>,       C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl101) = x4    
          p(lbl121) = 1 + x4
           p(start) = x1    
          p(start0) = x1    
        
        The following rules are strictly oriented:
        [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] ==>                         
                                                                    lbl121(A,B,C,D,E,F)   = 1 + D                   
                                                                                          > D                       
                                                                                          = lbl121(A,1,C,-1 + D,E,F)
        
                  [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] ==>                         
                                                                    lbl121(A,B,C,D,E,F)   = 1 + D                   
                                                                                          > D                       
                                                                                          = lbl101(A,2,C,D,E,F)     
        
        
        The following rules are weakly oriented:
                    [A >= 0 && 1 >= A && B = C && D = E && F = A] ==>                         
                                               start(A,B,C,D,E,F)   = A                       
                                                                   >= F                       
                                                                    = lbl121(A,1,C,-1 + F,E,F)
        
                              [A >= 2 && B = C && D = E && F = A] ==>                         
                                               start(A,B,C,D,E,F)   = A                       
                                                                   >= F                       
                                                                    = lbl101(A,2,C,F,E,F)     
        
        [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A] ==>                         
                                              lbl101(A,B,C,D,E,F)   = D                       
                                                                   >= D                       
                                                                    = lbl101(A,2*B,C,D,E,F)   
        
            [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A] ==>                         
                                              lbl101(A,B,C,D,E,F)   = D                       
                                                                   >= D                       
                                                                    = lbl121(A,B,C,-1 + D,E,F)
        
                                                             True ==>                         
                                              start0(A,B,C,D,E,F)   = A                       
                                                                   >= A                       
                                                                    = start(A,C,C,E,E,A)      
        
        
* Step 8: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F)  -> lbl121(A,1,C,-1 + F,E,F) [A >= 0 && 1 >= A && B = C && D = E && F = A]                                   (1,1)      
          2. start(A,B,C,D,E,F)  -> lbl101(A,2,C,F,E,F)      [A >= 2 && B = C && D = E && F = A]                                             (1,1)      
          4. lbl121(A,B,C,D,E,F) -> lbl121(A,1,C,-1 + D,E,F) [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] (A,1)      
          5. lbl121(A,B,C,D,E,F) -> lbl101(A,2,C,D,E,F)      [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A]           (A,1)      
          6. lbl101(A,B,C,D,E,F) -> lbl101(A,2*B,C,D,E,F)    [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                       (?,1)      
          7. lbl101(A,B,C,D,E,F) -> lbl121(A,B,C,-1 + D,E,F) [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                           (3 + 2*A,1)
          8. start0(A,B,C,D,E,F) -> start(A,C,C,E,E,A)       True                                                                            (1,1)      
        Signature:
          {(lbl101,6);(lbl121,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [1->{4},2->{6,7},4->{4},5->{6,7},6->{6,7},7->{4,5},8->{1,2}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>,       1) (<1,0,C>, C) (<1,0,D>, 1) (<1,0,E>, E) (<1,0,F>, A) 
          (<2,0,A>, A) (<2,0,B>,       2) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, E) (<2,0,F>, A) 
          (<4,0,A>, A) (<4,0,B>,       1) (<4,0,C>, C) (<4,0,D>, 1) (<4,0,E>, E) (<4,0,F>, A) 
          (<5,0,A>, A) (<5,0,B>,       2) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, E) (<5,0,F>, A) 
          (<6,0,A>, A) (<6,0,B>,     2*A) (<6,0,C>, C) (<6,0,D>, A) (<6,0,E>, E) (<6,0,F>, A) 
          (<7,0,A>, A) (<7,0,B>, 2 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, E) (<7,0,F>, A) 
          (<8,0,A>, A) (<8,0,B>,       C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [6], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl101) = -1 + -1*x2 + 2*x4
        
        The following rules are strictly oriented:
        [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A] ==>                      
                                              lbl101(A,B,C,D,E,F)   = -1 + -1*B + 2*D      
                                                                    > -1 + -2*B + 2*D      
                                                                    = lbl101(A,2*B,C,D,E,F)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<1,0,A>, A) (<1,0,B>,       1) (<1,0,C>, C) (<1,0,D>, 1) (<1,0,E>, E) (<1,0,F>, A) 
        (<2,0,A>, A) (<2,0,B>,       2) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, E) (<2,0,F>, A) 
        (<4,0,A>, A) (<4,0,B>,       1) (<4,0,C>, C) (<4,0,D>, 1) (<4,0,E>, E) (<4,0,F>, A) 
        (<5,0,A>, A) (<5,0,B>,       2) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, E) (<5,0,F>, A) 
        (<6,0,A>, A) (<6,0,B>,     2*A) (<6,0,C>, C) (<6,0,D>, A) (<6,0,E>, E) (<6,0,F>, A) 
        (<7,0,A>, A) (<7,0,B>, 2 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, E) (<7,0,F>, A) 
        (<8,0,A>, A) (<8,0,B>,       C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) 
* Step 9: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F)  -> lbl121(A,1,C,-1 + F,E,F) [A >= 0 && 1 >= A && B = C && D = E && F = A]                                   (1,1)              
          2. start(A,B,C,D,E,F)  -> lbl101(A,2,C,F,E,F)      [A >= 2 && B = C && D = E && F = A]                                             (1,1)              
          4. lbl121(A,B,C,D,E,F) -> lbl121(A,1,C,-1 + D,E,F) [D >= 0 && 1 >= D && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A] (A,1)              
          5. lbl121(A,B,C,D,E,F) -> lbl101(A,2,C,D,E,F)      [D >= 2 && A >= 1 + D && B >= 1 + D && B >= 1 && 1 + D >= 0 && F = A]           (A,1)              
          6. lbl101(A,B,C,D,E,F) -> lbl101(A,2*B,C,D,E,F)    [D >= 1 + B && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                       (3 + 5*A + 2*A^2,1)
          7. lbl101(A,B,C,D,E,F) -> lbl121(A,B,C,-1 + D,E,F) [B >= D && B >= 2 && 2*D >= 2 + B && A >= D && F = A]                           (3 + 2*A,1)        
          8. start0(A,B,C,D,E,F) -> start(A,C,C,E,E,A)       True                                                                            (1,1)              
        Signature:
          {(lbl101,6);(lbl121,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [1->{4},2->{6,7},4->{4},5->{6,7},6->{6,7},7->{4,5},8->{1,2}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>,       1) (<1,0,C>, C) (<1,0,D>, 1) (<1,0,E>, E) (<1,0,F>, A) 
          (<2,0,A>, A) (<2,0,B>,       2) (<2,0,C>, C) (<2,0,D>, A) (<2,0,E>, E) (<2,0,F>, A) 
          (<4,0,A>, A) (<4,0,B>,       1) (<4,0,C>, C) (<4,0,D>, 1) (<4,0,E>, E) (<4,0,F>, A) 
          (<5,0,A>, A) (<5,0,B>,       2) (<5,0,C>, C) (<5,0,D>, A) (<5,0,E>, E) (<5,0,F>, A) 
          (<6,0,A>, A) (<6,0,B>,     2*A) (<6,0,C>, C) (<6,0,D>, A) (<6,0,E>, E) (<6,0,F>, A) 
          (<7,0,A>, A) (<7,0,B>, 2 + 2*A) (<7,0,C>, C) (<7,0,D>, A) (<7,0,E>, E) (<7,0,F>, A) 
          (<8,0,A>, A) (<8,0,B>,       C) (<8,0,C>, C) (<8,0,D>, E) (<8,0,E>, E) (<8,0,F>, A) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))